The infinite series is written using sigma notation as: lim u k. lim. better yet, we can say if the

Size: px
Start display at page:

Download "The infinite series is written using sigma notation as: lim u k. lim. better yet, we can say if the"

Transcription

1 Divergence and Integral Test With the previous content, we used the idea of forming a closed form for the n th partial sum and taking its limit to determine the SUM of the series (if it exists). *** It is very rare to be able to construct a closed form, it is easy when you have (1) a geometric series or (2) a telescopic series Mostly, we will do some test to show the series will converge or diverge, and if it does converge we will then use a partial sum to find approximation for the series. The infinite series is written using sigma notation as: DIVERGENCE TEST: very useful to determine quickly whether an infinite series diverges. (a) If the converges, then lim u k better yet, we can say if the lim u k, then the (b) If the lim k u, then the test is inconclusive. (That is the series may converge or diverge) From (a), reality of these statements: If the infinite series converges, then each term of the series should be getting smaller and smaller, so it makes sense that the limit of the k th term goes to 0. (but in this statement, you must know that the series converges). Alternatively, if means the k th term of the series is not getting smaller, thus each term of the series will get bigger and bigger, thus the series diverges. Proof: Assume that the infinite series converges, then we can say that the sequence of partial sums must converge to a number, let's call this number, S. The infinite series can be viewed as: while the nth partial sum can be written as: re-arranging this, we can view the n th term of the series as the difference of two partial sums. *** For the infinite series, if lim u k Divergence Test Blank Page 1

2 Examples using the divergence test Example: Use the divergence test to determine whether the following series diverges or whether the test is inconclusive. (a) (b) (c) The Integral Test: Let be a series of positive terms ( where (decreasing term by term). Let, then the function is positive and decreasing on the closed interval. Then we can say that the infinite series,, and the improper integral,, ACT ALIKE. That is, if the integral diverges, then the series diverges. Likewise, if the integral converges, then the series converges. Note, this does NOT tell us what the series converges to, it only tells us that the series converges because the integral converges. Divergence Test Blank Page 2

3 Divergence Test Blank Page 3 Using the Integral Test Harmonic Series: this series looks harmless enough and it shows up a great deal in practice. We are going to show that this series diverges. You can see that the Divergence Test is inconclusive because so we need another approach to determine how this series behaves. Can we use the integral test? We need to be certain that the hypothesis of the integral test are valid: 1) are we dealing with a series of positive terms? 2) are the terms decreasing term by term? Create the improper integral and evaluate. Example: Determine whether the following series converges or diverges.

4 Divergence Test Blank Page 4 P-series The series given by: Converges if Diverges if Proof of this is based on the integral test (left to you). Estimation of the Sum of a convergent infinite series We can show is convergent, and now we want to find an approximation, S, of the series, We are going to use knowledge of the infinite series being made up of the n th partial sum PLUS many other sums of terms. That is, Our approach is to estimate the size of the remainder. That is, the remainder associated with the n th partial sum can be described as follows: R n =

5 Divergence Test Blank Page 5 Find an approximation and estimating the error Example: Consider the infinite series given by (a) Find an approximation of the 10 th partial sum,. Then estimate the error in using as an approximation to the sum of the series. (b) Now, find the value of n, such that is within of the sum of the series.

6 Divergence Test Blank Page 6 One more estimation example Example: Consider the infinite series given by (a) Find an approximation of the 25 th partial sum,. Then estimate the error in using as an approximation to the sum of the series. (b) Now, find the value of n, such that is within of the sum of the series.

10.1 Sequences. A sequence is an ordered list of numbers: a 1, a 2, a 3,..., a n, a n+1,... Each of the numbers is called a term of the sequence.

10.1 Sequences. A sequence is an ordered list of numbers: a 1, a 2, a 3,..., a n, a n+1,... Each of the numbers is called a term of the sequence. 10.1 Sequences A sequence is an ordered list of numbers: a 1, a 2, a 3,..., a n, a n+1,... Each of the numbers is called a term of the sequence. Notation: A sequence {a 1, a 2, a 3,...} can be denoted

More information

8.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

8.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1. 8. Sequences Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = Examples: 6. Find a formula for the general term a n of the sequence, assuming

More information

Absolute Convergence and the Ratio & Root Tests

Absolute Convergence and the Ratio & Root Tests Absolute Convergence and the Ratio & Root Tests Math114 Department of Mathematics, University of Kentucky February 20, 2017 Math114 Lecture 15 1/ 12 ( 1) n 1 = 1 1 + 1 1 + 1 1 + Math114 Lecture 15 2/ 12

More information

Root test. Root test Consider the limit L = lim n a n, suppose it exists. L < 1. L > 1 (including L = ) L = 1 the test is inconclusive.

Root test. Root test Consider the limit L = lim n a n, suppose it exists. L < 1. L > 1 (including L = ) L = 1 the test is inconclusive. Root test Root test n Consider the limit L = lim n a n, suppose it exists. L < 1 a n is absolutely convergent (thus convergent); L > 1 (including L = ) a n is divergent L = 1 the test is inconclusive.

More information

Convergence Tests. Academic Resource Center

Convergence Tests. Academic Resource Center Convergence Tests Academic Resource Center Series Given a sequence {a 0, a, a 2,, a n } The sum of the series, S n = A series is convergent if, as n gets larger and larger, S n goes to some finite number.

More information

AP Calc BC Convergence Tests Name: Block: Seat:

AP Calc BC Convergence Tests Name: Block: Seat: AP Calc BC Convergence Tests Name: Block: Seat: n th Term Divergence Test n=k diverges if lim n a n 0 a n diverges if lim n a n does not exist 1. Determine the convergence n 1 n + 1 Geometric Series The

More information

Power Series. Part 1. J. Gonzalez-Zugasti, University of Massachusetts - Lowell

Power Series. Part 1. J. Gonzalez-Zugasti, University of Massachusetts - Lowell Power Series Part 1 1 Power Series Suppose x is a variable and c k & a are constants. A power series about x = 0 is c k x k A power series about x = a is c k x a k a = center of the power series c k =

More information

Preliminary check: are the terms that we are adding up go to zero or not? If not, proceed! If the terms a n are going to zero, pick another test.

Preliminary check: are the terms that we are adding up go to zero or not? If not, proceed! If the terms a n are going to zero, pick another test. Throughout these templates, let series. be a series. We hope to determine the convergence of this Divergence Test: If lim is not zero or does not exist, then the series diverges. Preliminary check: are

More information

Infinite Series - Section Can you add up an infinite number of values and get a finite sum? Yes! Here is a familiar example:

Infinite Series - Section Can you add up an infinite number of values and get a finite sum? Yes! Here is a familiar example: Infinite Series - Section 10.2 Can you add up an infinite number of values and get a finite sum? Yes! Here is a familiar example: 1 3 0. 3 0. 3 0. 03 0. 003 0. 0003 Ifa n is an infinite sequence, then

More information

Because of the special form of an alternating series, there is an simple way to determine that many such series converge:

Because of the special form of an alternating series, there is an simple way to determine that many such series converge: Section.5 Absolute and Conditional Convergence Another special type of series that we will consider is an alternating series. A series is alternating if the sign of the terms alternates between positive

More information

Review Sheet on Convergence of Series MATH 141H

Review Sheet on Convergence of Series MATH 141H Review Sheet on Convergence of Series MATH 4H Jonathan Rosenberg November 27, 2006 There are many tests for convergence of series, and frequently it can been confusing. How do you tell what test to use?

More information

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1. 10.1 Sequences Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1 Examples: EX1: Find a formula for the general term a n of the sequence,

More information

Series. richard/math230 These notes are taken from Calculus Vol I, by Tom M. Apostol,

Series.  richard/math230 These notes are taken from Calculus Vol I, by Tom M. Apostol, Series Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math230 These notes are taken from Calculus Vol I, by Tom

More information

9 5 Testing Convergence at Endpoints

9 5 Testing Convergence at Endpoints 9 5 Testing Convergence at Endpoints In this section we will investigate convergence using more tests. We will also looks at three specific types of series. The Integral Test Let {a n } be a sequence of

More information

SERIES REVIEW SHEET, SECTIONS 11.1 TO 11.5 OF OZ

SERIES REVIEW SHEET, SECTIONS 11.1 TO 11.5 OF OZ SERIES REVIEW SHEET, SECTIONS 11.1 TO 11.5 OF OZ Fill in the blanks and give the indicated examples, including reasons. Don t simply fill in the blanks and give the examples. Take this opportunity to really

More information

AP Calculus Chapter 9: Infinite Series

AP Calculus Chapter 9: Infinite Series AP Calculus Chapter 9: Infinite Series 9. Sequences a, a 2, a 3, a 4, a 5,... Sequence: A function whose domain is the set of positive integers n = 2 3 4 a n = a a 2 a 3 a 4 terms of the sequence Begin

More information

Convergence Tests. Theorem. (the divergence test)., then the series u k diverges. k k. (b) If lim u = 0, then the series u may either converge

Convergence Tests. Theorem. (the divergence test)., then the series u k diverges. k k. (b) If lim u = 0, then the series u may either converge Convergence Tests We are now interested in developing tests to tell whether or not a series converges, without having to guess at its sum. The first such test is entirely a negative result. Theorem. (the

More information

Series. 1 Convergence and Divergence of Series. S. F. Ellermeyer. October 23, 2003

Series. 1 Convergence and Divergence of Series. S. F. Ellermeyer. October 23, 2003 Series S. F. Ellermeyer October 23, 2003 Convergence and Divergence of Series An infinite series (also simply called a series) is a sum of infinitely many terms a k = a + a 2 + a 3 + () The sequence a

More information

Sequences and infinite series

Sequences and infinite series Sequences and infinite series D. DeTurck University of Pennsylvania March 29, 208 D. DeTurck Math 04 002 208A: Sequence and series / 54 Sequences The lists of numbers you generate using a numerical method

More information

Mat104 Fall 2002, Improper Integrals From Old Exams

Mat104 Fall 2002, Improper Integrals From Old Exams Mat4 Fall 22, Improper Integrals From Old Eams For the following integrals, state whether they are convergent or divergent, and give your reasons. () (2) (3) (4) (5) converges. Break it up as 3 + 2 3 +

More information

Math 162 Review of Series

Math 162 Review of Series Math 62 Review of Series. Explain what is meant by f(x) dx. What analogy (analogies) exists between such an improper integral and an infinite series a n? An improper integral with infinite interval of

More information

Review of Power Series

Review of Power Series Review of Power Series MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Introduction In addition to the techniques we have studied so far, we may use power

More information

The integral test and estimates of sums

The integral test and estimates of sums The integral test Suppose f is a continuous, positive, decreasing function on [, ) and let a n = f (n). Then the series n= a n is convergent if and only if the improper integral f (x)dx is convergent.

More information

Objectives. Materials

Objectives. Materials Activity 8 Exploring Infinite Series Objectives Identify a geometric series Determine convergence and sum of geometric series Identify a series that satisfies the alternating series test Use a graphing

More information

Exam 3. Math Spring 2015 April 8, 2015 Name: } {{ } (from xkcd) Read all of the following information before starting the exam:

Exam 3. Math Spring 2015 April 8, 2015 Name: } {{ } (from xkcd) Read all of the following information before starting the exam: Exam 3 Math 2 - Spring 205 April 8, 205 Name: } {{ } by writing my name I pledge to abide by the Emory College Honor Code (from xkcd) Read all of the following information before starting the exam: For

More information

Review (11.1) 1. A sequence is an infinite list of numbers {a n } n=1 = a 1, a 2, a 3, The sequence is said to converge if lim

Review (11.1) 1. A sequence is an infinite list of numbers {a n } n=1 = a 1, a 2, a 3, The sequence is said to converge if lim Announcements: Note that we have taking the sections of Chapter, out of order, doing section. first, and then the rest. Section. is motivation for the rest of the chapter. Do the homework questions from

More information

9 5 Testing Convergence at Endpoints

9 5 Testing Convergence at Endpoints 9 5 Testing Convergence at Endpoints In this section we will investigate convergence using more tests. We will also looks at three specific types of series. The Integral Test Let {a n } be a sequence of

More information

A Basic Course in Real Analysis Prof. P. D. Srivastava Department of Mathematics Indian Institute of Technology, Kharagpur

A Basic Course in Real Analysis Prof. P. D. Srivastava Department of Mathematics Indian Institute of Technology, Kharagpur A Basic Course in Real Analysis Prof. P. D. Srivastava Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 23 Tests for absolutely convergent series In the last lecture, we have

More information

Absolute Convergence and the Ratio Test

Absolute Convergence and the Ratio Test Absolute Convergence and the Ratio Test MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Bacground Remar: All previously covered tests for convergence/divergence apply only

More information

C241 Homework Assignment 7

C241 Homework Assignment 7 C24 Homework Assignment 7. Prove that for all whole numbers n, n i 2 = n(n + (2n + The proof is by induction on k with hypothesis H(k i 2 = k(k + (2k + base case: To prove H(, i 2 = = = 2 3 = ( + (2 +

More information

Chapter 8. Infinite Series

Chapter 8. Infinite Series 8.4 Series of Nonnegative Terms Chapter 8. Infinite Series 8.4 Series of Nonnegative Terms Note. Given a series we have two questions:. Does the series converge? 2. If it converges, what is its sum? Corollary

More information

3. Infinite Series. The Sum of a Series. A series is an infinite sum of numbers:

3. Infinite Series. The Sum of a Series. A series is an infinite sum of numbers: 3. Infinite Series A series is an infinite sum of numbers: The individual numbers are called the terms of the series. In the above series, the first term is, the second term is, and so on. The th term

More information

Math 0230 Calculus 2 Lectures

Math 0230 Calculus 2 Lectures Math 00 Calculus Lectures Chapter 8 Series Numeration of sections corresponds to the text James Stewart, Essential Calculus, Early Transcendentals, Second edition. Section 8. Sequences A sequence is a

More information

Let s Get Series(ous)

Let s Get Series(ous) Department of Mathematics, Computer Science, and Statistics Bloomsburg University Bloomsburg, Pennsylvania 785 Let s Get Series(ous) Summary Presenting infinite series can be (used to be) a tedious and

More information

The Comparison Test & Limit Comparison Test

The Comparison Test & Limit Comparison Test The Comparison Test & Limit Comparison Test Math4 Department of Mathematics, University of Kentucky February 5, 207 Math4 Lecture 3 / 3 Summary of (some of) what we have learned about series... Math4 Lecture

More information

Math 163: Lecture notes

Math 163: Lecture notes Math 63: Lecture notes Professor Monika Nitsche March 2, 2 Special functions that are inverses of known functions. Inverse functions (Day ) Go over: early exam, hw, quizzes, grading scheme, attendance

More information

Math 143 Flash Cards. Divergence of a sequence {a n } {a n } diverges to. Sandwich Theorem for Sequences. Continuous Function Theorem for Sequences

Math 143 Flash Cards. Divergence of a sequence {a n } {a n } diverges to. Sandwich Theorem for Sequences. Continuous Function Theorem for Sequences Math Flash cards Math 143 Flash Cards Convergence of a sequence {a n } Divergence of a sequence {a n } {a n } diverges to Theorem (10.1) {a n } diverges to Sandwich Theorem for Sequences Theorem (10.1)

More information

9 4 Radius of Convergence

9 4 Radius of Convergence 9 4 Radius of Convergence In this section we will investigate convergence using several tests. This is important because there are different constraints that govern convergence depending on the type of

More information

Series. Definition. a 1 + a 2 + a 3 + is called an infinite series or just series. Denoted by. n=1

Series. Definition. a 1 + a 2 + a 3 + is called an infinite series or just series. Denoted by. n=1 Definition a 1 + a 2 + a 3 + is called an infinite series or just series. Denoted by a n, or a n. Chapter 11: Sequences and, Section 11.2 24 / 40 Given a series a n. The partial sum is the sum of the first

More information

Infinite Series Summary

Infinite Series Summary Infinite Series Summary () Special series to remember: Geometric series ar n Here a is the first term and r is the common ratio. When r

More information

Chapter 11 - Sequences and Series

Chapter 11 - Sequences and Series Calculus and Analytic Geometry II Chapter - Sequences and Series. Sequences Definition. A sequence is a list of numbers written in a definite order, We call a n the general term of the sequence. {a, a

More information

Math 1b Sequences and series summary

Math 1b Sequences and series summary Math b Sequences and series summary December 22, 2005 Sequences (Stewart p. 557) Notations for a sequence: or a, a 2, a 3,..., a n,... {a n }. The numbers a n are called the terms of the sequence.. Limit

More information

5.2 Infinite Series Brian E. Veitch

5.2 Infinite Series Brian E. Veitch 5. Infinite Series Since many quantities show up that cannot be computed exactly, we need some way of representing it (or approximating it). One way is to sum an infinite series. Recall that a n is the

More information

Ch1 Algebra and functions. Ch 2 Sine and Cosine rule. Ch 10 Integration. Ch 9. Ch 3 Exponentials and Logarithms. Trigonometric.

Ch1 Algebra and functions. Ch 2 Sine and Cosine rule. Ch 10 Integration. Ch 9. Ch 3 Exponentials and Logarithms. Trigonometric. Ch1 Algebra and functions Ch 10 Integration Ch 2 Sine and Cosine rule Ch 9 Trigonometric Identities Ch 3 Exponentials and Logarithms C2 Ch 8 Differentiation Ch 4 Coordinate geometry Ch 7 Trigonometric

More information

A sequence { a n } converges if a n = finite number. Otherwise, { a n }

A sequence { a n } converges if a n = finite number. Otherwise, { a n } 9.1 Infinite Sequences Ex 1: Write the first four terms and determine if the sequence { a n } converges or diverges given a n =(2n) 1 /2n A sequence { a n } converges if a n = finite number. Otherwise,

More information

Math Absolute Convergence, Ratio Test, Root Test

Math Absolute Convergence, Ratio Test, Root Test Math 114 - Absolute Convergence, Ratio Test, Root Test Peter A. Perry University of Kentucky February 20, 2017 Bill of Fare 1. Review and Recap 2. Dirichlet s Dilemma 3. Absolute Convergence 4. Ratio Test

More information

Assignment 16 Assigned Weds Oct 11

Assignment 16 Assigned Weds Oct 11 Assignment 6 Assigned Weds Oct Section 8, Problem 3 a, a 3, a 3 5, a 4 7 Section 8, Problem 4 a, a 3, a 3, a 4 3 Section 8, Problem 9 a, a, a 3, a 4 4, a 5 8, a 6 6, a 7 3, a 8 64, a 9 8, a 0 56 Section

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES In section 11.9, we were able to find power series representations for a certain restricted class of functions. INFINITE SEQUENCES AND SERIES

More information

Testing Series With Mixed Terms

Testing Series With Mixed Terms Testing Series With Mixed Terms Philippe B. Laval Series with Mixed Terms 1. Introduction 2. Absolute v.s. Conditional Convergence 3. Alternating Series 4. The Ratio and Root Tests 5. Conclusion 1 Introduction

More information

9.2 Geometric Series Review

9.2 Geometric Series Review 9.2 Geometric Series Review Geometric Series a= starting term, x=constant ratio of each term to preceding one ax i = i=0 a x when x < and diverges otherwise n th partial sum (st n terms added): n ax i

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series C.7 Numerical series Pag. 147 Proof of the converging criteria for series Theorem 5.29 (Comparison test) Let and be positive-term series such that 0, for any k 0. i) If the series converges, then also

More information

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form Taylor Series Given a function f(x), we would like to be able to find a power series that represents the function. For example, in the last section we noted that we can represent e x by the power series

More information

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer.

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer. Math 22 - Review for Exam 3. Answer each of the following questions as either True or False. Circle the correct answer. (a) True/False: If a n > 0 and a n 0, the series a n converges. Soln: False: Let

More information

The Comparison Test. J. Gonzalez-Zugasti, University of Massachusetts - Lowell

The Comparison Test. J. Gonzalez-Zugasti, University of Massachusetts - Lowell The Comparison Test The Comparison Test Let a k and b k be series with positive terms and suppose a N b N, a N+ b N+, a N+2 b N+2,, a) If the bigger series b k converges, then the smaller series a k also

More information

Infinite Sequences and Series Section

Infinite Sequences and Series Section A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Infinite Sequences and Series Section 8.1-8.2 Dr. John Ehrke Department of Mathematics Fall 2012 Zeno s Paradox Achilles and

More information

Chapter 9: Infinite Series Part 2

Chapter 9: Infinite Series Part 2 Name: Date: Period: AP Calc BC Mr. Mellina/Ms. Lombardi Chapter 9: Infinite Series Part 2 Topics: 9.5 Alternating Series Remainder 9.7 Taylor Polynomials and Approximations 9.8 Power Series 9.9 Representation

More information

Upon completion of this course, the student should be able to satisfy the following objectives.

Upon completion of this course, the student should be able to satisfy the following objectives. Homework: Chapter 6: o 6.1. #1, 2, 5, 9, 11, 17, 19, 23, 27, 41. o 6.2: 1, 5, 9, 11, 15, 17, 49. o 6.3: 1, 5, 9, 15, 17, 21, 23. o 6.4: 1, 3, 7, 9. o 6.5: 5, 9, 13, 17. Chapter 7: o 7.2: 1, 5, 15, 17,

More information

Real Analysis Prof. S.H. Kulkarni Department of Mathematics Indian Institute of Technology, Madras. Lecture - 13 Conditional Convergence

Real Analysis Prof. S.H. Kulkarni Department of Mathematics Indian Institute of Technology, Madras. Lecture - 13 Conditional Convergence Real Analysis Prof. S.H. Kulkarni Department of Mathematics Indian Institute of Technology, Madras Lecture - 13 Conditional Convergence Now, there are a few things that are remaining in the discussion

More information

11.4 The Comparison Tests. Copyright Cengage Learning. All rights reserved.

11.4 The Comparison Tests. Copyright Cengage Learning. All rights reserved. 11.4 The Comparison Tests Copyright Cengage Learning. All rights reserved. The Comparison Tests In the comparison tests the idea is to compare a given series with a series that is known to be convergent

More information

ftz]}]z .tt#t*qtmjfi aiii } { n } or [ n ] I anianforn 1+2=2+-5 an = n 11.1 Sequences A sequence is a list of numbers in a certain order:

ftz]}]z .tt#t*qtmjfi aiii } { n } or [ n ] I anianforn 1+2=2+-5 an = n 11.1 Sequences A sequence is a list of numbers in a certain order: . 11.1 Sequences A sequence is a list of numbers in a certain order: a 1 a 2 a 3 a 4 a n1 a n (In this book all the sequences will be infinite.) The number a 1 is called the first term of the sequence.

More information

MATH 1231 MATHEMATICS 1B CALCULUS. Section 4: - Convergence of Series.

MATH 1231 MATHEMATICS 1B CALCULUS. Section 4: - Convergence of Series. MATH 23 MATHEMATICS B CALCULUS. Section 4: - Convergence of Series. The objective of this section is to get acquainted with the theory and application of series. By the end of this section students will

More information

Taylor Series and Series Convergence (Online)

Taylor Series and Series Convergence (Online) 7in 0in Felder c02_online.te V3 - February 9, 205 9:5 A.M. Page CHAPTER 2 Taylor Series and Series Convergence (Online) 2.8 Asymptotic Epansions In introductory calculus classes the statement this series

More information

Absolute Convergence and the Ratio Test

Absolute Convergence and the Ratio Test Absolute Convergence and the Ratio Test MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Bacground Remar: All previously covered tests for convergence/divergence apply only

More information

Testing Series with Mixed Terms

Testing Series with Mixed Terms Testing Series with Mixed Terms Philippe B. Laval KSU Today Philippe B. Laval (KSU) Series with Mixed Terms Today 1 / 17 Outline 1 Introduction 2 Absolute v.s. Conditional Convergence 3 Alternating Series

More information

Chapter 10. Infinite Sequences and Series

Chapter 10. Infinite Sequences and Series 10.6 Alternating Series, Absolute and Conditional Convergence 1 Chapter 10. Infinite Sequences and Series 10.6 Alternating Series, Absolute and Conditional Convergence Note. The convergence tests investigated

More information

Math 113 Fall 2005 key Departmental Final Exam

Math 113 Fall 2005 key Departmental Final Exam Math 3 Fall 5 key Departmental Final Exam Part I: Short Answer and Multiple Choice Questions Do not show your work for problems in this part.. Fill in the blanks with the correct answer. (a) The integral

More information

, 500, 250, 125, , 2, 4, 7, 11, 16, , 3, 9, 27, , 3, 2, 7, , 2 2, 4, 4 2, 8

, 500, 250, 125, , 2, 4, 7, 11, 16, , 3, 9, 27, , 3, 2, 7, , 2 2, 4, 4 2, 8 Warm Up Look for a pattern and predict the next number or expression in the list. 1. 1000, 500, 250, 125, 62.5 2. 1, 2, 4, 7, 11, 16, 22 3. 1, 3, 9, 27, 81 4. 8, 3, 2, 7, -12 5. 2, 2 2, 4, 4 2, 8 6. 7a

More information

Series. Xinyu Liu. April 26, Purdue University

Series. Xinyu Liu. April 26, Purdue University Series Xinyu Liu Purdue University April 26, 2018 Convergence of Series i=0 What is the first step to determine the convergence of a series? a n 2 of 21 Convergence of Series i=0 What is the first step

More information

Infinite Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Infinite Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Infinite Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Background Consider the repeating decimal form of 2/3. 2 3 = 0.666666 = 0.6 + 0.06 + 0.006 + 0.0006 + = 6(0.1)

More information

Analysis II: Basic knowledge of real analysis: Part IV, Series

Analysis II: Basic knowledge of real analysis: Part IV, Series .... Analysis II: Basic knowledge of real analysis: Part IV, Series Kenichi Maruno Department of Mathematics, The University of Texas - Pan American March 1, 2011 K.Maruno (UT-Pan American) Analysis II

More information

MATH115. Infinite Series. Paolo Lorenzo Bautista. July 17, De La Salle University. PLBautista (DLSU) MATH115 July 17, / 43

MATH115. Infinite Series. Paolo Lorenzo Bautista. July 17, De La Salle University. PLBautista (DLSU) MATH115 July 17, / 43 MATH115 Infinite Series Paolo Lorenzo Bautista De La Salle University July 17, 2014 PLBautista (DLSU) MATH115 July 17, 2014 1 / 43 Infinite Series Definition If {u n } is a sequence and s n = u 1 + u 2

More information

Power Series. Part 2 Differentiation & Integration; Multiplication of Power Series. J. Gonzalez-Zugasti, University of Massachusetts - Lowell

Power Series. Part 2 Differentiation & Integration; Multiplication of Power Series. J. Gonzalez-Zugasti, University of Massachusetts - Lowell Power Series Part 2 Differentiation & Integration; Multiplication of Power Series 1 Theorem 1 If a n x n converges absolutely for x < R, then a n f x n converges absolutely for any continuous function

More information

Series Handout A. 1. Determine which of the following sums are geometric. If the sum is geometric, express the sum in closed form.

Series Handout A. 1. Determine which of the following sums are geometric. If the sum is geometric, express the sum in closed form. Series Handout A. Determine which of the following sums are geometric. If the sum is geometric, exress the sum in closed form. 70 a) k= ( k ) b) 50 k= ( k )2 c) 60 k= ( k )k d) 60 k= (.0)k/3 2. Find the

More information

Positive Series: Integral Test & p-series

Positive Series: Integral Test & p-series Positive Series: Integral Test & p-series Calculus II Josh Engwer TTU 3 March 204 Josh Engwer (TTU) Positive Series: Integral Test & p-series 3 March 204 / 8 Bad News about Summing a (Convergent) Series...

More information

Alternating Series. L. Marizza A. Bailey. February 28, L. M. A. Bailey Alternating Series February 28, / 22

Alternating Series. L. Marizza A. Bailey. February 28, L. M. A. Bailey Alternating Series February 28, / 22 Alternating Series L. Marizza A. Bailey February 28, 2018 L. M. A. Bailey Alternating Series February 28, 2018 1 / 22 Warm-Up: AP 2013 # 8 L. M. A. Bailey Alternating Series February 28, 2018 2 / 22 Answer:

More information

Analysis II: Basic knowledge of real analysis: Part V, Power Series, Differentiation, and Taylor Series

Analysis II: Basic knowledge of real analysis: Part V, Power Series, Differentiation, and Taylor Series .... Analysis II: Basic knowledge of real analysis: Part V, Power Series, Differentiation, and Taylor Series Kenichi Maruno Department of Mathematics, The University of Texas - Pan American March 4, 20

More information

n=1 ( 2 3 )n (a n ) converges by direct comparison to

n=1 ( 2 3 )n (a n ) converges by direct comparison to . (a) n = a n converges, so we know that a n =. Therefore, for n large enough we know that a n

More information

An Outline of Some Basic Theorems on Infinite Series

An Outline of Some Basic Theorems on Infinite Series An Outline of Some Basic Theorems on Infinite Series I. Introduction In class, we will be discussing the fact that well-behaved functions can be expressed as infinite sums or infinite polynomials. For

More information

CHAPTER 11. SEQUENCES AND SERIES 114. a 2 = 2 p 3 a 3 = 3 p 4 a 4 = 4 p 5 a 5 = 5 p 6. n +1. 2n p 2n +1

CHAPTER 11. SEQUENCES AND SERIES 114. a 2 = 2 p 3 a 3 = 3 p 4 a 4 = 4 p 5 a 5 = 5 p 6. n +1. 2n p 2n +1 CHAPTER. SEQUENCES AND SERIES.2 Series Example. Let a n = n p. (a) Find the first 5 terms of the sequence. Find a formula for a n+. (c) Find a formula for a 2n. (a) a = 2 a 2 = 2 p 3 a 3 = 3 p a = p 5

More information

Chapter 2. Limits and Continuity. 2.1 Rates of change and Tangents to Curves. The average Rate of change of y = f(x) with respect to x over the

Chapter 2. Limits and Continuity. 2.1 Rates of change and Tangents to Curves. The average Rate of change of y = f(x) with respect to x over the Chapter 2 Limits and Continuity 2.1 Rates of change and Tangents to Curves Definition 2.1.1 : interval [x 1, x 2 ] is The average Rate of change of y = f(x) with respect to x over the y x = f(x 2) f(x

More information

Jim Lambers MAT 169 Fall Semester Lecture 6 Notes. a n. n=1. S = lim s k = lim. n=1. n=1

Jim Lambers MAT 169 Fall Semester Lecture 6 Notes. a n. n=1. S = lim s k = lim. n=1. n=1 Jim Lambers MAT 69 Fall Semester 2009-0 Lecture 6 Notes These notes correspond to Section 8.3 in the text. The Integral Test Previously, we have defined the sum of a convergent infinite series to be the

More information

AP Calculus BC Lesson Outlines Third Quarter: January 5 March 11, 2016

AP Calculus BC Lesson Outlines Third Quarter: January 5 March 11, 2016 Jan. 6 The Calculus of Integration CH 4.3 (Review from before the break) Riemann Sums, Definite Integrals CH 4.4 (Review from before the break) First Fundamental Theorem CH 4.4 Mean Value Theorem for Integrals

More information

Sequences and Series, Induction. Review

Sequences and Series, Induction. Review Sequences and Series, Induction Review 1 Topics Arithmetic Sequences Arithmetic Series Geometric Sequences Geometric Series Factorial Notation Sigma Notation Binomial Theorem Mathematical Induction 2 Arithmetic

More information

10.4 Comparison Tests

10.4 Comparison Tests 0.4 Comparison Tests The Statement Theorem Let a n be a series with no negative terms. (a) a n converges if there is a convergent series c n with a n c n n > N, N Z (b) a n diverges if there is a divergent

More information

Representation of Functions as Power Series.

Representation of Functions as Power Series. MATH 0 - A - Spring 009 Representation of Functions as Power Series. Our starting point in this section is the geometric series: x n = + x + x + x 3 + We know this series converges if and only if x

More information

Alternating Series, Absolute and Conditional Convergence Á + s -1dn Á + s -1dn 4

Alternating Series, Absolute and Conditional Convergence Á + s -1dn Á + s -1dn 4 .6 Alternating Series, Absolute and Conditional Convergence 787.6 Alternating Series, Absolute and Conditional Convergence A series in which the terms are alternately positive and negative is an alternating

More information

Final exam (practice) UCLA: Math 31B, Spring 2017

Final exam (practice) UCLA: Math 31B, Spring 2017 Instructor: Noah White Date: Final exam (practice) UCLA: Math 3B, Spring 207 This exam has 8 questions, for a total of 80 points. Please print your working and answers neatly. Write your solutions in the

More information

Infinite Continued Fractions

Infinite Continued Fractions Infinite Continued Fractions 8-5-200 The value of an infinite continued fraction [a 0 ; a, a 2, ] is lim c k, where c k is the k-th convergent k If [a 0 ; a, a 2, ] is an infinite continued fraction with

More information

in a given order. Each of and so on represents a number. These are the terms of the sequence. For example the sequence

in a given order. Each of and so on represents a number. These are the terms of the sequence. For example the sequence INFINITE SEQUENCES AND SERIES Infinite series sometimes have a finite sum, as in Other infinite series do not have a finite sum, as with The sum of the first few terms gets larger and larger as we add

More information

Sequences and Series. College Algebra

Sequences and Series. College Algebra Sequences and Series College Algebra Sequences A sequence is a function whose domain is the set of positive integers. A finite sequence is a sequence whose domain consists of only the first n positive

More information

CALCULUS: Math 21C, Fall 2010 Final Exam: Solutions. 1. [25 pts] Do the following series converge or diverge? State clearly which test you use.

CALCULUS: Math 21C, Fall 2010 Final Exam: Solutions. 1. [25 pts] Do the following series converge or diverge? State clearly which test you use. CALCULUS: Math 2C, Fall 200 Final Exam: Solutions. [25 pts] Do the following series converge or diverge? State clearly which test you use. (a) (d) n(n + ) ( ) cos n n= n= (e) (b) n= n= [ cos ( ) n n (c)

More information

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved.

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved. 11.10 Taylor and Maclaurin Series Copyright Cengage Learning. All rights reserved. We start by supposing that f is any function that can be represented by a power series f(x)= c 0 +c 1 (x a)+c 2 (x a)

More information

Lesson 12.7: Sequences and Series

Lesson 12.7: Sequences and Series Lesson 12.7: Sequences and Series May 30 7:11 AM Sequences Definition: A sequence is a set of numbers in a specific order. 2, 5, 8,. is an example of a sequence. Note: A sequence may have either a finite

More information

Summary WI1401LR: Calculus I

Summary WI1401LR: Calculus I Summary WI1401LR: Calculus I Bram Peerlings B.Peerlings@student.tudelft.nl January 12 th, 2010 Based on Calculus 6e (James Stewart) & Lecture notes Chapter 12: Vectors and the geometry of space 12.1: Three

More information

Assignment 4. u n+1 n(n + 1) i(i + 1) = n n (n + 1)(n + 2) n(n + 2) + 1 = (n + 1)(n + 2) 2 n + 1. u n (n + 1)(n + 2) n(n + 1) = n

Assignment 4. u n+1 n(n + 1) i(i + 1) = n n (n + 1)(n + 2) n(n + 2) + 1 = (n + 1)(n + 2) 2 n + 1. u n (n + 1)(n + 2) n(n + 1) = n Assignment 4 Arfken 5..2 We have the sum Note that the first 4 partial sums are n n(n + ) s 2, s 2 2 3, s 3 3 4, s 4 4 5 so we guess that s n n/(n + ). Proving this by induction, we see it is true for

More information

Math 106: Review for Final Exam, Part II - SOLUTIONS. (x x 0 ) 2 = !

Math 106: Review for Final Exam, Part II - SOLUTIONS. (x x 0 ) 2 = ! Math 06: Review for Final Exam, Part II - SOLUTIONS. Use a second-degree Taylor polynomial to estimate 8. We choose f(x) x and x 0 7 because 7 is the perfect cube closest to 8. f(x) x /3 f(7) 3 f (x) 3

More information

AP Calculus BC Scope & Sequence

AP Calculus BC Scope & Sequence AP Calculus BC Scope & Sequence Grading Period Unit Title Learning Targets Throughout the School Year First Grading Period *Apply mathematics to problems in everyday life *Use a problem-solving model that

More information

Math 113 Winter 2005 Key

Math 113 Winter 2005 Key Name Student Number Section Number Instructor Math Winter 005 Key Departmental Final Exam Instructions: The time limit is hours. Problem consists of short answer questions. Problems through are multiple

More information

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 4 Solutions Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 4 Solutions Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF pm, Campion Hall 302 Homework 4 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book: 2.6.3, 2.7.4, 2.7.5, 2.7.2,

More information