Sharp Bounds for the Harmonic Numbers

Size: px
Start display at page:

Download "Sharp Bounds for the Harmonic Numbers"

Transcription

1 Sharp Bounds for the Harmonic Numbers arxiv:math/050585v3 [math.ca] 5 Nov 005 Mark B. Villarino Depto. de Matemática, Universidad de Costa Rica, 060 San José, Costa Rica March, 08 Abstract We obtain best upper and lower bounds for the Lodge-Ramanujan and DeTemple- Wang approximations to the nth Harmonic Number. Introduction For every natural number n the Harmonic Number, H n is the nth partial sum of the harmonic series: H n := n. ) Although the asymptotics of H n were determined by Euler, see [4]), in his famous formula: H n lnn+γ + n n + [ ], ) 0n4 where γ = is Euler s constant and each summand in the asymptotic expansion is of the form B k n k, where B k denots the kth Bernoulli number, mathematicians have continued to offer alternate approximative formulas to Euler s. We cite the following formulas, which appear in order of increasing accuracy: H n lnn+γ + n+ 3 ln nn+)+γ + 6nn+)+ 6 5 ln n+ ) +γ + 4 n+ 3) 4) ). 5) + 5

2 The formula 3) is the Tóth-Mare approximation, see [5]), and itunderestimates the true value of H n by terms of order 7n3; the second, 4), is the Lodge-Ramanujan approximation, and it overestimates the true value of H n by terms of order 9 350[nn+)] 3, see [6]); and the last, 5), is the DeTemple-Wang approximation, and it overestimates 07 the true value of H n by terms of order ) n+ 6, see []). In 003, Chao-Ping Chen and Feng Qi, see []), published a proof of the following sharp form of the Tóth-Mare approximation: Theorem. For any natural number n, the following inequality is valid: n+ γ H n lnn γ < n+. 6) 3 The constants =.3657 and γ 3 n =. are the best possible, and equality holds only for The first statement of this theorem had been announced ten years earlier by the editors of the Problems section of the American Mathemtical Monthyly, Vol 99, No. 7, Jul-Aug, 99), p 685, as part of a commentary on the solution of Problem 343, but they did not publish the proof. So, the first published proof is apparently that of Chen and Qi. In this paper we will prove sharp forms of the Lodge-Ramanujan approximation and the DeTemple-Wang approximation. Theorem. For any natural number n, the following inequality is valid: 6nn+)+ 6 5 < H n ln nn+) γ 6nn+)+ γ ln γ ln. 7) The constants γ ln γ ln only for n =. and = and 6 5 are the best possible, and equality holds Theorem 3. For any natural number n, the following inequality is valid: 4 n+ ) + 5 H n lnn γ < 4 ) n+. 8) + 54ln 3 +54γ 53 ln 3 γ The constants 54ln 3 +54γ 53 ln 3 γ holds only for n =. = and 5 are the best possible, and equality

3 All three theorems are corollaries of the following stronger theorem: Theorem 4. For any natural number n, define f n, λ n, and d n by: H n := lnn+γ + 9) n+f n := ln nn+)+γ + 0) 6nn+)+λ n := ln n+ ) +γ + 4 ) n+, ) +dn respectively. Then for any natural number n the sequence {f n } is monotonically decreasing while the sequences {λ n } and {d n } are monotonically increasing. Chen and Qi, see []), proved that the sequence {f n } decreases monotonically. In this paper we will prove the monotonicity of the sequences {λ n } and {d n }. Lemmas Our proof is based on inequalities satisfied by the digamma function, Ψx): Ψx) := d dx lnγx) Γ x) Γx) γ x +x nx+n), ) which is the generalization of H n to the real variable x since Ψx) and H n satisfiy the equation: Ψn+) = H n γ. 3) Lemma. For every x > 0 there exist numbers θ x and Θ x, with 0 < θ x < and 0 < Θ x <, for which the following equations are true: Ψx+) = lnx+ x x + 0x 4 5x x 8θ x, 4) Ψ x+) = x x + 6x 3 30x 5 + 4x 7 30x 9Θ x. 5) Proof. Both formulas are well-known. See, for example, [3], pp 4-5. n= 6) Lemma. The following inequalities are true for x > 0: 3xx+) 5x x+) < Ψx+) ln{xx+)} < 3xx+) 5x x+) x 3 x+) 3, 7) 3

4 x xx+) 3x 3 + 5x 5 8x 7 < x + x+ Ψ x+) < x xx+) 3x + 3 5x5. 8) Proof. The inequalities 7) were proved in our paper, see[6]), for integers n instead of the real variable x. But the proofs are valid for real x. For 8) we start with 5) of Lemma. We conclude that x 6x x 5 36x 7 < x Ψ x+) < x 6x x 5. Now we multiply to all three components of the inequality by and add Lemma 3. The following inequalities are true for x > 0: ) x+ x + x 6x x 5 4x < 7 x+ < Ψ x+) x+ x+ x to them. ) x + x 6x x5, 9) 4x 4x x 4 60x x 6 896x < Ψx+) ln x+ ) 7 < 4x 4x x 4 60x x 6 896x x8. 0) Proof. Similar to the proof of Lemma. 3 Proof for the Lodge-Ramanujan approximation Proof. We solve 0) for λ n and use 3) to obtain Define λ n = Λ x := for all x > 0. Observe that Λ n = λ n. Ψn+) ln nn+) 6nn+). 3xx+). ) Ψx+) lnxx+) We will show that Λ x > 0 for x > 5. Computing the derivative we obtain Λ x = x + x+ Ψ x+) {Ψx+) ln{xx+)} 6x+3) 4

5 and therefore {Ψx+) ln{xx+)} Λ x = x + x+ Ψ x+) 6x+3){Ψx+) ln{xx+)}. By Lemma, this is greater than x xx+) 3x + 3 5x 5 8x 7 { 6x+3) 3xx+) 5x x+) x 3 x+) 3 = 07x6 +840x 5 789x x x 78x x 7 x+) 6 ) 5 x x = x 5) x x x x7 x+) 6 which is obviously positive for x > 5. For x =,, 3, 4, 5, we compute directly: Λ = Λ = Λ 3 = Λ 4 = Λ 5 = } Therefore, the sequence {Λ n }, n, is a strictly increasing sequence, and therefore so is the sequence {λ n }. Moreover, in [6], we proved that where 0 < n < 38 75nn+). Therefore λ n = 6 5 n, This completes the proof. lim n λ n = Proof for the DeTemple-Wang Approximation Proof. Following the idea in the proof of the Lodge-Ramanujan approximation we solve ) for d n and define the corresponding real-variable version. Let d x := Ψx+) ln ) 4 x+ ) x+ ) 5

6 We compute the derivative, ask when it is positive, clear the denominator and observe that we have to solve the inequality: { x+ } Ψ x+) 48 x+ ){ Ψx+) ln x+ > 0. )} By Lemma 3, the left hand side of this inequality is > x+ ) x + x 6x x 5 4x 7 48 x+ ) 4x 4x x 4 60x x 6 896x x 8 ) for all x > 0. This last quantity is equal to x x x x x x x x x x 0 )/ x 6 +x)) The denominator, x 6 +x), is evidently positive for x > 0 and the numerator can be written in the form where px)x 4)+r px) = x x x x x x x x x 9 with remainder r equal to r = Therefore, the numerator is clearly positive for x > 4, and therefore, the derivative, d x, too, is postive for x > 4. Finally d = d = d 3 = d 4 = Therefore {d n } is an increasing sequence for n. 6

7 Now, if we expand the formula for d n into an asymptotic series in powers of ), we n+ obtain d n ) + n+ and we conclude that This completes the proof. References lim d n = n 5. [] Ch.-P. Chen and F. Qi, The best bounds of the n-th harmonic number, Global Journal of Mathematics and Mathematical Sciences 006), accepted. The best lower and upper bounds of harmonic sequence, RGMIA Research Report Collection 6 003), no., Article 4. The best bounds of harmonic sequence, available online at [] D. DeTemple and S-H Wang Half-integer Approximations for the Partial Sums of the Harmonic Series Journal of Mathematical Analysis and Applications, 60 99), [3] J. Edwards A Treatise on the Integral Calculus, Vol II, Chelsea, New York, 955. [4] K. Knopp Theory and Application of Infinite Series, Dover, New York, 990. [5] L. Tóth, and S. Mare E 343 American Mathematical Monthly, 98 99), no 3, 64. [6] M. Villarino, Ramanujan s Approximation to the nth Partial Sum of the Harmonic Series, preprint, arxiv.math.ca/

Ramanujan s Harmonic Number Expansion

Ramanujan s Harmonic Number Expansion Ramanujan s Harmonic Number Expansion arxiv:math/05335v [math.ca] 7 Nov 005 Mark B. Villarino Depto. de Matemática, Universidad de Costa Rica, 060 San José, Costa Rica October 3, 07 Abstract An algebraic

More information

Latter research on Euler-Mascheroni constant. 313, Bucharest, Romania, Târgovişte, Romania,

Latter research on Euler-Mascheroni constant. 313, Bucharest, Romania, Târgovişte, Romania, Latter research on Euler-Mascheroni constant Valentin Gabriel Cristea and Cristinel Mortici arxiv:3.4397v [math.ca] 6 Dec 03 Ph. D. Student, University Politehnica of Bucharest, Splaiul Independenţei 33,

More information

INEQUALITIES FOR THE GAMMA FUNCTION

INEQUALITIES FOR THE GAMMA FUNCTION INEQUALITIES FOR THE GAMMA FUNCTION Received: 16 October, 26 Accepted: 9 February, 27 Communicated by: XIN LI AND CHAO-PING CHEN College of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo

More information

On the stirling expansion into negative powers of a triangular number

On the stirling expansion into negative powers of a triangular number MATHEMATICAL COMMUNICATIONS 359 Math. Commun., Vol. 5, No. 2, pp. 359-364 200) On the stirling expansion into negative powers of a triangular number Cristinel Mortici, Department of Mathematics, Valahia

More information

The Error in an Alternating Series

The Error in an Alternating Series The Error in an Alternating Series arxiv:1511.08568v1 [math.ca] 27 Nov 2015 1 Introduction Mathematicians have studied the alternating series ( 1) n 1 a n = a 1 a 2 +a 3 a 4 + (1) n=1 since the dawn of

More information

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes Power Series 6.4 Introduction In this Section we consider power series. These are examples of infinite series where each term contains a variable, x, raised to a positive integer power. We use the ratio

More information

Math 0230 Calculus 2 Lectures

Math 0230 Calculus 2 Lectures Math 00 Calculus Lectures Chapter 8 Series Numeration of sections corresponds to the text James Stewart, Essential Calculus, Early Transcendentals, Second edition. Section 8. Sequences A sequence is a

More information

Some New Facts in Discrete Asymptotic Analysis

Some New Facts in Discrete Asymptotic Analysis Mathematica Balkanica New Series Vol 2, 2007, Fasc 3-4 Some New Facts in Discrete Asymptotic Analysis Cristinel Mortici, Andrei Vernescu Presented by P Boyvalenkov This paper is closely related to [7]

More information

8.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

8.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1. 8. Sequences Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = Examples: 6. Find a formula for the general term a n of the sequence, assuming

More information

arxiv:math/ v1 [math.ca] 16 Jun 2003

arxiv:math/ v1 [math.ca] 16 Jun 2003 THE BEST BOUNDS OF HARMONIC SEQUENCE arxiv:mah/62v mah.ca] 6 Jun 2 CHAO-PING CHEN AND FENG QI Absrac. For any naural number n N, n 2n+ γ 2 i lnn γ < 2n+, i where γ.5772566495286 denoes Euler s consan.

More information

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes Power Series 6.4 Introduction In this section we consider power series. These are examples of infinite series where each term contains a variable, x, raised to a positive integer power. We use the ratio

More information

Chapter 11: Sequences; Indeterminate Forms; Improper Integrals

Chapter 11: Sequences; Indeterminate Forms; Improper Integrals Chapter 11: Sequences; Indeterminate Forms; Improper Integrals Section 11.1 The Least Upper Bound Axiom a. Least Upper Bound Axiom b. Examples c. Theorem 11.1.2 d. Example e. Greatest Lower Bound f. Theorem

More information

Infinite Series Summary

Infinite Series Summary Infinite Series Summary () Special series to remember: Geometric series ar n Here a is the first term and r is the common ratio. When r

More information

Chapter 8. Infinite Series

Chapter 8. Infinite Series 8.4 Series of Nonnegative Terms Chapter 8. Infinite Series 8.4 Series of Nonnegative Terms Note. Given a series we have two questions:. Does the series converge? 2. If it converges, what is its sum? Corollary

More information

Fractional part integral representation for derivatives of a function related to lnγ(x+1)

Fractional part integral representation for derivatives of a function related to lnγ(x+1) arxiv:.4257v2 [math-ph] 23 Aug 2 Fractional part integral representation for derivatives of a function related to lnγ(x+) For x > let Mark W. Coffey Department of Physics Colorado School of Mines Golden,

More information

Section 11.1: Sequences

Section 11.1: Sequences Section 11.1: Sequences In this section, we shall study something of which is conceptually simple mathematically, but has far reaching results in so many different areas of mathematics - sequences. 1.

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

Sharp inequalities and complete monotonicity for the Wallis ratio

Sharp inequalities and complete monotonicity for the Wallis ratio Sharp inequalities and complete monotonicity for the Wallis ratio Cristinel Mortici Abstract The aim of this paper is to prove the complete monotonicity of a class of functions arising from Kazarinoff

More information

Upper Bounds for Partitions into k-th Powers Elementary Methods

Upper Bounds for Partitions into k-th Powers Elementary Methods Int. J. Contemp. Math. Sciences, Vol. 4, 2009, no. 9, 433-438 Upper Bounds for Partitions into -th Powers Elementary Methods Rafael Jaimczu División Matemática, Universidad Nacional de Luján Buenos Aires,

More information

REFINEMENTS AND SHARPENINGS OF SOME DOUBLE INEQUALITIES FOR BOUNDING THE GAMMA FUNCTION

REFINEMENTS AND SHARPENINGS OF SOME DOUBLE INEQUALITIES FOR BOUNDING THE GAMMA FUNCTION REFINEMENTS AND SHARPENINGS OF SOME DOUBLE INEQUALITIES FOR BOUNDING THE GAMMA FUNCTION BAI-NI GUO YING-JIE ZHANG School of Mathematics and Informatics Department of Mathematics Henan Polytechnic University

More information

Series solutions to a second order linear differential equation with regular singular points

Series solutions to a second order linear differential equation with regular singular points Physics 6C Fall 0 Series solutions to a second order linear differential equation with regular singular points Consider the second-order linear differential equation, d y dx + p(x) dy x dx + q(x) y = 0,

More information

Absolute Convergence and the Ratio Test

Absolute Convergence and the Ratio Test Absolute Convergence and the Ratio Test MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Bacground Remar: All previously covered tests for convergence/divergence apply only

More information

Complete monotonicity of a function involving the p-psi function and alternative proofs

Complete monotonicity of a function involving the p-psi function and alternative proofs Global Journal of Mathematical Analysis, 2 (3) (24) 24-28 c Science Publishing Corporation www.sciencepubco.com/index.php/gjma doi:.449/gjma.v2i3.396 Research Paper Complete monotonicity of a function

More information

Sharp inequalities and asymptotic expansion associated with the Wallis sequence

Sharp inequalities and asymptotic expansion associated with the Wallis sequence Deng et al. Journal of Inequalities and Applications 0 0:86 DOI 0.86/s3660-0-0699-z R E S E A R C H Open Access Sharp inequalities and asymptotic expansion associated with the Wallis sequence Ji-En Deng,

More information

AP Calculus Chapter 9: Infinite Series

AP Calculus Chapter 9: Infinite Series AP Calculus Chapter 9: Infinite Series 9. Sequences a, a 2, a 3, a 4, a 5,... Sequence: A function whose domain is the set of positive integers n = 2 3 4 a n = a a 2 a 3 a 4 terms of the sequence Begin

More information

Chapter 11 - Sequences and Series

Chapter 11 - Sequences and Series Calculus and Analytic Geometry II Chapter - Sequences and Series. Sequences Definition. A sequence is a list of numbers written in a definite order, We call a n the general term of the sequence. {a, a

More information

SOME INEQUALITIES FOR THE q-digamma FUNCTION

SOME INEQUALITIES FOR THE q-digamma FUNCTION Volume 10 (009), Issue 1, Article 1, 8 pp SOME INEQUALITIES FOR THE -DIGAMMA FUNCTION TOUFIK MANSOUR AND ARMEND SH SHABANI DEPARTMENT OF MATHEMATICS UNIVERSITY OF HAIFA 31905 HAIFA, ISRAEL toufik@mathhaifaacil

More information

The best expert versus the smartest algorithm

The best expert versus the smartest algorithm Theoretical Computer Science 34 004 361 380 www.elsevier.com/locate/tcs The best expert versus the smartest algorithm Peter Chen a, Guoli Ding b; a Department of Computer Science, Louisiana State University,

More information

Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind

Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind Filomat 28:2 (24), 39 327 DOI.2298/FIL4239O Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Explicit formulas for computing Bernoulli

More information

arxiv: v1 [math.ca] 25 Jan 2011

arxiv: v1 [math.ca] 25 Jan 2011 AN INEQUALITY INVOLVING THE GAMMA AND DIGAMMA FUNCTIONS arxiv:04698v mathca] 25 Jan 20 FENG QI AND BAI-NI GUO Abstract In the paper, we establish an inequality involving the gamma and digamma functions

More information

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1. 10.1 Sequences Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1 Examples: EX1: Find a formula for the general term a n of the sequence,

More information

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain.

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. For example f(x) = 1 1 x = 1 + x + x2 + x 3 + = ln(1 + x) = x x2 2

More information

A COMPLETELY MONOTONIC FUNCTION INVOLVING THE TRI- AND TETRA-GAMMA FUNCTIONS

A COMPLETELY MONOTONIC FUNCTION INVOLVING THE TRI- AND TETRA-GAMMA FUNCTIONS ao DOI:.2478/s275-3-9-2 Math. Slovaca 63 (23), No. 3, 469 478 A COMPLETELY MONOTONIC FUNCTION INVOLVING THE TRI- AND TETRA-GAMMA FUNCTIONS Bai-Ni Guo* Jiao-Lian Zhao** Feng Qi* (Communicated by Ján Borsík

More information

,... We would like to compare this with the sequence y n = 1 n

,... We would like to compare this with the sequence y n = 1 n Example 2.0 Let (x n ) n= be the sequence given by x n = 2, i.e. n 2, 4, 8, 6,.... We would like to compare this with the sequence = n (which we know converges to zero). We claim that 2 n n, n N. Proof.

More information

The Integral Test. P. Sam Johnson. September 29, P. Sam Johnson (NIT Karnataka) The Integral Test September 29, / 39

The Integral Test. P. Sam Johnson. September 29, P. Sam Johnson (NIT Karnataka) The Integral Test September 29, / 39 The Integral Test P. Sam Johnson September 29, 207 P. Sam Johnson (NIT Karnataka) The Integral Test September 29, 207 / 39 Overview Given a series a n, we have two questions:. Does the series converge?

More information

1. Prove the following properties satisfied by the gamma function: 4 n n!

1. Prove the following properties satisfied by the gamma function: 4 n n! Math 205A: Complex Analysis, Winter 208 Homework Problem Set #6 February 20, 208. Prove the following properties satisfied by the gamma function: (a) Values at half-integers: Γ ( n + 2 (b) The duplication

More information

Given a sequence a 1, a 2,...of numbers, the finite sum a 1 + a 2 + +a n,wheren is an nonnegative integer, can be written

Given a sequence a 1, a 2,...of numbers, the finite sum a 1 + a 2 + +a n,wheren is an nonnegative integer, can be written A Summations When an algorithm contains an iterative control construct such as a while or for loop, its running time can be expressed as the sum of the times spent on each execution of the body of the

More information

Solutions to Homework 2

Solutions to Homework 2 Solutions to Homewor Due Tuesday, July 6,. Chapter. Problem solution. If the series for ln+z and ln z both converge, +z then we can find the series for ln z by term-by-term subtraction of the two series:

More information

Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers

Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers Martin Nicholson In this brief note, we show how to apply Kummer s and other quadratic transformation formulas for

More information

Generalized Geometric Series, The Ratio Comparison Test and Raabe s Test

Generalized Geometric Series, The Ratio Comparison Test and Raabe s Test Generalized Geometric Series The Ratio Comparison Test and Raae s Test William M. Faucette Decemer 2003 The goal of this paper is to examine the convergence of a type of infinite series in which the summands

More information

Partial Fractions. Calculus 2 Lia Vas

Partial Fractions. Calculus 2 Lia Vas Calculus Lia Vas Partial Fractions rational function is a quotient of two polynomial functions The method of partial fractions is a general method for evaluating integrals of rational function The idea

More information

Section Taylor and Maclaurin Series

Section Taylor and Maclaurin Series Section.0 Taylor and Maclaurin Series Ruipeng Shen Feb 5 Taylor and Maclaurin Series Main Goal: How to find a power series representation for a smooth function us assume that a smooth function has a power

More information

Bounded Infinite Sequences/Functions : Orders of Infinity

Bounded Infinite Sequences/Functions : Orders of Infinity Bounded Infinite Sequences/Functions : Orders of Infinity by Garimella Ramamurthy Report No: IIIT/TR/2009/247 Centre for Security, Theory and Algorithms International Institute of Information Technology

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES Infinite sequences and series were introduced briefly in A Preview of Calculus in connection with Zeno s paradoxes and the decimal representation

More information

CHAPTER 8: EXPLORING R

CHAPTER 8: EXPLORING R CHAPTER 8: EXPLORING R LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN In the previous chapter we discussed the need for a complete ordered field. The field Q is not complete, so we constructed

More information

Rearrangements of convergence sums at infinity

Rearrangements of convergence sums at infinity Rearrangements of convergence sums at infinity Chelton D. Evans and William K. Pattinson Abstract Convergence sums theory is concerned with monotonic series testing. On face value, this may seem a limitation

More information

Introduction to Series and Sequences Math 121 Calculus II Spring 2015

Introduction to Series and Sequences Math 121 Calculus II Spring 2015 Introduction to Series and Sequences Math Calculus II Spring 05 The goal. The main purpose of our study of series and sequences is to understand power series. A power series is like a polynomial of infinite

More information

10.1 Sequences. A sequence is an ordered list of numbers: a 1, a 2, a 3,..., a n, a n+1,... Each of the numbers is called a term of the sequence.

10.1 Sequences. A sequence is an ordered list of numbers: a 1, a 2, a 3,..., a n, a n+1,... Each of the numbers is called a term of the sequence. 10.1 Sequences A sequence is an ordered list of numbers: a 1, a 2, a 3,..., a n, a n+1,... Each of the numbers is called a term of the sequence. Notation: A sequence {a 1, a 2, a 3,...} can be denoted

More information

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Gamma function related to Pic functions av Saad Abed 25 - No 4 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 6 9

More information

Mathematics 324 Riemann Zeta Function August 5, 2005

Mathematics 324 Riemann Zeta Function August 5, 2005 Mathematics 324 Riemann Zeta Function August 5, 25 In this note we give an introduction to the Riemann zeta function, which connects the ideas of real analysis with the arithmetic of the integers. Define

More information

1. Introduction Interest in this project began with curiosity about the Laplace transform of the Digamma function, e as ψ(s + 1)ds,

1. Introduction Interest in this project began with curiosity about the Laplace transform of the Digamma function, e as ψ(s + 1)ds, ON THE LAPLACE TRANSFORM OF THE PSI FUNCTION M. LAWRENCE GLASSER AND DANTE MANNA Abstract. Guided by numerical experimentation, we have been able to prove that Z 8 / x x + ln dx = γ + ln) [cosx)] and to

More information

COMPLETE MONOTONICITIES OF FUNCTIONS INVOLVING THE GAMMA AND DIGAMMA FUNCTIONS. 1. Introduction

COMPLETE MONOTONICITIES OF FUNCTIONS INVOLVING THE GAMMA AND DIGAMMA FUNCTIONS. 1. Introduction COMPLETE MONOTONICITIES OF FUNCTIONS INVOLVING THE GAMMA AND DIGAMMA FUNCTIONS FENG QI AND BAI-NI GUO Abstract. In the article, the completely monotonic results of the functions [Γ( + 1)] 1/, [Γ(+α+1)]1/(+α),

More information

Appendix G: Mathematical Induction

Appendix G: Mathematical Induction Appendix G: Mathematical Induction Introduction In this appendix, you will study a form of mathematical proof called mathematical induction. To see the logical need for mathematical induction, take another

More information

About the Gamma Function

About the Gamma Function About the Gamma Function Notes for Honors Calculus II, Originally Prepared in Spring 995 Basic Facts about the Gamma Function The Gamma function is defined by the improper integral Γ) = The integral is

More information

Study of some equivalence classes of primes

Study of some equivalence classes of primes Notes on Number Theory and Discrete Mathematics Print ISSN 3-532, Online ISSN 2367-8275 Vol 23, 27, No 2, 2 29 Study of some equivalence classes of primes Sadani Idir Department of Mathematics University

More information

ln(9 4x 5 = ln(75) (4x 5) ln(9) = ln(75) 4x 5 = ln(75) ln(9) ln(75) ln(9) = 1. You don t have to simplify the exact e x + 4e x

ln(9 4x 5 = ln(75) (4x 5) ln(9) = ln(75) 4x 5 = ln(75) ln(9) ln(75) ln(9) = 1. You don t have to simplify the exact e x + 4e x Math 11. Exponential and Logarithmic Equations Fall 016 Instructions. Work in groups of 3 to solve the following problems. Turn them in at the end of class for credit. Names. 1. Find the (a) exact solution

More information

Assignment 4. u n+1 n(n + 1) i(i + 1) = n n (n + 1)(n + 2) n(n + 2) + 1 = (n + 1)(n + 2) 2 n + 1. u n (n + 1)(n + 2) n(n + 1) = n

Assignment 4. u n+1 n(n + 1) i(i + 1) = n n (n + 1)(n + 2) n(n + 2) + 1 = (n + 1)(n + 2) 2 n + 1. u n (n + 1)(n + 2) n(n + 1) = n Assignment 4 Arfken 5..2 We have the sum Note that the first 4 partial sums are n n(n + ) s 2, s 2 2 3, s 3 3 4, s 4 4 5 so we guess that s n n/(n + ). Proving this by induction, we see it is true for

More information

APPENDIX : PARTIAL FRACTIONS

APPENDIX : PARTIAL FRACTIONS APPENDIX : PARTIAL FRACTIONS Appendix : Partial Fractions Given the expression x 2 and asked to find its integral, x + you can use work from Section. to give x 2 =ln( x 2) ln( x + )+c x + = ln k x 2 x+

More information

CALCULUS JIA-MING (FRANK) LIOU

CALCULUS JIA-MING (FRANK) LIOU CALCULUS JIA-MING (FRANK) LIOU Abstract. Contents. Power Series.. Polynomials and Formal Power Series.2. Radius of Convergence 2.3. Derivative and Antiderivative of Power Series 4.4. Power Series Expansion

More information

On the Convergence of the Summation Formulas Constructed by Using a Symbolic Operator Approach

On the Convergence of the Summation Formulas Constructed by Using a Symbolic Operator Approach On the Convergence of the Summation Formulas Constructed by Using a Symbolic Operator Approach Tian-Xiao He 1, Leetsch C. Hsu 2, and Peter J.-S. Shiue 3 1 Department of Mathematics and Computer Science

More information

Solutions Quiz 9 Nov. 8, Prove: If a, b, m are integers such that 2a + 3b 12m + 1, then a 3m + 1 or b 2m + 1.

Solutions Quiz 9 Nov. 8, Prove: If a, b, m are integers such that 2a + 3b 12m + 1, then a 3m + 1 or b 2m + 1. Solutions Quiz 9 Nov. 8, 2010 1. Prove: If a, b, m are integers such that 2a + 3b 12m + 1, then a 3m + 1 or b 2m + 1. Answer. We prove the contrapositive. Suppose a, b, m are integers such that a < 3m

More information

Exact formulae for the prime counting function

Exact formulae for the prime counting function Notes on Number Theory and Discrete Mathematics Vol. 19, 013, No. 4, 77 85 Exact formulae for the prime counting function Mladen Vassilev Missana 5 V. Hugo Str, 114 Sofia, Bulgaria e-mail: missana@abv.bg

More information

A SUMMATION FORMULA FOR SEQUENCES INVOLVING FLOOR AND CEILING FUNCTIONS

A SUMMATION FORMULA FOR SEQUENCES INVOLVING FLOOR AND CEILING FUNCTIONS ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 36, Number 5, 006 A SUMMATION FORMULA FOR SEQUENCES INVOLVING FLOOR AND CEILING FUNCTIONS M.A. NYBLOM ABSTRACT. A closed form expression for the Nth partial

More information

9.4. Mathematical Induction. Introduction. What you should learn. Why you should learn it

9.4. Mathematical Induction. Introduction. What you should learn. Why you should learn it 333202_090.qxd 2/5/05 :35 AM Page 73 Section 9. Mathematical Induction 73 9. Mathematical Induction What you should learn Use mathematical induction to prove statements involving a positive integer n.

More information

Successive Derivatives and Integer Sequences

Successive Derivatives and Integer Sequences 2 3 47 6 23 Journal of Integer Sequences, Vol 4 (20, Article 73 Successive Derivatives and Integer Sequences Rafael Jaimczu División Matemática Universidad Nacional de Luján Buenos Aires Argentina jaimczu@mailunlueduar

More information

On a series of Ramanujan

On a series of Ramanujan On a series of Ramanujan Olivier Oloa To cite this version: Olivier Oloa. On a series of Ramanujan. Gems in Experimental Mathematics, pp.35-3,, . HAL Id: hal-55866 https://hal.archives-ouvertes.fr/hal-55866

More information

Research Article Some Monotonicity Properties of Gamma and q-gamma Functions

Research Article Some Monotonicity Properties of Gamma and q-gamma Functions International Scholarly Research Network ISRN Mathematical Analysis Volume 11, Article ID 375715, 15 pages doi:1.54/11/375715 Research Article Some Monotonicity Properties of Gamma and q-gamma Functions

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Background We have seen that some power series converge. When they do, we can think of them as

More information

arxiv: v1 [math.ca] 15 Jan 2018

arxiv: v1 [math.ca] 15 Jan 2018 Preprint submitted to arxiv.org Accurate estimates of 1 + x 1/x Involved in Carleman Inequality and Keller Limit arxiv:1801.04963v1 [math.ca] 15 Jan 2018 Branko Malešević 1, Yue Hu 2 and Cristinel Mortici

More information

Here is another characterization of prime numbers.

Here is another characterization of prime numbers. Here is another characterization of prime numbers. Theorem p is prime it has no divisors d that satisfy < d p. Proof [ ] If p is prime then it has no divisors d that satisfy < d < p, so clearly no divisor

More information

Power series and Taylor series

Power series and Taylor series Power series and Taylor series D. DeTurck University of Pennsylvania March 29, 2018 D. DeTurck Math 104 002 2018A: Series 1 / 42 Series First... a review of what we have done so far: 1 We examined series

More information

Analysis II: Basic knowledge of real analysis: Part IV, Series

Analysis II: Basic knowledge of real analysis: Part IV, Series .... Analysis II: Basic knowledge of real analysis: Part IV, Series Kenichi Maruno Department of Mathematics, The University of Texas - Pan American March 1, 2011 K.Maruno (UT-Pan American) Analysis II

More information

Review (11.1) 1. A sequence is an infinite list of numbers {a n } n=1 = a 1, a 2, a 3, The sequence is said to converge if lim

Review (11.1) 1. A sequence is an infinite list of numbers {a n } n=1 = a 1, a 2, a 3, The sequence is said to converge if lim Announcements: Note that we have taking the sections of Chapter, out of order, doing section. first, and then the rest. Section. is motivation for the rest of the chapter. Do the homework questions from

More information

Defining Incomplete Gamma Type Function with Negative Arguments and Polygamma functions ψ (n) ( m)

Defining Incomplete Gamma Type Function with Negative Arguments and Polygamma functions ψ (n) ( m) 1 Defining Incomplete Gamma Type Function with Negative Arguments and Polygamma functions ψ (n) (m) arxiv:147.349v1 [math.ca] 27 Jun 214 Emin Özc. ağ and İnci Ege Abstract. In this paper the incomplete

More information

The integrals in Gradshteyn and Ryzhik. Part 10: The digamma function

The integrals in Gradshteyn and Ryzhik. Part 10: The digamma function SCIENTIA Series A: Mathematical Sciences, Vol 7 29, 45 66 Universidad Técnica Federico Santa María Valparaíso, Chile ISSN 76-8446 c Universidad Técnica Federico Santa María 29 The integrals in Gradshteyn

More information

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13 MATH383W LECTURE NOTES: WEEK 6 //00 Recursive sequences (cont.) Examples: () a =, a n+ = 3 a n. The first few terms are,,, 5 = 5, 3 5 = 5 3, Since 5

More information

Part 3.3 Differentiation Taylor Polynomials

Part 3.3 Differentiation Taylor Polynomials Part 3.3 Differentiation 3..3.1 Taylor Polynomials Definition 3.3.1 Taylor 1715 and Maclaurin 1742) If a is a fixed number, and f is a function whose first n derivatives exist at a then the Taylor polynomial

More information

EULER AND THE FUNCTION SIN(X)/X

EULER AND THE FUNCTION SIN(X)/X EULER AND THE FUNCTION SIN(X)/X In the early 17 hundreds the great Swiss mathematician Leonard Euler working alternatively at the Russian and the Prussian Academy of Sciences examined the function F(x)=

More information

THREE INEQUALITIES INVOLVING HYPERBOLICALLY TRIGONOMETRIC FUNCTIONS

THREE INEQUALITIES INVOLVING HYPERBOLICALLY TRIGONOMETRIC FUNCTIONS THREE INEQUALITIES INVOLVING HYPERBOLICALLY TRIGONOMETRIC FUNCTIONS CHAO-PING CHEN, JIAN-WEI ZHAO, AND FENG QI Abstract. In the short note, by using mathematical induction and infinite product representations

More information

CHAPTER 4. Series. 1. What is a Series?

CHAPTER 4. Series. 1. What is a Series? CHAPTER 4 Series Given a sequence, in many contexts it is natural to ask about the sum of all the numbers in the sequence. If only a finite number of the are nonzero, this is trivial and not very interesting.

More information

The Gamma Function. July 9, Louisiana State University SMILE REU. The Gamma Function. N. Cannady, T. Ngo, A. Williamson.

The Gamma Function. July 9, Louisiana State University SMILE REU. The Gamma Function. N. Cannady, T. Ngo, A. Williamson. The The Louisiana State University SMILE REU July 9, 2010 The Developed as the unique extension of the factorial to non-integral values. The Developed as the unique extension of the factorial to non-integral

More information

n=1 ( 2 3 )n (a n ) converges by direct comparison to

n=1 ( 2 3 )n (a n ) converges by direct comparison to . (a) n = a n converges, so we know that a n =. Therefore, for n large enough we know that a n

More information

BOUNDS ON THE COEFFICIENTS OF THE CHARACTERISTIC AND MINIMAL POLYNOMIALS

BOUNDS ON THE COEFFICIENTS OF THE CHARACTERISTIC AND MINIMAL POLYNOMIALS BOUNDS ON THE COEFFICIENTS OF THE CHARACTERISTIC AND MINIMAL POLYNOMIALS Received: 5 October, 006 Accepted: 3 April, 007 Communicated by: JEAN-GUILLAUME DUMAS Laboratoire Jean Kuntzmann Université Joseph

More information

SOLUTIONS FOR THE THIRD PROBLEM SET

SOLUTIONS FOR THE THIRD PROBLEM SET SOLUTIONS FOR THE THIRD PROBLEM SET. On the handout about continued fractions, one finds a definition of the function f n (x) for n 0 associated to a sequence a 0,a,... We have discussed the functions

More information

Differential Calculus

Differential Calculus Differential Calculus. Compute the derivatives of the following functions a() = 4 3 7 + 4 + 5 b() = 3 + + c() = 3 + d() = sin cos e() = sin f() = log g() = tan h() = 3 6e 5 4 i() = + tan 3 j() = e k()

More information

Inequalities and Monotonicity For The Ratio of Γ p Functions

Inequalities and Monotonicity For The Ratio of Γ p Functions Int. J. Open Problems Compt. Math., Vol. 3, No., March 200 ISSN 998-6262; Copyright c ICSRS Publication, 200 www.i-csrs.org Inequalities and Monotonicity For The Ratio of Γ p Functions Valmir Krasniqi

More information

3 a = 3 b c 2 = a 2 + b 2 = 2 2 = 4 c 2 = 3b 2 + b 2 = 4b 2 = 4 b 2 = 1 b = 1 a = 3b = 3. x 2 3 y2 1 = 1.

3 a = 3 b c 2 = a 2 + b 2 = 2 2 = 4 c 2 = 3b 2 + b 2 = 4b 2 = 4 b 2 = 1 b = 1 a = 3b = 3. x 2 3 y2 1 = 1. MATH 222 LEC SECOND MIDTERM EXAM THU NOV 8 PROBLEM ( 5 points ) Find the standard-form equation for the hyperbola which has its foci at F ± (±2, ) and whose asymptotes are y ± 3 x The calculations b a

More information

FACTORS OF GIBBS MEASURES FOR FULL SHIFTS

FACTORS OF GIBBS MEASURES FOR FULL SHIFTS FACTORS OF GIBBS MEASURES FOR FULL SHIFTS M. POLLICOTT AND T. KEMPTON Abstract. We study the images of Gibbs measures under one block factor maps on full shifts, and the changes in the variations of the

More information

A Symbolic Operator Approach to Power Series Transformation-Expansion Formulas

A Symbolic Operator Approach to Power Series Transformation-Expansion Formulas A Symbolic Operator Approach to Power Series Transformation-Expansion Formulas Tian- Xiao He Department of Mathematics and Computer Science Illinois Wesleyan University Bloomington, IL 61702-2900, USA

More information

Equations with regular-singular points (Sect. 5.5).

Equations with regular-singular points (Sect. 5.5). Equations with regular-singular points (Sect. 5.5). Equations with regular-singular points. s: Equations with regular-singular points. Method to find solutions. : Method to find solutions. Recall: The

More information

Harmonic Numbers. Math. 55 Some Inequalities May 9, :54 pm

Harmonic Numbers. Math. 55 Some Inequalities May 9, :54 pm This document was created with FrameMaker 44 Math. 55 Some Inequalities May 9, 1999 1:54 pm The Eercises after Ch. 3.2 in our tetbook, Discrete Mathematics and Its Applications 4th. ed. by K. Rosen (1999),

More information

Evaluating ζ(2m) via Telescoping Sums.

Evaluating ζ(2m) via Telescoping Sums. /25 Evaluating ζ(2m) via Telescoping Sums. Brian Sittinger CSU Channel Islands February 205 2/25 Outline 2 3 4 5 3/25 Basel Problem Find the exact value of n= n 2 = 2 + 2 2 + 3 2 +. 3/25 Basel Problem

More information

Continuity. The Continuity Equation The equation that defines continuity at a point is called the Continuity Equation.

Continuity. The Continuity Equation The equation that defines continuity at a point is called the Continuity Equation. Continuity A function is continuous at a particular x location when you can draw it through that location without picking up your pencil. To describe this mathematically, we have to use limits. Recall

More information

Mathematics 136 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 19 and 21, 2016

Mathematics 136 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 19 and 21, 2016 Mathematics 36 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 9 and 2, 206 Every rational function (quotient of polynomials) can be written as a polynomial

More information

Eigenvalues, random walks and Ramanujan graphs

Eigenvalues, random walks and Ramanujan graphs Eigenvalues, random walks and Ramanujan graphs David Ellis 1 The Expander Mixing lemma We have seen that a bounded-degree graph is a good edge-expander if and only if if has large spectral gap If G = (V,

More information

Bernoulli Numbers and their Applications

Bernoulli Numbers and their Applications Bernoulli Numbers and their Applications James B Silva Abstract The Bernoulli numbers are a set of numbers that were discovered by Jacob Bernoulli (654-75). This set of numbers holds a deep relationship

More information

Number Theory, Algebra and Analysis. William Yslas Vélez Department of Mathematics University of Arizona

Number Theory, Algebra and Analysis. William Yslas Vélez Department of Mathematics University of Arizona Number Theory, Algebra and Analysis William Yslas Vélez Department of Mathematics University of Arizona O F denotes the ring of integers in the field F, it mimics Z in Q How do primes factor as you consider

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES In section 11.9, we were able to find power series representations for a certain restricted class of functions. INFINITE SEQUENCES AND SERIES

More information

ON A WEIGHTED INTERPOLATION OF FUNCTIONS WITH CIRCULAR MAJORANT

ON A WEIGHTED INTERPOLATION OF FUNCTIONS WITH CIRCULAR MAJORANT ON A WEIGHTED INTERPOLATION OF FUNCTIONS WITH CIRCULAR MAJORANT Received: 31 July, 2008 Accepted: 06 February, 2009 Communicated by: SIMON J SMITH Department of Mathematics and Statistics La Trobe University,

More information

arxiv: v2 [math.ca] 12 Sep 2013

arxiv: v2 [math.ca] 12 Sep 2013 COMPLETE MONOTONICITY OF FUNCTIONS INVOLVING THE q-trigamma AND q-tetragamma FUNCTIONS arxiv:1301.0155v math.ca 1 Sep 013 FENG QI Abstract. Let ψ qx) for q > 0 stand for the q-digamma function. In the

More information