INEQUALITIES FOR THE GAMMA FUNCTION

Size: px
Start display at page:

Download "INEQUALITIES FOR THE GAMMA FUNCTION"

Transcription

1 INEQUALITIES FOR THE GAMMA FUNCTION Received: 16 October, 26 Accepted: 9 February, 27 Communicated by: XIN LI AND CHAO-PING CHEN College of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan 4541, China chenchaoping@hpu.edu.cn A. Laforgia 2 AMS Sub. Class.: Primary 33B15; Secondary 26D7. Key words: Abstract: Gamma function, psi function, inequality. For x > 1, the inequalities x x γ e x 1 xx 1/2 < Γ(x) < e x 1 hold, and the constants γ and 1/2 are the best possible, where γ = is the Euler-Mascheroni constant. For < x < 1, the left-hand inequality also holds, but the right-hand inequality is reversed. This improves the result given by G. D. Anderson and S. -L. Qiu (1997). vol. 8, iss. 1, art. 28, 27 Page 1 of 6 Acknowldgement: The author was supported in part by the Science Foundation of the Project for Fostering Innovation Talents at Universities of Henan Province, China.

2 The classical gamma function is usually defined for x > by (1) Γ(x) = t x 1 e t dt, which is one of the most important special functions and has many extensive applications in many branches, for example, statistics, physics, engineering, and other mathematical sciences. The history and the development of this function are described in detail in [4]. The psi or digamma function, the logarithmic derivative of the gamma function, and the polygamma functions can be expressed as (2) (3) e t e xt ψ(x) = γ + dt, 1 e t ψ (m) (x) = ( 1) m+1 t m 1 e t e xt dt for x > and m = 1, 2,..., where γ = is the Euler-Mascheroni constant. In 1997, G. D. Anderson and S. -L. Qiu [3] presented the following upper and lower bounds for Γ(x): (4) x (1 γ) 1 < Γ(x) < x x 1 (x > 1). Actually, the authors proved more. They established that the function F (x) = ln Γ(x+1) x ln x is strictly increasing on (1, ) with lim x 1 F (x) = 1 γ and lim x 1 F (x) = 1, which leads to (4). In 1999, H. Alzer [2] showed that if x (1, ), then vol. 8, iss. 1, art. 28, 27 Page 2 of 6 (5) x α(x 1) γ < Γ(x) < x β(x 1) γ

3 is valid with the best possible constants α = (π 2 /6 γ)/2 and β = 1. This improves the bounds given in (4). Moreover, the author showed that if x (, 1), then (5) holds with the best possible constants α = 1 γ and β = (π 2 /6 γ)/2. Here we provide an improvement of (4) as follows. Theorem 1. For x > 1, the inequalities (6) x x γ xx 1/2 < Γ(x) < ex 1 e x 1 hold, and the constants γ and 1/2 are the best possible. For < x < 1, the left-hand inequality of (6) also holds, but the right-hand inequality of (6) is reversed. Proof. Define for x >, Differentation yields xf (x) f(x) f(x) = ex 1 Γ(x) x x γ. = x(ψ(x) ln x) + γ g(x). Using the representations [5, p. 153] ψ(x) = 1 ( 1 2x + ln x e t 1 1 t + 1 ) (7) e xt dt, 2 1 (8) x = e xt dt (x > ), and (3), we imply g (x) x = ψ (x) 1 x 1 x (ln x ψ(x)) = tδ(t)e xt dt e xt dt δ(t)e xt dt, vol. 8, iss. 1, art. 28, 27 Page 3 of 6

4 where δ(t) = 1 1 e t 1 t is strictly increasing on (, ) with lim x δ(t) = 1 and lim 2 x δ(t) = 1. By using the convolution theorem for Laplace transforms, we have g (x) [ t ] = tδ(t)e xt dt δ(s) ds e xt dt x [ t ] = (δ(t) δ(s)) ds e xt dt >, and therefore, the function g is strictly increasing on (, ), and then, g(x) < g(1) = and f (x) < for < x < 1, and g(x) > g(1) = and f (x) > for x > 1. Thus, the function f is strictly decreasing on (, 1), and is strictly increasing on (1, ), and therefore, the function f takes its minimum f(1) = 1 at x = 1. Hence, the left-hand inequality of (6) is valid for x > and x 1. Define for x >, h(x) = ex 1 Γ(x) x. x 1/2 we have by (7), h (x) h(x) = ( ) 1 2 δ(t) e xt dt <. This means that the function h is strictly decreasing on (, ), and then, h(x) < h(1) = 1 for x > 1, and h(x) > h(1) = 1 for < x < 1. Thus, the right-hand inequality of (6) is valid for x > 1, reversed for < x < 1. Write (6) as 1 2 < 1 x + x ln x ln Γ(x) ln x < γ. vol. 8, iss. 1, art. 28, 27 Page 4 of 6

5 From the asymptotic expansion [1, p. 257] ( ln Γ(x) = x 1 ) ln x x + ln 2π + O(x 1 ), 2 we conclude that 1 x + x ln x ln Γ(x) lim x ln x Easy computation reveals 1 x + x ln x ln Γ(x) lim x ln x = 1 2. = γ. Hence, for x > 1, the inequalities (6) hold, and the constants γ and 1/2 are the best possible. The proof is complete. We remark that the upper and lower bounds of (5) and (6) cannot be compared to each other. vol. 8, iss. 1, art. 28, 27 Page 5 of 6

6 References [1] M. ABRAMOWITZ AND I. A. STEGUN (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 9th printing, Dover, New York, [2] H. ALZER, gamma function, Proc. Amer. Math. Soc., 128(1) (1999), [3] G.D. ANDERSON AND S.-L. QIU, A monotonicity property of the gamma function, Proc. Amer. Math. Soc., 125(11) (1997), [4] P.J. DAVIS, Leonhard Euler s integral: A historical profile of the gamma function, Amer. Math. Monthly, 66 (1959), [5] TAN LIN, Reading Notes on the, Zhejiang University Press, Hangzhou City, China, (Chinese) vol. 8, iss. 1, art. 28, 27 Page 6 of 6

REFINEMENTS AND SHARPENINGS OF SOME DOUBLE INEQUALITIES FOR BOUNDING THE GAMMA FUNCTION

REFINEMENTS AND SHARPENINGS OF SOME DOUBLE INEQUALITIES FOR BOUNDING THE GAMMA FUNCTION REFINEMENTS AND SHARPENINGS OF SOME DOUBLE INEQUALITIES FOR BOUNDING THE GAMMA FUNCTION BAI-NI GUO YING-JIE ZHANG School of Mathematics and Informatics Department of Mathematics Henan Polytechnic University

More information

Sharp inequalities and complete monotonicity for the Wallis ratio

Sharp inequalities and complete monotonicity for the Wallis ratio Sharp inequalities and complete monotonicity for the Wallis ratio Cristinel Mortici Abstract The aim of this paper is to prove the complete monotonicity of a class of functions arising from Kazarinoff

More information

COMPLETE MONOTONICITIES OF FUNCTIONS INVOLVING THE GAMMA AND DIGAMMA FUNCTIONS. 1. Introduction

COMPLETE MONOTONICITIES OF FUNCTIONS INVOLVING THE GAMMA AND DIGAMMA FUNCTIONS. 1. Introduction COMPLETE MONOTONICITIES OF FUNCTIONS INVOLVING THE GAMMA AND DIGAMMA FUNCTIONS FENG QI AND BAI-NI GUO Abstract. In the article, the completely monotonic results of the functions [Γ( + 1)] 1/, [Γ(+α+1)]1/(+α),

More information

A COMPLETELY MONOTONIC FUNCTION INVOLVING THE TRI- AND TETRA-GAMMA FUNCTIONS

A COMPLETELY MONOTONIC FUNCTION INVOLVING THE TRI- AND TETRA-GAMMA FUNCTIONS ao DOI:.2478/s275-3-9-2 Math. Slovaca 63 (23), No. 3, 469 478 A COMPLETELY MONOTONIC FUNCTION INVOLVING THE TRI- AND TETRA-GAMMA FUNCTIONS Bai-Ni Guo* Jiao-Lian Zhao** Feng Qi* (Communicated by Ján Borsík

More information

Sharp inequalities and asymptotic expansion associated with the Wallis sequence

Sharp inequalities and asymptotic expansion associated with the Wallis sequence Deng et al. Journal of Inequalities and Applications 0 0:86 DOI 0.86/s3660-0-0699-z R E S E A R C H Open Access Sharp inequalities and asymptotic expansion associated with the Wallis sequence Ji-En Deng,

More information

Complete monotonicity of a function involving the p-psi function and alternative proofs

Complete monotonicity of a function involving the p-psi function and alternative proofs Global Journal of Mathematical Analysis, 2 (3) (24) 24-28 c Science Publishing Corporation www.sciencepubco.com/index.php/gjma doi:.449/gjma.v2i3.396 Research Paper Complete monotonicity of a function

More information

SOME INEQUALITIES FOR THE q-digamma FUNCTION

SOME INEQUALITIES FOR THE q-digamma FUNCTION Volume 10 (009), Issue 1, Article 1, 8 pp SOME INEQUALITIES FOR THE -DIGAMMA FUNCTION TOUFIK MANSOUR AND ARMEND SH SHABANI DEPARTMENT OF MATHEMATICS UNIVERSITY OF HAIFA 31905 HAIFA, ISRAEL toufik@mathhaifaacil

More information

Horst Alzer A MEAN VALUE INEQUALITY FOR THE DIGAMMA FUNCTION

Horst Alzer A MEAN VALUE INEQUALITY FOR THE DIGAMMA FUNCTION Rendiconti Sem. Mat. Univ. Pol. Torino Vol. 75, 2 (207), 9 25 Horst Alzer A MEAN VALUE INEQUALITY FOR THE DIGAMMA FUNCTION Abstract. A recently published result states that for all ψ is greater than or

More information

arxiv: v2 [math.ca] 12 Sep 2013

arxiv: v2 [math.ca] 12 Sep 2013 COMPLETE MONOTONICITY OF FUNCTIONS INVOLVING THE q-trigamma AND q-tetragamma FUNCTIONS arxiv:1301.0155v math.ca 1 Sep 013 FENG QI Abstract. Let ψ qx) for q > 0 stand for the q-digamma function. In the

More information

On the stirling expansion into negative powers of a triangular number

On the stirling expansion into negative powers of a triangular number MATHEMATICAL COMMUNICATIONS 359 Math. Commun., Vol. 5, No. 2, pp. 359-364 200) On the stirling expansion into negative powers of a triangular number Cristinel Mortici, Department of Mathematics, Valahia

More information

Latter research on Euler-Mascheroni constant. 313, Bucharest, Romania, Târgovişte, Romania,

Latter research on Euler-Mascheroni constant. 313, Bucharest, Romania, Târgovişte, Romania, Latter research on Euler-Mascheroni constant Valentin Gabriel Cristea and Cristinel Mortici arxiv:3.4397v [math.ca] 6 Dec 03 Ph. D. Student, University Politehnica of Bucharest, Splaiul Independenţei 33,

More information

arxiv: v1 [math.ca] 25 Jan 2011

arxiv: v1 [math.ca] 25 Jan 2011 AN INEQUALITY INVOLVING THE GAMMA AND DIGAMMA FUNCTIONS arxiv:04698v mathca] 25 Jan 20 FENG QI AND BAI-NI GUO Abstract In the paper, we establish an inequality involving the gamma and digamma functions

More information

arxiv: v1 [math.ca] 15 Jan 2018

arxiv: v1 [math.ca] 15 Jan 2018 Preprint submitted to arxiv.org Accurate estimates of 1 + x 1/x Involved in Carleman Inequality and Keller Limit arxiv:1801.04963v1 [math.ca] 15 Jan 2018 Branko Malešević 1, Yue Hu 2 and Cristinel Mortici

More information

Fractional part integral representation for derivatives of a function related to lnγ(x+1)

Fractional part integral representation for derivatives of a function related to lnγ(x+1) arxiv:.4257v2 [math-ph] 23 Aug 2 Fractional part integral representation for derivatives of a function related to lnγ(x+) For x > let Mark W. Coffey Department of Physics Colorado School of Mines Golden,

More information

1. Prove the following properties satisfied by the gamma function: 4 n n!

1. Prove the following properties satisfied by the gamma function: 4 n n! Math 205A: Complex Analysis, Winter 208 Homework Problem Set #6 February 20, 208. Prove the following properties satisfied by the gamma function: (a) Values at half-integers: Γ ( n + 2 (b) The duplication

More information

SUB- AND SUPERADDITIVE PROPERTIES OF EULER S GAMMA FUNCTION

SUB- AND SUPERADDITIVE PROPERTIES OF EULER S GAMMA FUNCTION PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 135, Number 11, November 27, Pages 3641 3648 S 2-9939(7)957- Article electronically published on August 6, 27 SUB- AND SUPERADDITIVE PROPERTIES OF

More information

Sharp Bounds for the Harmonic Numbers

Sharp Bounds for the Harmonic Numbers Sharp Bounds for the Harmonic Numbers arxiv:math/050585v3 [math.ca] 5 Nov 005 Mark B. Villarino Depto. de Matemática, Universidad de Costa Rica, 060 San José, Costa Rica March, 08 Abstract We obtain best

More information

LOGARITHMIC CONVEXITY OF EXTENDED MEAN VALUES

LOGARITHMIC CONVEXITY OF EXTENDED MEAN VALUES PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 130, Number 6, Pages 1787 1796 S 0002-9939(01)06275-X Article electronically published on December 20, 2001 LOGARITHMIC CONVEXITY OF EXTENDED MEAN

More information

OPTIMAL INEQUALITIES BETWEEN GENERALIZED LOGARITHMIC, IDENTRIC AND POWER MEANS

OPTIMAL INEQUALITIES BETWEEN GENERALIZED LOGARITHMIC, IDENTRIC AND POWER MEANS International Journal of Pure and Applied Mathematics Volume 80 No. 1 01, 41-51 ISSN: 1311-8080 (printed version) url: http://www.ijpam.eu PA ijpam.eu OPTIMAL INEQUALITIES BETWEEN GENERALIZED LOGARITHMIC,

More information

THREE INEQUALITIES INVOLVING HYPERBOLICALLY TRIGONOMETRIC FUNCTIONS

THREE INEQUALITIES INVOLVING HYPERBOLICALLY TRIGONOMETRIC FUNCTIONS THREE INEQUALITIES INVOLVING HYPERBOLICALLY TRIGONOMETRIC FUNCTIONS CHAO-PING CHEN, JIAN-WEI ZHAO, AND FENG QI Abstract. In the short note, by using mathematical induction and infinite product representations

More information

The Hardy-Littlewood Function: An Exercise in Slowly Convergent Series

The Hardy-Littlewood Function: An Exercise in Slowly Convergent Series The Hardy-Littlewood Function: An Exercise in Slowly Convergent Series Walter Gautschi Department of Computer Sciences Purdue University West Lafayette, IN 4797-66 U.S.A. Dedicated to Olav Njåstad on the

More information

Higher monotonicity properties of q gamma and q-psi functions

Higher monotonicity properties of q gamma and q-psi functions Advances in Dynamical Systems and Applications ISSN 973-5321, Volume x, Number x, pp. 1 13 (2xx) http://campus.mst.edu/adsa Higher monotonicity properties of q gamma and q-psi functions Mourad E. H. Ismail

More information

Higher Monotonicity Properties of q-gamma and q-psi Functions

Higher Monotonicity Properties of q-gamma and q-psi Functions Advances in Dynamical Systems and Applications ISSN 973-5321, Volume 8, Number 2, pp. 247 259 (213) http://campus.mst.edu/adsa Higher Monotonicity Properties of q-gamma and q-psi Functions Mourad E. H.

More information

The Generating Functions for Pochhammer

The Generating Functions for Pochhammer The Generating Functions for Pochhammer Symbol { }, n N Aleksandar Petoević University of Novi Sad Teacher Training Faculty, Department of Mathematics Podgorička 4, 25000 Sombor SERBIA and MONTENEGRO Email

More information

The Gamma Function. July 9, Louisiana State University SMILE REU. The Gamma Function. N. Cannady, T. Ngo, A. Williamson.

The Gamma Function. July 9, Louisiana State University SMILE REU. The Gamma Function. N. Cannady, T. Ngo, A. Williamson. The The Louisiana State University SMILE REU July 9, 2010 The Developed as the unique extension of the factorial to non-integral values. The Developed as the unique extension of the factorial to non-integral

More information

Turan inequalities for the digamma and polygamma functions

Turan inequalities for the digamma and polygamma functions South Asia Joural of Mathematics, Vol. : 49 55 www.sajm-olie.com ISSN 5-5 RESEARCH ARTICLE Tura ieualities for the digamma ad polygamma fuctios W.T. SULAIMAN Departmet of Computer Egieerig, College of

More information

Journal of Mathematical Analysis and Applications

Journal of Mathematical Analysis and Applications J. Math. Anal. Appl. 35 29) 276 282 Contents lists available at ScienceDirect Journal of Mathematical Analysis and Applications www.elsevier.com/locate/jmaa A Turán-type inequality for the gamma function

More information

Hölder, Chebyshev and Minkowski Type Inequalities for Stolarsky Means

Hölder, Chebyshev and Minkowski Type Inequalities for Stolarsky Means Int. Journal of Math. Analysis, Vol. 4, 200, no. 34, 687-696 Hölder, Chebyshev and Minkowski Type Inequalities for Stolarsky Means Zhen-Hang Yang System Division, Zhejiang Province Electric Power Test

More information

Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind

Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind Filomat 28:2 (24), 39 327 DOI.2298/FIL4239O Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Explicit formulas for computing Bernoulli

More information

Research Article Some Monotonicity Properties of Gamma and q-gamma Functions

Research Article Some Monotonicity Properties of Gamma and q-gamma Functions International Scholarly Research Network ISRN Mathematical Analysis Volume 11, Article ID 375715, 15 pages doi:1.54/11/375715 Research Article Some Monotonicity Properties of Gamma and q-gamma Functions

More information

Weak Subordination for Convex Univalent Harmonic Functions

Weak Subordination for Convex Univalent Harmonic Functions Weak Subordination for Convex Univalent Harmonic Functions Stacey Muir Abstract For two complex-valued harmonic functions f and F defined in the open unit disk with f() = F () =, we say f is weakly subordinate

More information

Inequalities and Monotonicity For The Ratio of Γ p Functions

Inequalities and Monotonicity For The Ratio of Γ p Functions Int. J. Open Problems Compt. Math., Vol. 3, No., March 200 ISSN 998-6262; Copyright c ICSRS Publication, 200 www.i-csrs.org Inequalities and Monotonicity For The Ratio of Γ p Functions Valmir Krasniqi

More information

ON EVALUATION OF RIEMANN ZETA FUNCTION ζ(s) 1. Introduction. It is well-known that the Riemann Zeta function defined by. ζ(s) = n s, R(s) > 1 (2)

ON EVALUATION OF RIEMANN ZETA FUNCTION ζ(s) 1. Introduction. It is well-known that the Riemann Zeta function defined by. ζ(s) = n s, R(s) > 1 (2) ON EVALUATION OF RIEMANN ZETA FUNCTION ζ(s) QIU-MING LUO, BAI-NI GUO, AND FENG QI Abstract. In this paper, by using Fourier series theory, several summing formulae for Riemann Zeta function ζ(s) and Dirichlet

More information

SOME MONOTONICITY PROPERTIES AND INEQUALITIES FOR

SOME MONOTONICITY PROPERTIES AND INEQUALITIES FOR Kragujevac Journal of Mathematic Volume 4 08 Page 87 97. SOME MONOTONICITY PROPERTIES AND INEQUALITIES FOR THE p k-gamma FUNCTION KWARA NANTOMAH FATON MEROVCI AND SULEMAN NASIRU 3 Abtract. In thi paper

More information

arxiv: v1 [math.ca] 4 Aug 2012

arxiv: v1 [math.ca] 4 Aug 2012 SHARP POWER MEANS BOUNDS FOR NEUMAN-SÁNDOR MEAN arxiv:08.0895v [math.ca] 4 Aug 0 ZHEN-HANG YANG Abstract. For a,b > 0 with a b, let N a,b) denote the Neuman-Sándor mean defined by N a,b) = arcsinh a+b

More information

arxiv:math/ v1 [math.ca] 16 Jun 2003

arxiv:math/ v1 [math.ca] 16 Jun 2003 THE BEST BOUNDS OF HARMONIC SEQUENCE arxiv:mah/62v mah.ca] 6 Jun 2 CHAO-PING CHEN AND FENG QI Absrac. For any naural number n N, n 2n+ γ 2 i lnn γ < 2n+, i where γ.5772566495286 denoes Euler s consan.

More information

Exact Asymptotics in Complete Moment Convergence for Record Times and the Associated Counting Process

Exact Asymptotics in Complete Moment Convergence for Record Times and the Associated Counting Process A^VÇÚO 33 ò 3 Ï 207 c 6 Chinese Journal of Applied Probability Statistics Jun., 207, Vol. 33, No. 3, pp. 257-266 doi: 0.3969/j.issn.00-4268.207.03.004 Exact Asymptotics in Complete Moment Convergence for

More information

AP Calculus Summer Homework

AP Calculus Summer Homework Class: Date: AP Calculus Summer Homework Show your work. Place a circle around your final answer. 1. Use the properties of logarithms to find the exact value of the expression. Do not use a calculator.

More information

CALCULUS II MATH Dr. Hyunju Ban

CALCULUS II MATH Dr. Hyunju Ban CALCULUS II MATH 2414 Dr. Hyunju Ban Introduction Syllabus Chapter 5.1 5.4 Chapters To Be Covered: Chap 5: Logarithmic, Exponential, and Other Transcendental Functions (2 week) Chap 7: Applications of

More information

Solutions of Burgers Equation

Solutions of Burgers Equation ISSN 749-3889 (print, 749-3897 (online International Journal of Nonlinear Science Vol.9( No.3,pp.9-95 Solutions of Burgers Equation Ch. Srinivasa Rao, Engu Satyanarayana Department of Mathematics, Indian

More information

Engg. Math. I. Unit-I. Differential Calculus

Engg. Math. I. Unit-I. Differential Calculus Dr. Satish Shukla 1 of 50 Engg. Math. I Unit-I Differential Calculus Syllabus: Limits of functions, continuous functions, uniform continuity, monotone and inverse functions. Differentiable functions, Rolle

More information

AN EXPLICIT FORMULA FOR BERNOULLI POLYNOMIALS IN TERMS OF r-stirling NUMBERS OF THE SECOND KIND

AN EXPLICIT FORMULA FOR BERNOULLI POLYNOMIALS IN TERMS OF r-stirling NUMBERS OF THE SECOND KIND ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 46, Number 6, 2016 AN EXPLICIT FORMULA FOR BERNOULLI POLYNOMIALS IN TERMS OF r-stirling NUMBERS OF THE SECOND KIND BAI-NI GUO, ISTVÁN MEZŐ AND FENG QI ABSTRACT.

More information

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0 8.7 Taylor s Inequality Math 00 Section 005 Calculus II Name: ANSWER KEY Taylor s Inequality: If f (n+) is continuous and f (n+) < M between the center a and some point x, then f(x) T n (x) M x a n+ (n

More information

A New Proof of Inequalities for Gauss Compound Mean

A New Proof of Inequalities for Gauss Compound Mean Int. Journal of Math. Analysis, Vol. 4, 2010, no. 21, 1013-1018 A New Proof of Inequalities for Gauss Compound Mean Zhen-hang Yang Electric Grid Planning and Research Center Zhejiang Province Electric

More information

Test 2 Review Math 1111 College Algebra

Test 2 Review Math 1111 College Algebra Test 2 Review Math 1111 College Algebra 1. Begin by graphing the standard quadratic function f(x) = x 2. Then use transformations of this graph to graph the given function. g(x) = x 2 + 2 *a. b. c. d.

More information

6.3 Exponential Integrals. Chi-Square Probability Function

6.3 Exponential Integrals. Chi-Square Probability Function 6.3 Exponential Integrals 5 Chi-Square Probability Function P (χ ν is defined as the probability that the observed chi-square for a correct model should be less than a value χ. (We will discuss the use

More information

3. Solve the following inequalities and express your answer in interval notation.

3. Solve the following inequalities and express your answer in interval notation. Youngstown State University College Algebra Final Exam Review (Math 50). Find all Real solutions for the following: a) x 2 + 5x = 6 b) 9 x2 x 8 = 0 c) (x 2) 2 = 6 d) 4x = 8 x 2 e) x 2 + 4x = 5 f) 36x 3

More information

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain.

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. For example f(x) = 1 1 x = 1 + x + x2 + x 3 + = ln(1 + x) = x x2 2

More information

s:

s: Indian J. Pure Appl. Math., 47(4: 77-73, December 6 c Indian National Science Academy DOI:.7/s36-6--6 SOME PROPERTIES OF THE SCHRÖDER NUMBERS Feng Qi,, Xiao-Ting Shi Bai-Ni Guo Institute of Mathematics,

More information

Approximations to inverse tangent function

Approximations to inverse tangent function Qiao Chen Journal of Inequalities Applications (2018 2018:141 https://doiorg/101186/s13660-018-1734-7 R E S E A R C H Open Access Approimations to inverse tangent function Quan-Xi Qiao 1 Chao-Ping Chen

More information

Sharp Bounds for Seiffert Mean in Terms of Arithmetic and Geometric Means 1

Sharp Bounds for Seiffert Mean in Terms of Arithmetic and Geometric Means 1 Int. Journal of Math. Analysis, Vol. 7, 01, no. 6, 1765-177 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.01.49 Sharp Bounds for Seiffert Mean in Terms of Arithmetic and Geometric Means 1

More information

UNIFORM BOUNDS FOR BESSEL FUNCTIONS

UNIFORM BOUNDS FOR BESSEL FUNCTIONS Journal of Applied Analysis Vol. 1, No. 1 (006), pp. 83 91 UNIFORM BOUNDS FOR BESSEL FUNCTIONS I. KRASIKOV Received October 8, 001 and, in revised form, July 6, 004 Abstract. For ν > 1/ and x real we shall

More information

Math 110 Test # 1. The set of real numbers in both of the intervals [0, 2) and ( 1, 0] is equal to. Question 1. (F) [ 1, 2) (G) (2, ) (H) [ 1, 2]

Math 110 Test # 1. The set of real numbers in both of the intervals [0, 2) and ( 1, 0] is equal to. Question 1. (F) [ 1, 2) (G) (2, ) (H) [ 1, 2] Friday July 8, 00 Jacek Szmigielski Math 0 Test # Fill in the bubbles that correspond to the correct answers. No aids: no calculators, closed book. You are not permitted to consult with your fellow students

More information

University of Lisbon, Portugal

University of Lisbon, Portugal Development and comparative study of two near-exact approximations to the distribution of the product of an odd number of independent Beta random variables Luís M. Grilo a,, Carlos A. Coelho b, a Dep.

More information

Spring 2015 Sample Final Exam

Spring 2015 Sample Final Exam Math 1151 Spring 2015 Sample Final Exam Final Exam on 4/30/14 Name (Print): Time Limit on Final: 105 Minutes Go on carmen.osu.edu to see where your final exam will be. NOTE: This exam is much longer than

More information

Use a graphing utility to approximate the real solutions, if any, of the equation rounded to two decimal places. 4) x3-6x + 3 = 0 (-5,5) 4)

Use a graphing utility to approximate the real solutions, if any, of the equation rounded to two decimal places. 4) x3-6x + 3 = 0 (-5,5) 4) Advanced College Prep Pre-Calculus Midyear Exam Review Name Date Per List the intercepts for the graph of the equation. 1) x2 + y - 81 = 0 1) Graph the equation by plotting points. 2) y = -x2 + 9 2) List

More information

arxiv: v1 [math.ca] 1 Nov 2012

arxiv: v1 [math.ca] 1 Nov 2012 A NOTE ON THE NEUMAN-SÁNDOR MEAN TIEHONG ZHAO, YUMING CHU, AND BAOYU LIU Abstract. In this article, we present the best possible upper and lower bounds for the Neuman-Sándor mean in terms of the geometric

More information

SOME EQUATIONS WITH FEATURES OF DIGIT REVERSAL AND POWERS

SOME EQUATIONS WITH FEATURES OF DIGIT REVERSAL AND POWERS SOME EQUATIONS WITH FEATURES OF DIGIT REVERSAL AND POWERS GEOFFREY B CAMPBELL AND ALEKSANDER ZUJEV Abstract. In this paper we consider integers in base 10 like abc, where a, b, c are digits of the integer,

More information

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 4.5 and 5.1-5.5 * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems from the textbook

More information

Math 152 Take Home Test 1

Math 152 Take Home Test 1 Math 5 Take Home Test Due Monday 5 th October (5 points) The following test will be done at home in order to ensure that it is a fair and representative reflection of your own ability in mathematics I

More information

A. Evaluate log Evaluate Logarithms

A. Evaluate log Evaluate Logarithms A. Evaluate log 2 16. Evaluate Logarithms Evaluate Logarithms B. Evaluate. C. Evaluate. Evaluate Logarithms D. Evaluate log 17 17. Evaluate Logarithms Evaluate. A. 4 B. 4 C. 2 D. 2 A. Evaluate log 8 512.

More information

INSTRUCTIONS USEFUL FORMULAS

INSTRUCTIONS USEFUL FORMULAS MATH 1100 College Algebra Spring 18 Exam 1 February 15, 2018 Name Student ID Instructor Class time INSTRUCTIONS 1. Do not open until you are told to do so. 2. Do not ask questions during the exam. 3. CAREFULLY

More information

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes Limits at Infinity If a function f has a domain that is unbounded, that is, one of the endpoints of its domain is ±, we can determine the long term behavior of the function using a it at infinity. Definition

More information

Attractivity of the Recursive Sequence x n+1 = (α βx n 1 )F (x n )

Attractivity of the Recursive Sequence x n+1 = (α βx n 1 )F (x n ) ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.7(2009) No.2,pp.201-206 Attractivity of the Recursive Sequence (α βx n 1 )F (x n ) A. M. Ahmed 1,, Alaa E. Hamza

More information

On some properties of digamma and polygamma functions

On some properties of digamma and polygamma functions J. Math. Aal. Appl. 328 2007 452 465 www.elsevier.com/locate/jmaa O some properties of digamma ad polygamma fuctios Necdet Batir Departmet of Mathematics, Faculty of Arts ad Scieces, Yuzucu Yil Uiversity,

More information

Section 6.1: Composite Functions

Section 6.1: Composite Functions Section 6.1: Composite Functions Def: Given two function f and g, the composite function, which we denote by f g and read as f composed with g, is defined by (f g)(x) = f(g(x)). In other words, the function

More information

Some Extensions of the Prabhu-Srivastava Theorem Involving the (p, q)-gamma Function

Some Extensions of the Prabhu-Srivastava Theorem Involving the (p, q)-gamma Function Filomat 31:14 2017), 4507 4513 https://doi.org/10.2298/fil1714507l Published by Faculty of Scieces ad Mathematics, Uiversity of Niš, Serbia Available at: http://www.pmf.i.ac.rs/filomat Some Extesios of

More information

Investigating Geometric and Exponential Polynomials with Euler-Seidel Matrices

Investigating Geometric and Exponential Polynomials with Euler-Seidel Matrices 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 14 (2011), Article 11.4.6 Investigating Geometric and Exponential Polynomials with Euler-Seidel Matrices Ayhan Dil and Veli Kurt Department of Mathematics

More information

The Schur Harmonic Convexity of Lehmer Means 1

The Schur Harmonic Convexity of Lehmer Means 1 International Mathematical Forum, 4, 2009, no. 41, 2009-2015 The Schur Harmonic Convexity of Lehmer Means 1 Weifeng Xia School of Teacher Education Huzhou Teachers College, Huzhou 313000, P.R. China Yuming

More information

A CLASS OF NEW TRIGONOMETRIC INEQUALITIES AND THEIR SHARPENINGS

A CLASS OF NEW TRIGONOMETRIC INEQUALITIES AND THEIR SHARPENINGS Journal of Mathematical Inequalities Volume, Number 3 (008), 49 436 A CLASS OF NEW TRIGONOMETRIC INEQUALITIES AND THEIR SHARPENINGS KUN ZHU, HONG ZHANG AND KAIQING WENG (communicated by V. Volenec) Abstract.

More information

6.3 Exponential Integrals. Chi-Square Probability Function

6.3 Exponential Integrals. Chi-Square Probability Function 6.3 Exponential Integrals 5 Chi-Square Probability Function P (χ ν is defined as the probability that the observed chi-square for a correct model should be less than a value χ. (We will discuss the use

More information

Final Exam C Name i D) 2. Solve the equation by factoring. 4) x2 = x + 72 A) {1, 72} B) {-8, 9} C) {-8, -9} D) {8, 9} 9 ± i

Final Exam C Name i D) 2. Solve the equation by factoring. 4) x2 = x + 72 A) {1, 72} B) {-8, 9} C) {-8, -9} D) {8, 9} 9 ± i Final Exam C Name First, write the value(s) that make the denominator(s) zero. Then solve the equation. 7 ) x + + 3 x - = 6 (x + )(x - ) ) A) No restrictions; {} B) x -, ; C) x -; {} D) x -, ; {2} Add

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

The general solution of a quadratic functional equation and Ulam stability

The general solution of a quadratic functional equation and Ulam stability Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 8 (05), 60 69 Research Article The general solution of a quadratic functional equation and Ulam stability Yaoyao Lan a,b,, Yonghong Shen c a College

More information

Fourier series of sums of products of ordered Bell and poly-bernoulli functions

Fourier series of sums of products of ordered Bell and poly-bernoulli functions Kim et al. Journal of Inequalities and Applications 27 27:84 DOI.86/s366-7-359-2 R E S E A R C H Open Access Fourier series of sums of products of ordered ell and poly-ernoulli functions Taekyun Kim,2,DaeSanKim

More information

Yunhi Cho and Young-One Kim

Yunhi Cho and Young-One Kim Bull. Korean Math. Soc. 41 (2004), No. 1, pp. 27 43 ANALYTIC PROPERTIES OF THE LIMITS OF THE EVEN AND ODD HYPERPOWER SEQUENCES Yunhi Cho Young-One Kim Dedicated to the memory of the late professor Eulyong

More information

The principal inverse of the gamma function

The principal inverse of the gamma function The principal inverse of the gamma function Mitsuru Uchiyama Shimane University 2013/7 Mitsuru Uchiyama (Shimane University) The principal inverse of the gamma function 2013/7 1 / 25 Introduction The gamma

More information

Name Date Period. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Name Date Period. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. AB Fall Final Exam Review 200-20 Name Date Period MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. ) The position of a particle

More information

Research Article On New Wilker-Type Inequalities

Research Article On New Wilker-Type Inequalities International Scholarly Research Network ISRN Mathematical Analysis Volume 2011, Article ID 681702, 7 pages doi:10.5402/2011/681702 Research Article On New Wilker-Type Inequalities Zhengjie Sun and Ling

More information

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x?

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x? Inverse Functions Question: What is the relationship between f(x) = x 3 and g(x) = 3 x? Question: What is the relationship between f(x) = x 2 and g(x) = x? Definition (One-to-One Function) A function f

More information

MATH 614 Dynamical Systems and Chaos Lecture 2: Periodic points. Hyperbolicity.

MATH 614 Dynamical Systems and Chaos Lecture 2: Periodic points. Hyperbolicity. MATH 614 Dynamical Systems and Chaos Lecture 2: Periodic points. Hyperbolicity. Orbit Let f : X X be a map defining a discrete dynamical system. We use notation f n for the n-th iteration of f defined

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics. MATH C Test #1. October 23, 2013.

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics. MATH C Test #1. October 23, 2013. YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 1505 6.00 C Test #1 October 3, 013 Solutions Family Name (print): Student No: Given Name: Signature: INSTRUCTIONS: 1. Please

More information

ON A WEIGHTED INTERPOLATION OF FUNCTIONS WITH CIRCULAR MAJORANT

ON A WEIGHTED INTERPOLATION OF FUNCTIONS WITH CIRCULAR MAJORANT ON A WEIGHTED INTERPOLATION OF FUNCTIONS WITH CIRCULAR MAJORANT Received: 31 July, 2008 Accepted: 06 February, 2009 Communicated by: SIMON J SMITH Department of Mathematics and Statistics La Trobe University,

More information

Math 113 (Calculus 2) Exam 4

Math 113 (Calculus 2) Exam 4 Math 3 (Calculus ) Exam 4 November 0 November, 009 Sections 0, 3 7 Name Student ID Section Instructor In some cases a series may be seen to converge or diverge for more than one reason. For such problems

More information

Skill 6 Exponential and Logarithmic Functions

Skill 6 Exponential and Logarithmic Functions Skill 6 Exponential and Logarithmic Functions Skill 6a: Graphs of Exponential Functions Skill 6b: Solving Exponential Equations (not requiring logarithms) Skill 6c: Definition of Logarithms Skill 6d: Graphs

More information

A Nonstandard Fourier Inequality

A Nonstandard Fourier Inequality A Nonstandard Fourier Inequality Jonas Azzam, Bobbie Buchholz, Ian Grooms Gretchen Hagge, Kyle Hays, Greg Norgard Abstract We consider a class of functions given by series of the form h(x) := f k e a kx

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) 6x + 4

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) 6x + 4 Math1420 Review Comprehesive Final Assessment Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Add or subtract as indicated. x + 5 1) x2

More information

Defining Incomplete Gamma Type Function with Negative Arguments and Polygamma functions ψ (n) ( m)

Defining Incomplete Gamma Type Function with Negative Arguments and Polygamma functions ψ (n) ( m) 1 Defining Incomplete Gamma Type Function with Negative Arguments and Polygamma functions ψ (n) (m) arxiv:147.349v1 [math.ca] 27 Jun 214 Emin Özc. ağ and İnci Ege Abstract. In this paper the incomplete

More information

ON BLEIMANN-BUTZER-HAHN OPERATORS FOR EXPONENTIAL FUNCTIONS ULRICH ABEL AND MIRCEA IVAN

ON BLEIMANN-BUTZER-HAHN OPERATORS FOR EXPONENTIAL FUNCTIONS ULRICH ABEL AND MIRCEA IVAN BULL. AUSTRAL. MATH. SOC. VOL. 75 (2007) [409-415] 41A36, 05A19, 05A20 ON BLEIMANN-BUTZER-HAHN OPERATORS FOR EXPONENTIAL FUNCTIONS ULRICH ABEL AND MIRCEA IVAN Some inequalities involving the binomial coefficients

More information

for every x in the gomain of g

for every x in the gomain of g Section.7 Definition of Inverse Function Let f and g be two functions such that f(g(x)) = x for every x in the gomain of g and g(f(x)) = x for every x in the gomain of f Under these conditions, the function

More information

Infinite Limits. By Tuesday J. Johnson

Infinite Limits. By Tuesday J. Johnson Infinite Limits By Tuesday J. Johnson Suggested Review Topics Algebra skills reviews suggested: Evaluating functions Graphing functions Working with inequalities Working with absolute values Trigonometric

More information

Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems. p. 1/1

Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems. p. 1/1 Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems p. 1/1 p. 2/1 Converse Lyapunov Theorem Exponential Stability Let x = 0 be an exponentially stable equilibrium

More information

Some Integral Inequalities with Maximum of the Unknown Functions

Some Integral Inequalities with Maximum of the Unknown Functions Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 6, Number 1, pp. 57 69 2011 http://campus.mst.edu/adsa Some Integral Inequalities with Maximum of the Unknown Functions Snezhana G.

More information

ln(9 4x 5 = ln(75) (4x 5) ln(9) = ln(75) 4x 5 = ln(75) ln(9) ln(75) ln(9) = 1. You don t have to simplify the exact e x + 4e x

ln(9 4x 5 = ln(75) (4x 5) ln(9) = ln(75) 4x 5 = ln(75) ln(9) ln(75) ln(9) = 1. You don t have to simplify the exact e x + 4e x Math 11. Exponential and Logarithmic Equations Fall 016 Instructions. Work in groups of 3 to solve the following problems. Turn them in at the end of class for credit. Names. 1. Find the (a) exact solution

More information

New asymptotic expansion for the Γ (z) function.

New asymptotic expansion for the Γ (z) function. New asymptotic expansion for the Γ z function. Gergő Nemes Institute of Mathematics, Eötvös Loránd University 7 Budapest, Hungary September 4, 007 Published in Stan s Library, Volume II, 3 Dec 007. Link:

More information

Research Article Sharp Bounds by the Generalized Logarithmic Mean for the Geometric Weighted Mean of the Geometric and Harmonic Means

Research Article Sharp Bounds by the Generalized Logarithmic Mean for the Geometric Weighted Mean of the Geometric and Harmonic Means Applied Mathematics Volume 2012, Article ID 480689, 8 pages doi:10.1155/2012/480689 Research Article Sharp Bounds by the Generalized Logarithmic Mean for the Geometric Weighted Mean of the Geometric and

More information

THE GAMMA FUNCTION THU NGỌC DƯƠNG

THE GAMMA FUNCTION THU NGỌC DƯƠNG THE GAMMA FUNCTION THU NGỌC DƯƠNG The Gamma unction was discovered during the search or a actorial analog deined on real numbers. This paper will explore the properties o the actorial unction and use them

More information

THE BEST CONSTANTS FOR A DOUBLE INEQUALITY IN A TRIANGLE

THE BEST CONSTANTS FOR A DOUBLE INEQUALITY IN A TRIANGLE THE BEST CONSTANTS FOR A DOUBLE INEQUALITY IN A TRIANGLE YU-DONG WU Department of Mathematics Zhejiang Xinchang High School Shaoxing 1500, Zhejiang People s Republic of China. EMail: yudong.wu@yahoo.com.cn

More information

JUNXIA MENG. 2. Preliminaries. 1/k. x = max x(t), t [0,T ] x (t), x k = x(t) dt) k

JUNXIA MENG. 2. Preliminaries. 1/k. x = max x(t), t [0,T ] x (t), x k = x(t) dt) k Electronic Journal of Differential Equations, Vol. 29(29), No. 39, pp. 1 7. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu POSIIVE PERIODIC SOLUIONS

More information

Solutions to Midterm 1 (Drogon)

Solutions to Midterm 1 (Drogon) MATH 15 Solutions to Midterm 1 (Drogon) 1 A tank holding gallons of maple syrup can be drained completely in three hours by opening a valve at its bottom The amount of syrup in the tank at time t (where

More information