Analysis II: Basic knowledge of real analysis: Part IV, Series

Size: px
Start display at page:

Download "Analysis II: Basic knowledge of real analysis: Part IV, Series"

Transcription

1 .... Analysis II: Basic knowledge of real analysis: Part IV, Series Kenichi Maruno Department of Mathematics, The University of Texas - Pan American March 1, 2011 K.Maruno (UT-Pan American) Analysis II March 1, / 22

2 The Sum of an Infinite Series Definition Let {a n } be a sequence. For each positive integer n, let s n = a 1 + a a n = n a n. k=1 An infinite series is the ordered pair of sequences ({a n }, {s n }). The number a n is called the nth term of the infinite series, and the number s n is called the nth partial sum of the infinite series. Instead of using the cumbersone ordered pair notation for an infinite series, we will use the notation a n, or a 1 + a 2 + a 3 + to represent an infinite series. K.Maruno (UT-Pan American) Analysis II March 1, / 22

3 Convergence of an Infinite Series Definition Let a n be an infinite series. If the sequence of partial sum {s n } (s n = a 1 +a 2 + +a n ) converges to L, we say that the infinite series a n converges to L or that the infinite series a n has sum L. If the sequence {s n } diverges, we say that the infinite series a n diverges. If the infinite series a n converges, we also use the symbolism a n to denote its sum. K.Maruno (UT-Pan American) Analysis II March 1, / 22

4 Convergence of an Infinite Series If the infinite series (Proof) Suppose the infinite series Theorem a n converges, then lim n a n = 0. a n converges to L. Let s n = a a n be the nth partial sum. Then s n+1 s n = a n+1 and so 0 = L L = lim n s n+1 lim n s n = lim n (s n+1 s n ) = lim n a n+1. Therefore lim n a n = 0. K.Maruno (UT-Pan American) Analysis II March 1, / 22

5 (Contrapositive) Convergence of an Infinite Series If lim n a n 0, the infinite series This is also true! e.g. n n + 1 n lim n n+1 a n diverges. = 1. So this series diverges. (Converse) If lim n a n = 0, the infinite series This is not true! (e.g. 1 n a n converges. 1 diverges although lim n n = 0.) K.Maruno (UT-Pan American) Analysis II March 1, / 22

6 Convergence of an Infinite Series Theorem: The Geometric Series Let a be a nonzero number. Then (i) ar n converges to if r < 1. (ii) n=0 a 1 r ar n diverges if r 1. n=0 K.Maruno (UT-Pan American) Analysis II March 1, / 22

7 Series with Nonnegative Terms Let Theorem a n be a series with nonnegative terms. Then a n converges if and only if the sequence of partial sums {s n } is bounded. (Proof) Let a n be a series with nonnegative terms. Since a n 0 for every n N, the sequence {s n } is increasing. By the monotone convergence theorem, {s n } converges if and only if {s n } is bounded. K.Maruno (UT-Pan American) Analysis II March 1, / 22

8 Series with Nonnegative Terms Example. 1 n diverges. Let s n = n. Then s 1 = 1 1 s 2 = s 4 = s = 2 s 8 = s = 5 2. In general, s 2 n (n + 2)/2. Since s n is unbounded, 1 n diverges. K.Maruno (UT-Pan American) Analysis II March 1, / 22

9 Series with Nonnegative Terms Theorem: 2 n Test Let {a n } be a decreasing sequences of nonnegative numbers. Then a n converges if and only if 2 n a 2 n converges. K.Maruno (UT-Pan American) Analysis II March 1, / 22

10 Series with Nonnegative Terms Corollary The series 1 diverges if s 1 and converges if s > 1. ns (Proof) If s < 0, lim n (1/n s ) 0. So 1/ns diverges. Suppose s 0. By the 2 n test, 1/ns converges if and only if 2 n 1 (2 n ) s = 2 (1 s)n converges. This is a geometric series, so 2 (1 s)n converges if 2 (1 s) < 1 and diverges if 2 (1 s) 1. Thus 1/ns converges if 1 s < 0 and diverges if 1 s 0. K.Maruno (UT-Pan American) Analysis II March 1, / 22

11 The Alternating Series Test Theorem: Alternating Series Test Let {a n } be a decreasing sequences such that ( 1) n+1 a n converges. lim a n = 0. Then n K.Maruno (UT-Pan American) Analysis II March 1, / 22

12 Absolute Convergence Definition Let a n be an infinite series. If a n converges, we say a n converges absolutely. If a n converges and a n diverges, we say a n converges conditionally. Any convergent series with nonnegative terms converges absolutely. K.Maruno (UT-Pan American) Analysis II March 1, / 22

13 Absolute Convergence If. a n converges absolutely, then Theorem a n converges and a n a n K.Maruno (UT-Pan American) Analysis II March 1, / 22

14 Absolute Convergence Theorem: Comparison Test Let a n and b n be two series such that a n b n for every positive integer n. (i) If b n converges absolutely, then a n converges absolutely and a n b n. (ii) If a n diverges, then b n diverges. K.Maruno (UT-Pan American) Analysis II March 1, / 22

15 Absolute Convergence Example (Comparison Test): ( 1) n converges. n! (Proof) ( 1) n n! = 1 n! 1 2 n 1 1 for every positive integer n. Since converges abusolutely, by the 2n 1 ( 1) n comparison test, converges absolutely. n! K.Maruno (UT-Pan American) Analysis II March 1, / 22

16 Absolute Convergence Theorem: Ratio Test Let a n be a series such that L = lim n a n+1 a n exists (L = is allowed). (i) If L < 1, then a n converges absolutely. (ii) If L > 1, then a n diverges. The ratio test gives no information if lim n a n+1 a n = 1. K.Maruno (UT-Pan American) Analysis II March 1, / 22

17 Absolute Convergence (Examples) The series 1/n! converges since the ratio 1/(n + 1)! 1/n! = 1 n + 1 converges to 0. The series 1/n diverges, but the ratio test gives no information because of lim n (1/(n + 1))/(1/n) = lim n n/(n + 1) = 1. The series 1/n2 converges, but the ratio test gives no information because of lim n (1/(n + 1) 2 )/(1/n 2 ) = lim n n 2 /(n + 1) 2 = 1. K.Maruno (UT-Pan American) Analysis II March 1, / 22

18 Absolute Convergence Theorem: Root Test Let {a n } be a sequence and let L = lim sup n a n 1/n (L = is allowed). (i) If L < 1, then a n converges absolutely. (ii) If L > 1, then a n diverges. The root test gives no information if lim sup n a n 1/n = 1. K.Maruno (UT-Pan American) Analysis II March 1, / 22

19 Power Series Definition Let t be a fixed real number. A power series (expanded about t) is an infinite series of the form a n (x t) n n=0 where {a n } n=0 is a sequence and x is a real number. K.Maruno (UT-Pan American) Analysis II March 1, / 22

20 Power Series Let Theorem a n (x t) n be a power series. Let L = lim sup n a n 1 n. Let n=0 0 if L = 1 R = if 0 < L < L if L = 0 Then the power series a n (x t) n converges absolutely if x t < R n=0 and diverges if x t > R. The value R is called the radius of convergence of the power series a n (x t) n. n=0 K.Maruno (UT-Pan American) Analysis II March 1, / 22

21 Conditional Convergences Dirichlet s Test If the sequence of partial sums of the series a n is bounded and {b n } is a decreasing sequence with limit 0, then a nb n converges. Examples: Letting {a n } be the sequence 1, 1, 2, 1, 1, 2,..., and b n = 1/n, the above series is a nb n. By the Dirichlet s test, this series converges. But this series does not converge absolutely. So this converges conditionally. K.Maruno (UT-Pan American) Analysis II March 1, / 22

22 Conditional Convergences Abel s Test If a n converges and {b n } is a bounded monotone sequence, then a nb n converges. Examples: ( 1) n (1 + 1/n) n converges since the series ( 1)n /n converges and {(1 + 1/n) n } is a bounded monotone sequence. n K.Maruno (UT-Pan American) Analysis II March 1, / 22

Analysis II: Basic knowledge of real analysis: Part V, Power Series, Differentiation, and Taylor Series

Analysis II: Basic knowledge of real analysis: Part V, Power Series, Differentiation, and Taylor Series .... Analysis II: Basic knowledge of real analysis: Part V, Power Series, Differentiation, and Taylor Series Kenichi Maruno Department of Mathematics, The University of Texas - Pan American March 4, 20

More information

From Calculus II: An infinite series is an expression of the form

From Calculus II: An infinite series is an expression of the form MATH 3333 INTERMEDIATE ANALYSIS BLECHER NOTES 75 8. Infinite series of numbers From Calculus II: An infinite series is an expression of the form = a m + a m+ + a m+2 + ( ) Let us call this expression (*).

More information

Series. Definition. a 1 + a 2 + a 3 + is called an infinite series or just series. Denoted by. n=1

Series. Definition. a 1 + a 2 + a 3 + is called an infinite series or just series. Denoted by. n=1 Definition a 1 + a 2 + a 3 + is called an infinite series or just series. Denoted by a n, or a n. Chapter 11: Sequences and, Section 11.2 24 / 40 Given a series a n. The partial sum is the sum of the first

More information

Infinite Series - Section Can you add up an infinite number of values and get a finite sum? Yes! Here is a familiar example:

Infinite Series - Section Can you add up an infinite number of values and get a finite sum? Yes! Here is a familiar example: Infinite Series - Section 10.2 Can you add up an infinite number of values and get a finite sum? Yes! Here is a familiar example: 1 3 0. 3 0. 3 0. 03 0. 003 0. 0003 Ifa n is an infinite sequence, then

More information

Power Series. Part 1. J. Gonzalez-Zugasti, University of Massachusetts - Lowell

Power Series. Part 1. J. Gonzalez-Zugasti, University of Massachusetts - Lowell Power Series Part 1 1 Power Series Suppose x is a variable and c k & a are constants. A power series about x = 0 is c k x k A power series about x = a is c k x a k a = center of the power series c k =

More information

Math Absolute Convergence, Ratio Test, Root Test

Math Absolute Convergence, Ratio Test, Root Test Math 114 - Absolute Convergence, Ratio Test, Root Test Peter A. Perry University of Kentucky February 20, 2017 Bill of Fare 1. Review and Recap 2. Dirichlet s Dilemma 3. Absolute Convergence 4. Ratio Test

More information

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series C.7 Numerical series Pag. 147 Proof of the converging criteria for series Theorem 5.29 (Comparison test) Let and be positive-term series such that 0, for any k 0. i) If the series converges, then also

More information

Math Exam II Review

Math Exam II Review Math 114 - Exam II Review Peter A. Perry University of Kentucky March 6, 2017 Bill of Fare 1. It s All About Series 2. Convergence Tests I 3. Convergence Tests II 4. The Gold Standards (Geometric Series)

More information

Math 104: Homework 7 solutions

Math 104: Homework 7 solutions Math 04: Homework 7 solutions. (a) The derivative of f () = is f () = 2 which is unbounded as 0. Since f () is continuous on [0, ], it is uniformly continous on this interval by Theorem 9.2. Hence for

More information

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1. 10.1 Sequences Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1 Examples: EX1: Find a formula for the general term a n of the sequence,

More information

Chapter 2. Real Numbers. 1. Rational Numbers

Chapter 2. Real Numbers. 1. Rational Numbers Chapter 2. Real Numbers 1. Rational Numbers A commutative ring is called a field if its nonzero elements form a group under multiplication. Let (F, +, ) be a filed with 0 as its additive identity element

More information

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges.

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges. 2..2(a) lim a n = 0. Homework 4, 5, 6 Solutions Proof. Let ɛ > 0. Then for n n = 2+ 2ɛ we have 2n 3 4+ ɛ 3 > ɛ > 0, so 0 < 2n 3 < ɛ, and thus a n 0 = 2n 3 < ɛ. 2..2(g) lim ( n + n) = 0. Proof. Let ɛ >

More information

10.1 Sequences. A sequence is an ordered list of numbers: a 1, a 2, a 3,..., a n, a n+1,... Each of the numbers is called a term of the sequence.

10.1 Sequences. A sequence is an ordered list of numbers: a 1, a 2, a 3,..., a n, a n+1,... Each of the numbers is called a term of the sequence. 10.1 Sequences A sequence is an ordered list of numbers: a 1, a 2, a 3,..., a n, a n+1,... Each of the numbers is called a term of the sequence. Notation: A sequence {a 1, a 2, a 3,...} can be denoted

More information

Math 0230 Calculus 2 Lectures

Math 0230 Calculus 2 Lectures Math 00 Calculus Lectures Chapter 8 Series Numeration of sections corresponds to the text James Stewart, Essential Calculus, Early Transcendentals, Second edition. Section 8. Sequences A sequence is a

More information

Math 141: Lecture 19

Math 141: Lecture 19 Math 141: Lecture 19 Convergence of infinite series Bob Hough November 16, 2016 Bob Hough Math 141: Lecture 19 November 16, 2016 1 / 44 Series of positive terms Recall that, given a sequence {a n } n=1,

More information

AP Calc BC Convergence Tests Name: Block: Seat:

AP Calc BC Convergence Tests Name: Block: Seat: AP Calc BC Convergence Tests Name: Block: Seat: n th Term Divergence Test n=k diverges if lim n a n 0 a n diverges if lim n a n does not exist 1. Determine the convergence n 1 n + 1 Geometric Series The

More information

Chapter 8. Infinite Series

Chapter 8. Infinite Series 8.4 Series of Nonnegative Terms Chapter 8. Infinite Series 8.4 Series of Nonnegative Terms Note. Given a series we have two questions:. Does the series converge? 2. If it converges, what is its sum? Corollary

More information

Root test. Root test Consider the limit L = lim n a n, suppose it exists. L < 1. L > 1 (including L = ) L = 1 the test is inconclusive.

Root test. Root test Consider the limit L = lim n a n, suppose it exists. L < 1. L > 1 (including L = ) L = 1 the test is inconclusive. Root test Root test n Consider the limit L = lim n a n, suppose it exists. L < 1 a n is absolutely convergent (thus convergent); L > 1 (including L = ) a n is divergent L = 1 the test is inconclusive.

More information

Introduction to Series and Sequences Math 121 Calculus II Spring 2015

Introduction to Series and Sequences Math 121 Calculus II Spring 2015 Introduction to Series and Sequences Math Calculus II Spring 05 The goal. The main purpose of our study of series and sequences is to understand power series. A power series is like a polynomial of infinite

More information

Appendix A. Sequences and series. A.1 Sequences. Definition A.1 A sequence is a function N R.

Appendix A. Sequences and series. A.1 Sequences. Definition A.1 A sequence is a function N R. Appendix A Sequences and series This course has for prerequisite a course (or two) of calculus. The purpose of this appendix is to review basic definitions and facts concerning sequences and series, which

More information

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES You will be expected to reread and digest these typed notes after class, line by line, trying to follow why the line is true, for example how it

More information

MATH115. Infinite Series. Paolo Lorenzo Bautista. July 17, De La Salle University. PLBautista (DLSU) MATH115 July 17, / 43

MATH115. Infinite Series. Paolo Lorenzo Bautista. July 17, De La Salle University. PLBautista (DLSU) MATH115 July 17, / 43 MATH115 Infinite Series Paolo Lorenzo Bautista De La Salle University July 17, 2014 PLBautista (DLSU) MATH115 July 17, 2014 1 / 43 Infinite Series Definition If {u n } is a sequence and s n = u 1 + u 2

More information

2 2 + x =

2 2 + x = Lecture 30: Power series A Power Series is a series of the form c n = c 0 + c 1 x + c x + c 3 x 3 +... where x is a variable, the c n s are constants called the coefficients of the series. n = 1 + x +

More information

8.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

8.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1. 8. Sequences Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = Examples: 6. Find a formula for the general term a n of the sequence, assuming

More information

9. Series representation for analytic functions

9. Series representation for analytic functions 9. Series representation for analytic functions 9.. Power series. Definition: A power series is the formal expression S(z) := c n (z a) n, a, c i, i =,,, fixed, z C. () The n.th partial sum S n (z) is

More information

9 5 Testing Convergence at Endpoints

9 5 Testing Convergence at Endpoints 9 5 Testing Convergence at Endpoints In this section we will investigate convergence using more tests. We will also looks at three specific types of series. The Integral Test Let {a n } be a sequence of

More information

Sequences and Summations

Sequences and Summations COMP 182 Algorithmic Thinking Sequences and Summations Luay Nakhleh Computer Science Rice University Chapter 2, Section 4 Reading Material Sequences A sequence is a function from a subset of the set of

More information

Because of the special form of an alternating series, there is an simple way to determine that many such series converge:

Because of the special form of an alternating series, there is an simple way to determine that many such series converge: Section.5 Absolute and Conditional Convergence Another special type of series that we will consider is an alternating series. A series is alternating if the sign of the terms alternates between positive

More information

MATH 117 LECTURE NOTES

MATH 117 LECTURE NOTES MATH 117 LECTURE NOTES XIN ZHOU Abstract. This is the set of lecture notes for Math 117 during Fall quarter of 2017 at UC Santa Barbara. The lectures follow closely the textbook [1]. Contents 1. The set

More information

Chapter 11: Sequences; Indeterminate Forms; Improper Integrals

Chapter 11: Sequences; Indeterminate Forms; Improper Integrals Chapter 11: Sequences; Indeterminate Forms; Improper Integrals Section 11.1 The Least Upper Bound Axiom a. Least Upper Bound Axiom b. Examples c. Theorem 11.1.2 d. Example e. Greatest Lower Bound f. Theorem

More information

Section 11.1 Sequences

Section 11.1 Sequences Math 152 c Lynch 1 of 8 Section 11.1 Sequences A sequence is a list of numbers written in a definite order: a 1, a 2, a 3,..., a n,... Notation. The sequence {a 1, a 2, a 3,...} can also be written {a

More information

Solutions: Problem Set 4 Math 201B, Winter 2007

Solutions: Problem Set 4 Math 201B, Winter 2007 Solutions: Problem Set 4 Math 2B, Winter 27 Problem. (a Define f : by { x /2 if < x

More information

Name. Instructor K. Pernell 1. Berkeley City College Due: HW 4 - Chapter 11 - Infinite Sequences and Series. Write the first four terms of {an}.

Name. Instructor K. Pernell 1. Berkeley City College Due: HW 4 - Chapter 11 - Infinite Sequences and Series. Write the first four terms of {an}. Berkeley City College Due: HW 4 - Chapter 11 - Infinite Sequences and Series Name Write the first four terms of {an}. 1) an = (-1)n n 2) an = n + 1 3n - 1 3) an = sin n! 3 Determine whether the sequence

More information

MATH 409 Advanced Calculus I Lecture 7: Monotone sequences. The Bolzano-Weierstrass theorem.

MATH 409 Advanced Calculus I Lecture 7: Monotone sequences. The Bolzano-Weierstrass theorem. MATH 409 Advanced Calculus I Lecture 7: Monotone sequences. The Bolzano-Weierstrass theorem. Limit of a sequence Definition. Sequence {x n } of real numbers is said to converge to a real number a if for

More information

Chapter 10. Infinite Sequences and Series

Chapter 10. Infinite Sequences and Series 10.6 Alternating Series, Absolute and Conditional Convergence 1 Chapter 10. Infinite Sequences and Series 10.6 Alternating Series, Absolute and Conditional Convergence Note. The convergence tests investigated

More information

THE RADIUS OF CONVERGENCE FORMULA. a n (z c) n, f(z) =

THE RADIUS OF CONVERGENCE FORMULA. a n (z c) n, f(z) = THE RADIUS OF CONVERGENCE FORMULA Every complex power series, f(z) = (z c) n, n=0 has a radius of convergence, nonnegative-real or infinite, R = R(f) [0, + ], that describes the convergence of the series,

More information

1. Theorem. (Archimedean Property) Let x be any real number. There exists a positive integer n greater than x.

1. Theorem. (Archimedean Property) Let x be any real number. There exists a positive integer n greater than x. Advanced Calculus I, Dr. Block, Chapter 2 notes. Theorem. (Archimedean Property) Let x be any real number. There exists a positive integer n greater than x. 2. Definition. A sequence is a real-valued function

More information

Infinite Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Infinite Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Infinite Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Background Consider the repeating decimal form of 2/3. 2 3 = 0.666666 = 0.6 + 0.06 + 0.006 + 0.0006 + = 6(0.1)

More information

CHAPTER 4. Series. 1. What is a Series?

CHAPTER 4. Series. 1. What is a Series? CHAPTER 4 Series Given a sequence, in many contexts it is natural to ask about the sum of all the numbers in the sequence. If only a finite number of the are nonzero, this is trivial and not very interesting.

More information

Let s Get Series(ous)

Let s Get Series(ous) Department of Mathematics, Computer Science, and Statistics Bloomsburg University Bloomsburg, Pennsylvania 785 Let s Get Series(ous) Summary Presenting infinite series can be (used to be) a tedious and

More information

Math 162 Review of Series

Math 162 Review of Series Math 62 Review of Series. Explain what is meant by f(x) dx. What analogy (analogies) exists between such an improper integral and an infinite series a n? An improper integral with infinite interval of

More information

Convergence Tests. Academic Resource Center

Convergence Tests. Academic Resource Center Convergence Tests Academic Resource Center Series Given a sequence {a 0, a, a 2,, a n } The sum of the series, S n = A series is convergent if, as n gets larger and larger, S n goes to some finite number.

More information

Infinite Series Summary

Infinite Series Summary Infinite Series Summary () Special series to remember: Geometric series ar n Here a is the first term and r is the common ratio. When r

More information

Testing Series with Mixed Terms

Testing Series with Mixed Terms Testing Series with Mixed Terms Philippe B. Laval KSU Today Philippe B. Laval (KSU) Series with Mixed Terms Today 1 / 17 Outline 1 Introduction 2 Absolute v.s. Conditional Convergence 3 Alternating Series

More information

Infinite Series. Copyright Cengage Learning. All rights reserved.

Infinite Series. Copyright Cengage Learning. All rights reserved. Infinite Series Copyright Cengage Learning. All rights reserved. Sequences Copyright Cengage Learning. All rights reserved. Objectives List the terms of a sequence. Determine whether a sequence converges

More information

Math 143 Flash Cards. Divergence of a sequence {a n } {a n } diverges to. Sandwich Theorem for Sequences. Continuous Function Theorem for Sequences

Math 143 Flash Cards. Divergence of a sequence {a n } {a n } diverges to. Sandwich Theorem for Sequences. Continuous Function Theorem for Sequences Math Flash cards Math 143 Flash Cards Convergence of a sequence {a n } Divergence of a sequence {a n } {a n } diverges to Theorem (10.1) {a n } diverges to Sandwich Theorem for Sequences Theorem (10.1)

More information

Analysis II: Fourier Series

Analysis II: Fourier Series .... Analysis II: Fourier Series Kenichi Maruno Department of Mathematics, The University of Texas - Pan American May 3, 011 K.Maruno (UT-Pan American) Analysis II May 3, 011 1 / 16 Fourier series were

More information

Solutions Manual for Homework Sets Math 401. Dr Vignon S. Oussa

Solutions Manual for Homework Sets Math 401. Dr Vignon S. Oussa 1 Solutions Manual for Homework Sets Math 401 Dr Vignon S. Oussa Solutions Homework Set 0 Math 401 Fall 2015 1. (Direct Proof) Assume that x and y are odd integers. Then there exist integers u and v such

More information

13 Maximum Modulus Principle

13 Maximum Modulus Principle 3 Maximum Modulus Principle Theorem 3. (maximum modulus principle). If f is non-constant and analytic on an open connected set Ω, then there is no point z 0 Ω such that f(z) f(z 0 ) for all z Ω. Remark

More information

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved.

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved. 11.10 Taylor and Maclaurin Series Copyright Cengage Learning. All rights reserved. We start by supposing that f is any function that can be represented by a power series f(x)= c 0 +c 1 (x a)+c 2 (x a)

More information

Problem 1 In each of the following problems find the general solution of the given differential

Problem 1 In each of the following problems find the general solution of the given differential VI Problem 1 dt + 2dy 3y = 0; dt 9dy + 9y = 0. Problem 2 dt + dy 2y = 0, y(0) = 1, y (0) = 1; dt 2 y = 0, y( 2) = 1, y ( 2) = Problem 3 Find the solution of the initial value problem 2 d2 y dt 2 3dy dt

More information

2.7 Subsequences. Definition Suppose that (s n ) n N is a sequence. Let (n 1, n 2, n 3,... ) be a sequence of natural numbers such that

2.7 Subsequences. Definition Suppose that (s n ) n N is a sequence. Let (n 1, n 2, n 3,... ) be a sequence of natural numbers such that 2.7 Subsequences Definition 2.7.1. Suppose that (s n ) n N is a sequence. Let (n 1, n 2, n 3,... ) be a sequence of natural numbers such that n 1 < n 2 < < n k < n k+1

More information

9 5 Testing Convergence at Endpoints

9 5 Testing Convergence at Endpoints 9 5 Testing Convergence at Endpoints In this section we will investigate convergence using more tests. We will also looks at three specific types of series. The Integral Test Let {a n } be a sequence of

More information

Mathematics 324 Riemann Zeta Function August 5, 2005

Mathematics 324 Riemann Zeta Function August 5, 2005 Mathematics 324 Riemann Zeta Function August 5, 25 In this note we give an introduction to the Riemann zeta function, which connects the ideas of real analysis with the arithmetic of the integers. Define

More information

Existence of a Limit on a Dense Set, and. Construction of Continuous Functions on Special Sets

Existence of a Limit on a Dense Set, and. Construction of Continuous Functions on Special Sets Existence of a Limit on a Dense Set, and Construction of Continuous Functions on Special Sets REU 2012 Recap: Definitions Definition Given a real-valued function f, the limit of f exists at a point c R

More information

AP Calculus Testbank (Chapter 9) (Mr. Surowski)

AP Calculus Testbank (Chapter 9) (Mr. Surowski) AP Calculus Testbank (Chapter 9) (Mr. Surowski) Part I. Multiple-Choice Questions n 1 1. The series will converge, provided that n 1+p + n + 1 (A) p > 1 (B) p > 2 (C) p >.5 (D) p 0 2. The series

More information

Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall. .1 Limits of Sequences. CHAPTER.1.0. a) True. If converges, then there is an M > 0 such that M. Choose by Archimedes an N N such that N > M/ε. Then n N implies /n M/n M/N < ε. b) False. = n does not converge,

More information

(Infinite) Series Series a n = a 1 + a 2 + a a n +...

(Infinite) Series Series a n = a 1 + a 2 + a a n +... (Infinite) Series Series a n = a 1 + a 2 + a 3 +... + a n +... What does it mean to add infinitely many terms? The sequence of partial sums S 1, S 2, S 3, S 4,...,S n,...,where nx S n = a i = a 1 + a 2

More information

MATH115. Sequences and Infinite Series. Paolo Lorenzo Bautista. June 29, De La Salle University. PLBautista (DLSU) MATH115 June 29, / 16

MATH115. Sequences and Infinite Series. Paolo Lorenzo Bautista. June 29, De La Salle University. PLBautista (DLSU) MATH115 June 29, / 16 MATH115 Sequences and Infinite Series Paolo Lorenzo Bautista De La Salle University June 29, 2014 PLBautista (DLSU) MATH115 June 29, 2014 1 / 16 Definition A sequence function is a function whose domain

More information

Math 1b Sequences and series summary

Math 1b Sequences and series summary Math b Sequences and series summary December 22, 2005 Sequences (Stewart p. 557) Notations for a sequence: or a, a 2, a 3,..., a n,... {a n }. The numbers a n are called the terms of the sequence.. Limit

More information

12.1 Arithmetic Progression Geometric Progression General things about sequences

12.1 Arithmetic Progression Geometric Progression General things about sequences ENGR11 Engineering Mathematics Lecture Notes SMS, Victoria University of Wellington Week Five. 1.1 Arithmetic Progression An arithmetic progression is a sequence where each term is found by adding a fixed

More information

Logical Connectives and Quantifiers

Logical Connectives and Quantifiers Chapter 1 Logical Connectives and Quantifiers 1.1 Logical Connectives 1.2 Quantifiers 1.3 Techniques of Proof: I 1.4 Techniques of Proof: II Theorem 1. Let f be a continuous function. If 1 f(x)dx 0, then

More information

Section 9.8. First let s get some practice with determining the interval of convergence of power series.

Section 9.8. First let s get some practice with determining the interval of convergence of power series. First let s get some practice with determining the interval of convergence of power series. First let s get some practice with determining the interval of convergence of power series. Example (1) Determine

More information

a j x j. j=0 The number R (possibly infinite) which Theorem 1 guarantees is called the radius of convergence of the power series.

a j x j. j=0 The number R (possibly infinite) which Theorem 1 guarantees is called the radius of convergence of the power series. Lecture 6 Power series A very important class of series to study are the power series. They are interesting in part because they represent functions and in part because they encode their coefficients which

More information

Similar to sequence, note that a series converges if and only if its tail converges, that is, r 1 r ( 1 < r < 1), ( 1) k k. r k =

Similar to sequence, note that a series converges if and only if its tail converges, that is, r 1 r ( 1 < r < 1), ( 1) k k. r k = Infinite Series We say an infinite series a k converges to s if its sequence of initial sums converges to s, that is, lim( n a k : n N) = s. Similar to sequence, note that a series converges if and only

More information

Section 3.2 : Sequences

Section 3.2 : Sequences Section 3.2 : Sequences Note: Chapter 11 of Stewart s Calculus is a good reference for this chapter of our lecture notes. Definition 52 A sequence is an infinite ordered list a 1, a 2, a 3,... The items

More information

Numerical Sequences and Series

Numerical Sequences and Series Numerical Sequences and Series Written by Men-Gen Tsai email: b89902089@ntu.edu.tw. Prove that the convergence of {s n } implies convergence of { s n }. Is the converse true? Solution: Since {s n } is

More information

CHAPTER 2 INFINITE SUMS (SERIES) Lecture Notes PART 1

CHAPTER 2 INFINITE SUMS (SERIES) Lecture Notes PART 1 CHAPTER 2 INFINITE SUMS (SERIES) Lecture Notes PART We extend now the notion of a finite sum Σ n k= a k to an INFINITE SUM which we write as Σ n= a n as follows. For a given a sequence {a n } n N {0},

More information

Review (11.1) 1. A sequence is an infinite list of numbers {a n } n=1 = a 1, a 2, a 3, The sequence is said to converge if lim

Review (11.1) 1. A sequence is an infinite list of numbers {a n } n=1 = a 1, a 2, a 3, The sequence is said to converge if lim Announcements: Note that we have taking the sections of Chapter, out of order, doing section. first, and then the rest. Section. is motivation for the rest of the chapter. Do the homework questions from

More information

AP Calculus Chapter 9: Infinite Series

AP Calculus Chapter 9: Infinite Series AP Calculus Chapter 9: Infinite Series 9. Sequences a, a 2, a 3, a 4, a 5,... Sequence: A function whose domain is the set of positive integers n = 2 3 4 a n = a a 2 a 3 a 4 terms of the sequence Begin

More information

A Few Examples. A Few Examples

A Few Examples. A Few Examples Section 3.2 : Sequences Note: Chapter of Stewart s Calculus is a good reference for this chapter of our lecture notes. Definition 52 A sequence is an infinite ordered list A Few Examples (( ) n + ) n=

More information

Combinatorial Analysis of the Geometric Series

Combinatorial Analysis of the Geometric Series Combinatorial Analysis of the Geometric Series David P. Little April 7, 205 www.math.psu.edu/dlittle Analytic Convergence of a Series The series converges analytically if and only if the sequence of partial

More information

Absolute Convergence and the Ratio & Root Tests

Absolute Convergence and the Ratio & Root Tests Absolute Convergence and the Ratio & Root Tests Math114 Department of Mathematics, University of Kentucky February 20, 2017 Math114 Lecture 15 1/ 12 ( 1) n 1 = 1 1 + 1 1 + 1 1 + Math114 Lecture 15 2/ 12

More information

Notes on uniform convergence

Notes on uniform convergence Notes on uniform convergence Erik Wahlén erik.wahlen@math.lu.se January 17, 2012 1 Numerical sequences We begin by recalling some properties of numerical sequences. By a numerical sequence we simply mean

More information

MATH 1231 MATHEMATICS 1B CALCULUS. Section 4: - Convergence of Series.

MATH 1231 MATHEMATICS 1B CALCULUS. Section 4: - Convergence of Series. MATH 23 MATHEMATICS B CALCULUS. Section 4: - Convergence of Series. The objective of this section is to get acquainted with the theory and application of series. By the end of this section students will

More information

Sequence. A list of numbers written in a definite order.

Sequence. A list of numbers written in a definite order. Sequence A list of numbers written in a definite order. Terms of a Sequence a n = 2 n 2 1, 2 2, 2 3, 2 4, 2 n, 2, 4, 8, 16, 2 n We are going to be mainly concerned with infinite sequences. This means we

More information

Notation. 0,1,2,, 1 with addition and multiplication modulo

Notation. 0,1,2,, 1 with addition and multiplication modulo Notation Q,, The set of all natural numbers 1,2,3, The set of all integers The set of all rational numbers The set of all real numbers The group of permutations of distinct symbols 0,1,2,,1 with addition

More information

Sequences and Series, Induction. Review

Sequences and Series, Induction. Review Sequences and Series, Induction Review 1 Topics Arithmetic Sequences Arithmetic Series Geometric Sequences Geometric Series Factorial Notation Sigma Notation Binomial Theorem Mathematical Induction 2 Arithmetic

More information

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES Notes. x n+ = ax n has the general solution x n = x a n. 2. x n+ = x n + b has the general solution x n = x + (n )b. 3. x n+ = ax n + b (with a ) can be

More information

2.1 Sets. Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R.

2.1 Sets. Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R. 2. Basic Structures 2.1 Sets Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R. Definition 2 Objects in a set are called elements or members of the set. A set is

More information

Assignment 4. u n+1 n(n + 1) i(i + 1) = n n (n + 1)(n + 2) n(n + 2) + 1 = (n + 1)(n + 2) 2 n + 1. u n (n + 1)(n + 2) n(n + 1) = n

Assignment 4. u n+1 n(n + 1) i(i + 1) = n n (n + 1)(n + 2) n(n + 2) + 1 = (n + 1)(n + 2) 2 n + 1. u n (n + 1)(n + 2) n(n + 1) = n Assignment 4 Arfken 5..2 We have the sum Note that the first 4 partial sums are n n(n + ) s 2, s 2 2 3, s 3 3 4, s 4 4 5 so we guess that s n n/(n + ). Proving this by induction, we see it is true for

More information

Testing Series With Mixed Terms

Testing Series With Mixed Terms Testing Series With Mixed Terms Philippe B. Laval Series with Mixed Terms 1. Introduction 2. Absolute v.s. Conditional Convergence 3. Alternating Series 4. The Ratio and Root Tests 5. Conclusion 1 Introduction

More information

The infinite series is written using sigma notation as: lim u k. lim. better yet, we can say if the

The infinite series is written using sigma notation as: lim u k. lim. better yet, we can say if the Divergence and Integral Test With the previous content, we used the idea of forming a closed form for the n th partial sum and taking its limit to determine the SUM of the series (if it exists). *** It

More information

Course 214 Section 2: Infinite Series Second Semester 2008

Course 214 Section 2: Infinite Series Second Semester 2008 Course 214 Section 2: Infinite Series Second Semester 2008 David R. Wilkins Copyright c David R. Wilkins 1989 2008 Contents 2 Infinite Series 25 2.1 The Comparison Test and Ratio Test.............. 26

More information

WORKSHEET FOR THE PRELIMINARY EXAMINATION-REAL ANALYSIS (SEQUENCES OF FUNCTIONS, SERIES OF FUNCTIONS & POWER SERIES)

WORKSHEET FOR THE PRELIMINARY EXAMINATION-REAL ANALYSIS (SEQUENCES OF FUNCTIONS, SERIES OF FUNCTIONS & POWER SERIES) WORKSHEET FOR THE PRELIMINARY EXAMINATION-REAL ANALYSIS (SEQUENCES OF FUNCTIONS, SERIES OF FUNCTIONS & POWER SERIES) INSTRUCTOR: CEZAR LUPU Problem. Decide which of the following sequences of functions

More information

Power series and Taylor series

Power series and Taylor series Power series and Taylor series D. DeTurck University of Pennsylvania March 29, 2018 D. DeTurck Math 104 002 2018A: Series 1 / 42 Series First... a review of what we have done so far: 1 We examined series

More information

Alternating Series, Absolute and Conditional Convergence Á + s -1dn Á + s -1dn 4

Alternating Series, Absolute and Conditional Convergence Á + s -1dn Á + s -1dn 4 .6 Alternating Series, Absolute and Conditional Convergence 787.6 Alternating Series, Absolute and Conditional Convergence A series in which the terms are alternately positive and negative is an alternating

More information

Review of Power Series

Review of Power Series Review of Power Series MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Introduction In addition to the techniques we have studied so far, we may use power

More information

Sequences and series

Sequences and series Sequences and series Jean-Marie Dufour McGill University First version: March 1992 Revised: January 2002, October 2016 This version: October 2016 Compiled: January 10, 2017, 15:36 This work was supported

More information

Infinite Sequences and Series Section

Infinite Sequences and Series Section A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Infinite Sequences and Series Section 8.1-8.2 Dr. John Ehrke Department of Mathematics Fall 2012 Zeno s Paradox Achilles and

More information

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1.

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1. Chapter 3 Sequences Both the main elements of calculus (differentiation and integration) require the notion of a limit. Sequences will play a central role when we work with limits. Definition 3.. A Sequence

More information

CSC 344 Algorithms and Complexity. Proof by Mathematical Induction

CSC 344 Algorithms and Complexity. Proof by Mathematical Induction CSC 344 Algorithms and Complexity Lecture #1 Review of Mathematical Induction Proof by Mathematical Induction Many results in mathematics are claimed true for every positive integer. Any of these results

More information

Sequences and infinite series

Sequences and infinite series Sequences and infinite series D. DeTurck University of Pennsylvania March 29, 208 D. DeTurck Math 04 002 208A: Sequence and series / 54 Sequences The lists of numbers you generate using a numerical method

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

Homework 11. Solutions

Homework 11. Solutions Homework 11. Solutions Problem 2.3.2. Let f n : R R be 1/n times the characteristic function of the interval (0, n). Show that f n 0 uniformly and f n µ L = 1. Why isn t it a counterexample to the Lebesgue

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan 8. Sequences We start this section by introducing the concept of a sequence and study its convergence. Convergence of Sequences. An infinite

More information

3. Infinite Series. The Sum of a Series. A series is an infinite sum of numbers:

3. Infinite Series. The Sum of a Series. A series is an infinite sum of numbers: 3. Infinite Series A series is an infinite sum of numbers: The individual numbers are called the terms of the series. In the above series, the first term is, the second term is, and so on. The th term

More information

Notes on sequences and series in the calculus of one variable

Notes on sequences and series in the calculus of one variable Notes on sequences and series in the calculus of one variable Adam Coffman July 30, 007 These are notes on sequences and series, at a first-year calculus level. The goal is to see how complex numbers and

More information

Bell Ringer. 1. Make a table and sketch the graph of the piecewise function. f(x) =

Bell Ringer. 1. Make a table and sketch the graph of the piecewise function. f(x) = Bell Ringer 1. Make a table and sketch the graph of the piecewise function f(x) = Power and Radical Functions Learning Target: 1. I can graph and analyze power functions. 2. I can graph and analyze radical

More information