The Generating Functions for Pochhammer

Size: px
Start display at page:

Download "The Generating Functions for Pochhammer"

Transcription

1 The Generating Functions for Pochhammer Symbol { }, n N Aleksandar Petoević University of Novi Sad Teacher Training Faculty, Department of Mathematics Podgorička 4, Sombor SERBIA and MONTENEGRO address: apetoe@ptt.yu Abstract In this paper we give elementary proofs of the generating functions for the Pochhammer symbol { }, n N. Also, we define polynomial P k n (x) and we give connection between this polynomial and function e x x n. 1 Introduction For sequence {c n } the generating function, exponential generating function and the Direchlet series generating function, denoted respectively by g(x), G(x) and D(x), are defined as [8, p. 3, p. 21, p. 56] g(x) = c n x n, G(x) = x n c n, D(x) = c n n. (1) x Apart [8], the relevant theory on generating functions can be found in [2] and Chapter VII in [4]. The Pochhammer symbol (z) n is defined by n=1 (z) 0 = 1, (z) n = z(z + 1)...(z + n 1) = Γ(z + n) Γ(z), (2) where Γ(z) is the gamma function Γ(z) = + 0 t z 1 e t dt (Re (z) > 0). This work was supported in part by the Serbian Ministry of Science, Technology and Development under Grant # 2002: Applied Orthogonal Systems, Constructive Approximation and Numerical Methods. 1

2 For a fixed number b and sequence {a n }, the Pochhammer symbol (b) n obeys Euler s transform (b) n ( ) n a n z n = (1 z) b (b) n z n a 0, (3) 1 z where is the forward difference defined via a n = a n+1 a n. Higher order differences are obtained by repeated operations of the forward difference operator k a n = k 1 a n+1 k 1 a n, so that in general k a n = k ( ) k ( 1) m a n+k m. (4) m Applying relations (3) and (4) for a n = 1 to obtain the exponential generating function for the Pochhammer symbol (b) n as follows The exponential integral E n (x) is defined by and has the asymptotic series [3, p. 1] so that (b) n z n = (1 z) b. (5) E n (x) = 1 e xt t n (n 1)! E n (x) = ( x) n 1 E 1 (x) + e x 2(n k 2)! ( x) k, E n (x) = 1 xe x k=0 k=0 dt. ( 1) k (n) k x k. Hence, generating function is given as follows (b) n x n = E b( 1/x). (6) xe 1/x The generating functions are of particular importance in theory of integer sequences. In Table 1 you can see examples of integer sequences generated according Pochhammer symbol {(b) n }. The second possibility of generation of integer sequences by Pochhammer symbol is that for fixed n N, terms of the sequence are generated by index i = 0, 1, 2, 3, 4,..., i.e., { }. In this way, here we give for a fixed n N the generating functions for the Pochhammer symbol { }, denoted by g n (x) = x i x i, G n (x) = i!, D n(x) = i. ( (0) x n = 0 ) (7) 2

3 Table 1: Integer sequences (b) n for b = 1, 2, 3, 4, 5 and n N 0 n (b) n sequences in [7] name 1 1, 1, 2, 6, 24, 120,... A , 2, 6, 24, 120, 720,... (n + 1)! 3 1, 3, 12, 60, 360, 2520,... A , 4, 20, 120, 840, 6720,... A , 5, 30, 210, 1680, 15120,... A Statement of results In what follows ζ(z), s(n, m) and Pk n (x) are respectively the Riemann zeta function, Stirling number of the first kind and the polynomials defined by 1 ζ(z) =, (Re (z) > 1), (8) nz n=1 x(x 1) (x n + 1) = k 1 Pk n (x) = k 1 s(n, m)x k, (9) ( ) k (n m) x, (n, k N). (10) For Re (z) 1, z 1, the function ζ(z) is defined as the analytic continuations of the foregoing series. Both are analytic over the whole complex plane, except at z = 1, where they have a simple pole. My main results are as follows. Theorem 1 Let be the Pochhammer symbol. Then for a fixed number n N we have x i x =. (11) (1 x) n+1 Theorem 2 Let Pk n(x) be the polinomials defined in (10) and let be the Pochhammer symbol. Then for a fixed number n N we have x i i! = [ xex x n 1 + Pn 1(x) ] n. (12) Theorem 3 Let ζ(z) be the Riemann zeta function, let s(n, m) be the Stirling number of the first kind and let be the Pochhammer symbol. Then for a fixed number n N we have = ( 1) +n s(n, )ζ(x ). (13) i x =1 3

4 Note 1. For 1 k 4 the polynomials Pk n (x) are listed below. P n 1 (x) = n P n 2 (x) = 2nx + n(n 1) P n 3 (x) = 3nx2 + 3n(n 1)x + n(n 1)(n 2) P n 4 (x) = 4nx3 + 6n(n 1)x 2 + 4n(n 1)(n 2)x + +n(n 1)(n 2)(n 3) Several well-known special cases of the polynomials Pk n (x) are presented in Table 2. Let be (x) (m) the falling factorial defined by (x) (m) = x(x 1) (x m + 1). Then: k 1 Pk n (x) = ( ) k (n) (k ) x. Note 2. Since (i + 1) n lim i = lim i (i + n)! (i 1)! (i + n 1)! i! the expansion (11) converges for x < 1 and (12) for each x R. Let [f(x)] (k) be the k th derivative of a function f(x). It is clear that the formula (12) could be rewritten in the representation of the e x x n function, since there exists the following relationship [e x x n ] (n 1) = xe x [ x n 1 + P n n 1(x) ] between e x x n and the polynomials P n k (x). Table 2: The special cases P n k (x) = 1 Pk n (x) sequences in [7] Pk 1 (2) 0, 1, 4, 12, 32, 80,... A Pk 1 (3) 0, 1, 6, 27, 108, 405,... A Pk 1 (4) 0, 1, 8, 48, 256, 1280,... A Pk 2 (1) 0, 2, 6, 12, 20, 30,... A Pk 3 (1) 0, 3, 12, 33, 72, 135,... A P2 n (2) 0, 4, 10, 18, 28, 40,... A P2 n (3) 0, 6, 14, 24, 36, 50,... A Proof of results Proof of Theorem 1. Let x < 1 and g n be defined by (7). Then +1 x i = n x i + i x i. 4

5 Integrating this equation, we obtain +1 x i+1 = n i i x i+1 + x i+1 (i + 1) n x i+1 = n (i + 1) n 1 x i+1 + x i+1 x i = n 1 x i + x x i i.e., (1 x) x i = n 1 x i. g n (x) = n (1 x) g n 1(x) = n(n 1) (1 x) 2 g n 2(x) Now use g 1 (x) = x/(1 x) 2, to obtain = which completes the proof. n(n 1)(n 2) (1 x) 3 g n 3 (x) = = g n (x) = x (1 x) n+1, (1 x) n 1 g 1(x) Proof of Theorem 2. Let G n (x) = xe [ x x n 1 + Pn 1 n (x) ]. Since n 2 ( n 2 n 1 [G n (x)] (1) = x n e x + nx n 1 e x + e )x x +1 (n m) + induction on i N we have n 2 ( n 1 + e x ( + 1) [G n (x)] (i) = e x x n + e x i =1 n 2 ( n 1 + e x i 1 + e x s=0 ( ) i n 2 s + 1 =s )x n 2 (n m) ( 1 i )x n i (n m) + i )x +1 n 2 ( + 1)! ( s)! 5 (n m) + ( n 1 )x s n 2 (n m).

6 Hence [G n (0)] (i) = i 1 ( ) ( i n 1 (s + 1)! s + 1 s s=0 ) n 2 s (n m) i 1 1 = i! (n 1)! (i s 1)! (s + 1)! (n s 1)! s! s=0 = i! (n 1)! (n + i 1)! i! (i 1)! (n 1)! = (n + i 1)! (i 1)! =. Applying the standard formula for the Taylor series expansion about the point x = 0 we arrive at the formula in (12), which completes the proof. Proof of Theorem 3. Using +1 i x = n i x + i x 1 we have D n+1 (x) = nd n (x) + D n (x 1). (14) The recurrence relation for Stirling numbers of the first kind s(n + 1, ) = s(n, 1) ns(n, ) produces n+1 ( 1) +n+1 s(n + 1, )ζ(x ) = n ( 1) +n s(n, )ζ(x ) + (15) =1 =1 + ( 1) +n s(n, )ζ(x 1 ). =1 Induction on n and by combining (14) and (15) we obtain the result of the theorem. References [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, Washington, [2] L. Comtet, Advanced Combinatorics; The art of finite and infinite expansions, D. Reidel Publ. Co., Boston, [3] A. Erdélyi, Asymptotic expansions, Dover, New York,

7 [4] R. Graham, D. Knuth and I. O. Patashnik, Concrete mathematics, Reading, MA: Addison Wesley, [5] N.E. Nørlund, Hypergeometric function, Acta Math. 94 (1955), [6] A. Petoević, The function v M m (s; a, z) and some well-known sequences, Journal of Integer Sequences, Vol.5, (2002), Article [7] N.J.A. Sloane, The On-Linea Encyclopedia of Integer Sequence, published elec. at [8] H. S. Wilf, Generatingfunctionology, Academic Press, New York, Mathematics Subect Classification: Primary 11M41, 41A58; Secondary 11B83, 11B73. Keywords: Pochhammer symbol, generating function, Pk n (x) polynomial, Direchlet series, Riemann zeta function, Stirling number, falling factorial 7

A Note about the Pochhammer Symbol

A Note about the Pochhammer Symbol Mathematica Moravica Vol. 12-1 (2008), 37 42 A Note about the Pochhammer Symbol Aleksandar Petoević Abstract. In this paper we give elementary proofs of the generating functions for the Pochhammer symbol

More information

ON THE TAYLOR COEFFICIENTS OF THE HURWITZ ZETA FUNCTION

ON THE TAYLOR COEFFICIENTS OF THE HURWITZ ZETA FUNCTION ON THE TAYLOR COEFFICIENTS OF THE HURWITZ ZETA FUNCTION Khristo N. Boyadzhiev Department of Mathematics, Ohio Northern University, Ada, Ohio, 45810 k-boyadzhiev@onu.edu Abstract. We find a representation

More information

Polyexponentials. Khristo N. Boyadzhiev Ohio Northern University Departnment of Mathematics Ada, OH

Polyexponentials. Khristo N. Boyadzhiev Ohio Northern University Departnment of Mathematics Ada, OH Polyexponentials Khristo N. Boyadzhiev Ohio Northern University Departnment of Mathematics Ada, OH 45810 k-boyadzhiev@onu.edu 1. Introduction. The polylogarithmic function [15] (1.1) and the more general

More information

Investigating Geometric and Exponential Polynomials with Euler-Seidel Matrices

Investigating Geometric and Exponential Polynomials with Euler-Seidel Matrices 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 14 (2011), Article 11.4.6 Investigating Geometric and Exponential Polynomials with Euler-Seidel Matrices Ayhan Dil and Veli Kurt Department of Mathematics

More information

Permutations with Inversions

Permutations with Inversions 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 4 2001, Article 01.2.4 Permutations with Inversions Barbara H. Margolius Cleveland State University Cleveland, Ohio 44115 Email address: b.margolius@csuohio.edu

More information

arxiv: v1 [math.ca] 15 Jan 2018

arxiv: v1 [math.ca] 15 Jan 2018 Preprint submitted to arxiv.org Accurate estimates of 1 + x 1/x Involved in Carleman Inequality and Keller Limit arxiv:1801.04963v1 [math.ca] 15 Jan 2018 Branko Malešević 1, Yue Hu 2 and Cristinel Mortici

More information

F n = F n 1 + F n 2. F(z) = n= z z 2. (A.3)

F n = F n 1 + F n 2. F(z) = n= z z 2. (A.3) Appendix A MATTERS OF TECHNIQUE A.1 Transform Methods Laplace transforms for continuum systems Generating function for discrete systems This method is demonstrated for the Fibonacci sequence F n = F n

More information

Transformation formulas for the generalized hypergeometric function with integral parameter differences

Transformation formulas for the generalized hypergeometric function with integral parameter differences Transformation formulas for the generalized hypergeometric function with integral parameter differences A. R. Miller Formerly Professor of Mathematics at George Washington University, 66 8th Street NW,

More information

On reaching head-to-tail ratios for balanced and unbalanced coins

On reaching head-to-tail ratios for balanced and unbalanced coins Journal of Statistical Planning and Inference 0 (00) 0 0 www.elsevier.com/locate/jspi On reaching head-to-tail ratios for balanced and unbalanced coins Tamas Lengyel Department of Mathematics, Occidental

More information

A196837: Ordinary Generating Functions for Sums of Powers of the First n Positive Integers

A196837: Ordinary Generating Functions for Sums of Powers of the First n Positive Integers Karlsruhe October 14, 2011 November 1, 2011 A196837: Ordinary Generating Functions for Sums of Powers of the First n Positive Integers Wolfdieter L a n g 1 The sum of the k th power of the first n positive

More information

IDENTITIES INVOLVING BERNOULLI NUMBERS RELATED TO SUMS OF POWERS OF INTEGERS

IDENTITIES INVOLVING BERNOULLI NUMBERS RELATED TO SUMS OF POWERS OF INTEGERS IDENTITIES INVOLVING ERNOULLI NUMERS RELATED TO SUMS OF POWERS OF INTEGERS PIERLUIGI MAGLI Abstract. Pointing out the relations between integer power s sums and ernoulli and Genocchi polynomials, several

More information

Fractional part integral representation for derivatives of a function related to lnγ(x+1)

Fractional part integral representation for derivatives of a function related to lnγ(x+1) arxiv:.4257v2 [math-ph] 23 Aug 2 Fractional part integral representation for derivatives of a function related to lnγ(x+) For x > let Mark W. Coffey Department of Physics Colorado School of Mines Golden,

More information

ON SIMILARITIES BETWEEN EXPONENTIAL POLYNOMIALS AND HERMITE POLYNOMIALS

ON SIMILARITIES BETWEEN EXPONENTIAL POLYNOMIALS AND HERMITE POLYNOMIALS Journal of Applied Mathematics and Computational Mechanics 2013, 12(3), 93-104 ON SIMILARITIES BETWEEN EXPONENTIAL POLYNOMIALS AND HERMITE POLYNOMIALS Edyta Hetmaniok, Mariusz Pleszczyński, Damian Słota,

More information

EXPONENTIAL POLYNOMIALS, STIRLING NUMBERS, AND EVALUATION OF SOME GAMMA INTEGRALS. Khristo N. Boyadzhiev

EXPONENTIAL POLYNOMIALS, STIRLING NUMBERS, AND EVALUATION OF SOME GAMMA INTEGRALS. Khristo N. Boyadzhiev January 29, 2010 EXPONENTIAL POLYNOMIALS, STIRLING NUMBERS, AND EVALUATION OF SOME GAMMA INTEGRALS Khristo N. Boyadzhiev Department of Mathematics, Ohio Northern University Ada, Ohio 45810, USA k-boyadzhiev@onu.edu

More information

ON DIVISIBILITY OF SOME POWER SUMS. Tamás Lengyel Department of Mathematics, Occidental College, 1600 Campus Road, Los Angeles, USA.

ON DIVISIBILITY OF SOME POWER SUMS. Tamás Lengyel Department of Mathematics, Occidental College, 1600 Campus Road, Los Angeles, USA. INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (007, #A4 ON DIVISIBILITY OF SOME POWER SUMS Tamás Lengyel Department of Mathematics, Occidental College, 600 Campus Road, Los Angeles, USA

More information

SOME INEQUALITIES FOR THE q-digamma FUNCTION

SOME INEQUALITIES FOR THE q-digamma FUNCTION Volume 10 (009), Issue 1, Article 1, 8 pp SOME INEQUALITIES FOR THE -DIGAMMA FUNCTION TOUFIK MANSOUR AND ARMEND SH SHABANI DEPARTMENT OF MATHEMATICS UNIVERSITY OF HAIFA 31905 HAIFA, ISRAEL toufik@mathhaifaacil

More information

HYPERGEOMETRIC BERNOULLI POLYNOMIALS AND APPELL SEQUENCES

HYPERGEOMETRIC BERNOULLI POLYNOMIALS AND APPELL SEQUENCES HYPERGEOMETRIC BERNOULLI POLYNOMIALS AND APPELL SEQUENCES ABDUL HASSEN AND HIEU D. NGUYEN Abstract. There are two analytic approaches to Bernoulli polynomials B n(x): either by way of the generating function

More information

INEQUALITIES FOR THE GAMMA FUNCTION

INEQUALITIES FOR THE GAMMA FUNCTION INEQUALITIES FOR THE GAMMA FUNCTION Received: 16 October, 26 Accepted: 9 February, 27 Communicated by: XIN LI AND CHAO-PING CHEN College of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo

More information

A Symbolic Operator Approach to Power Series Transformation-Expansion Formulas

A Symbolic Operator Approach to Power Series Transformation-Expansion Formulas A Symbolic Operator Approach to Power Series Transformation-Expansion Formulas Tian- Xiao He Department of Mathematics and Computer Science Illinois Wesleyan University Bloomington, IL 61702-2900, USA

More information

Upper Bounds for Partitions into k-th Powers Elementary Methods

Upper Bounds for Partitions into k-th Powers Elementary Methods Int. J. Contemp. Math. Sciences, Vol. 4, 2009, no. 9, 433-438 Upper Bounds for Partitions into -th Powers Elementary Methods Rafael Jaimczu División Matemática, Universidad Nacional de Luján Buenos Aires,

More information

MATHEMATICS BONUS FILES for faculty and students

MATHEMATICS BONUS FILES for faculty and students MATHEMATICS BONUS FILES for faculty and students http://www2.onu.edu/~mcaragiu1/bonus_files.html RECEIVED: November 1, 2007 PUBLISHED: November 7, 2007 The Euler formula for ζ (2 n) The Riemann zeta function

More information

ALL TEXTS BELONG TO OWNERS. Candidate code: glt090 TAKEN FROM

ALL TEXTS BELONG TO OWNERS. Candidate code: glt090 TAKEN FROM How are Generating Functions used in finding the closed form of sequences involving recurrence relations and in the analysis of probability distributions? Mathematics Extended Essay Word count: 3865 Abstract

More information

AN EXPLICIT FORMULA FOR BERNOULLI POLYNOMIALS IN TERMS OF r-stirling NUMBERS OF THE SECOND KIND

AN EXPLICIT FORMULA FOR BERNOULLI POLYNOMIALS IN TERMS OF r-stirling NUMBERS OF THE SECOND KIND ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 46, Number 6, 2016 AN EXPLICIT FORMULA FOR BERNOULLI POLYNOMIALS IN TERMS OF r-stirling NUMBERS OF THE SECOND KIND BAI-NI GUO, ISTVÁN MEZŐ AND FENG QI ABSTRACT.

More information

arxiv: v2 [math.co] 29 Mar 2017

arxiv: v2 [math.co] 29 Mar 2017 COMBINATORIAL IDENTITIES FOR GENERALIZED STIRLING NUMBERS EXPANDING -FACTORIAL FUNCTIONS AND THE -HARMONIC NUMBERS MAXIE D. SCHMIDT arxiv:6.04708v2 [math.co 29 Mar 207 SCHOOL OF MATHEMATICS GEORGIA INSTITUTE

More information

Passing from generating functions to recursion relations

Passing from generating functions to recursion relations Passing from generating functions to recursion relations D Klain last updated December 8, 2012 Comments and corrections are welcome In the textbook you are given a method for finding the generating function

More information

x arctan x = x x x x2 9 +

x arctan x = x x x x2 9 + Math 1B Project 3 Continued Fractions. Many of the special functions that occur in the applications of mathematics are defined by infinite processes, such as series, integrals, and iterations. The continued

More information

Background and Definitions...2. Legendre s Equation, Functions and Polynomials...4 Legendre s Associated Equation and Functions...

Background and Definitions...2. Legendre s Equation, Functions and Polynomials...4 Legendre s Associated Equation and Functions... Legendre Polynomials and Functions Reading Problems Outline Background and Definitions...2 Definitions...3 Theory...4 Legendre s Equation, Functions and Polynomials...4 Legendre s Associated Equation and

More information

Difference Equations for Multiple Charlier and Meixner Polynomials 1

Difference Equations for Multiple Charlier and Meixner Polynomials 1 Difference Equations for Multiple Charlier and Meixner Polynomials 1 WALTER VAN ASSCHE Department of Mathematics Katholieke Universiteit Leuven B-3001 Leuven, Belgium E-mail: walter@wis.kuleuven.ac.be

More information

Yunhi Cho and Young-One Kim

Yunhi Cho and Young-One Kim Bull. Korean Math. Soc. 41 (2004), No. 1, pp. 27 43 ANALYTIC PROPERTIES OF THE LIMITS OF THE EVEN AND ODD HYPERPOWER SEQUENCES Yunhi Cho Young-One Kim Dedicated to the memory of the late professor Eulyong

More information

B n (x) zn n! n=0. E n (x) zn n! n=0

B n (x) zn n! n=0. E n (x) zn n! n=0 UDC 517.9 Q.-M. Luo Chongqing Normal Univ., China) q-apostol EULER POLYNOMIALS AND q-alternating SUMS* q-полiноми АПОСТОЛА ЕЙЛЕРА ТА q-знакозмiннi СУМИ We establish the basic properties generating functions

More information

Abstract. Keywords: Interpolation; simulated empirical study; reduced-bias. AMS Classification Number: 32E30; 47A57; 65D05.

Abstract. Keywords: Interpolation; simulated empirical study; reduced-bias. AMS Classification Number: 32E30; 47A57; 65D05. 1 1 1 1 1 1 0 1 An Iterative-Improvement Algorithm for Newton's Forward Difference Formula Using Statistical Perspective Shanaz Ansari Wahid,*Ashok Sahai & Vrijesh Tripathi Department of Mathematics &

More information

On the indecomposability of polynomials

On the indecomposability of polynomials On the indecomposability of polynomials Andrej Dujella, Ivica Gusić and Robert F. Tichy Abstract Applying a combinatorial lemma a new sufficient condition for the indecomposability of integer polynomials

More information

Sums of Products of Bernoulli Numbers*

Sums of Products of Bernoulli Numbers* journal of number theory 60, 234 (996) article no. 00 Sums of Products of Bernoulli Numbers* Karl Dilcher Department of Mathematics, Statistics, and Computing Science, Dalhousie University, Halifax, Nova

More information

A Symbolic Operator Approach to Power Series Transformation-Expansion Formulas

A Symbolic Operator Approach to Power Series Transformation-Expansion Formulas 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 11 2008, Article 08.2.7 A Symbolic Operator Approach to Power Series Transformation-Expansion Formulas Tian-Xiao He 1 Department of Mathematics and Computer

More information

Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind

Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind Filomat 28:2 (24), 39 327 DOI.2298/FIL4239O Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Explicit formulas for computing Bernoulli

More information

New asymptotic expansion for the Γ (x) function

New asymptotic expansion for the Γ (x) function New asymptotic epansion for the Γ function Gergő Nemes December 7, 2008 http://d.doi.org/0.3247/sl2math08.005 Abstract Using a series transformation, Stirling-De Moivre asymptotic series approimation to

More information

rama.tex; 21/03/2011; 0:37; p.1

rama.tex; 21/03/2011; 0:37; p.1 rama.tex; /03/0; 0:37; p. Multiple Gamma Function and Its Application to Computation of Series and Products V. S. Adamchik Department of Computer Science, Carnegie Mellon University, Pittsburgh, USA Abstract.

More information

New asymptotic expansion for the Γ (z) function.

New asymptotic expansion for the Γ (z) function. New asymptotic expansion for the Γ z function. Gergő Nemes Institute of Mathematics, Eötvös Loránd University 7 Budapest, Hungary September 4, 007 Published in Stan s Library, Volume II, 3 Dec 007. Link:

More information

Decomposition of a recursive family of polynomials

Decomposition of a recursive family of polynomials Decomposition of a recursive family of polynomials Andrej Dujella and Ivica Gusić Abstract We describe decomposition of polynomials f n := f n,b,a defined by f 0 := B, f 1 (x := x, f n+1 (x = xf n (x af

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sci. Technol., 15(2) (2013), pp. 68-72 International Journal of Pure and Applied Sciences and Technology ISSN 2229-6107 Available online at www.ijopaasat.in Research Paper Generalization

More information

Evaluation of the non-elementary integral e

Evaluation of the non-elementary integral e Noname manuscript No. will be inserted by the editor Evaluation of the non-elementary integral e λx dx,, and related integrals Victor Nijimbere Received: date / Accepted: date Abstract A formula for the

More information

Lengyel's Constant Page 1 of 5

Lengyel's Constant Page 1 of 5 Lengyel's Constant Page 1 of 5 Lengyel's Constant Set Partitions and Bell Numbers Let S be a set with n elements. The set of all subsets of S has elements. By a partition of S we mean a disjoint set of

More information

Takao Komatsu School of Mathematics and Statistics, Wuhan University

Takao Komatsu School of Mathematics and Statistics, Wuhan University Degenerate Bernoulli polynomials and poly-cauchy polynomials Takao Komatsu School of Mathematics and Statistics, Wuhan University 1 Introduction Carlitz [6, 7] defined the degenerate Bernoulli polynomials

More information

Mathematics 324 Riemann Zeta Function August 5, 2005

Mathematics 324 Riemann Zeta Function August 5, 2005 Mathematics 324 Riemann Zeta Function August 5, 25 In this note we give an introduction to the Riemann zeta function, which connects the ideas of real analysis with the arithmetic of the integers. Define

More information

Applicable Analysis and Discrete Mathematics available online at

Applicable Analysis and Discrete Mathematics available online at Applicable Analysis and Discrete Mathematics available online at http://pefmath.etf.rs Appl. Anal. Discrete Math. x (xxxx, xxx xxx. doi:.98/aadmxxxxxxxx A STUDY OF GENERALIZED SUMMATION THEOREMS FOR THE

More information

MOMENTS OF HYPERGEOMETRIC HURWITZ ZETA FUNCTIONS

MOMENTS OF HYPERGEOMETRIC HURWITZ ZETA FUNCTIONS MOMENTS OF HYPERGEOMETRIC HURWITZ ZETA FUNCTIONS ABDUL HASSEN AND HIEU D. NGUYEN Abstract. This paper investigates a generalization the classical Hurwitz zeta function. It is shown that many of the properties

More information

On the stirling expansion into negative powers of a triangular number

On the stirling expansion into negative powers of a triangular number MATHEMATICAL COMMUNICATIONS 359 Math. Commun., Vol. 5, No. 2, pp. 359-364 200) On the stirling expansion into negative powers of a triangular number Cristinel Mortici, Department of Mathematics, Valahia

More information

SPECIAL FUNCTIONS OF MATHEMATICS FOR ENGINEERS

SPECIAL FUNCTIONS OF MATHEMATICS FOR ENGINEERS SPECIAL FUNCTIONS OF MATHEMATICS FOR ENGINEERS Second Edition LARRY C. ANDREWS OXFORD UNIVERSITY PRESS OXFORD TOKYO MELBOURNE SPIE OPTICAL ENGINEERING PRESS A Publication of SPIE The International Society

More information

EVALUATION OF A FAMILY OF BINOMIAL DETERMINANTS

EVALUATION OF A FAMILY OF BINOMIAL DETERMINANTS EVALUATION OF A FAMILY OF BINOMIAL DETERMINANTS CHARLES HELOU AND JAMES A SELLERS Abstract Motivated by a recent work about finite sequences where the n-th term is bounded by n, we evaluate some classes

More information

Tewodros Amdeberhan, Dante Manna and Victor H. Moll Department of Mathematics, Tulane University New Orleans, LA 70118

Tewodros Amdeberhan, Dante Manna and Victor H. Moll Department of Mathematics, Tulane University New Orleans, LA 70118 The -adic valuation of Stirling numbers Tewodros Amdeberhan, Dante Manna and Victor H. Moll Department of Mathematics, Tulane University New Orleans, LA 7011 Abstract We analyze properties of the -adic

More information

Mathematical Induction Assignments

Mathematical Induction Assignments 1 Mathematical Induction Assignments Prove the Following using Principle of Mathematical induction 1) Prove that for any positive integer number n, n 3 + 2 n is divisible by 3 2) Prove that 1 3 + 2 3 +

More information

Math 651 Introduction to Numerical Analysis I Fall SOLUTIONS: Homework Set 1

Math 651 Introduction to Numerical Analysis I Fall SOLUTIONS: Homework Set 1 ath 651 Introduction to Numerical Analysis I Fall 2010 SOLUTIONS: Homework Set 1 1. Consider the polynomial f(x) = x 2 x 2. (a) Find P 1 (x), P 2 (x) and P 3 (x) for f(x) about x 0 = 0. What is the relation

More information

A Probabilistic View of Certain Weighted Fibonacci Sums

A Probabilistic View of Certain Weighted Fibonacci Sums Claremont Colleges Scholarship @ Claremont All HMC Faculty Publications and Research HMC Faculty Scholarship 8-1-2003 A Probabilistic View of Certain Weighted Fibonacci Sums Arthur T. Benjamin Harvey Mudd

More information

arxiv: v2 [math.nt] 4 Jun 2016

arxiv: v2 [math.nt] 4 Jun 2016 ON THE p-adic VALUATION OF STIRLING NUMBERS OF THE FIRST KIND PAOLO LEONETTI AND CARLO SANNA arxiv:605.07424v2 [math.nt] 4 Jun 206 Abstract. For all integers n k, define H(n, k) := /(i i k ), where the

More information

The Gift Exchange Problem

The Gift Exchange Problem The Gift Exchange Problem David Applegate and N. J. A. Sloane (a), AT&T Shannon Labs, 180 Park Ave., Florham Park, NJ 07932-0971, USA. (a) Corresponding author. Email: david@research.att.com, njas@research.att.com.

More information

AP Calculus Testbank (Chapter 9) (Mr. Surowski)

AP Calculus Testbank (Chapter 9) (Mr. Surowski) AP Calculus Testbank (Chapter 9) (Mr. Surowski) Part I. Multiple-Choice Questions n 1 1. The series will converge, provided that n 1+p + n + 1 (A) p > 1 (B) p > 2 (C) p >.5 (D) p 0 2. The series

More information

Some Fun with Divergent Series

Some Fun with Divergent Series Some Fun with Divergent Series 1. Preliminary Results We begin by examining the (divergent) infinite series S 1 = 1 + 2 + 3 + 4 + 5 + 6 + = k=1 k S 2 = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + = k=1 k 2 (i)

More information

A Unified Approach to Generalized Stirling Functions

A Unified Approach to Generalized Stirling Functions Illinois Wesleyan University From the SelectedWorks of Tian-Xiao He Fall October, 202 A Unified Approach to Generalized Stirling Functions Tian-Xiao He, Illinois Wesleyan University Available at: https://works.bepress.com/tian_xiao_he/6/

More information

Successive Derivatives and Integer Sequences

Successive Derivatives and Integer Sequences 2 3 47 6 23 Journal of Integer Sequences, Vol 4 (20, Article 73 Successive Derivatives and Integer Sequences Rafael Jaimczu División Matemática Universidad Nacional de Luján Buenos Aires Argentina jaimczu@mailunlueduar

More information

Improved Bounds on the Anti-Waring Number

Improved Bounds on the Anti-Waring Number 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 0 (017, Article 17.8.7 Improved Bounds on the Anti-Waring Number Paul LeVan and David Prier Department of Mathematics Gannon University Erie, PA 16541-0001

More information

ON A NEW CLASS OF INTEGRALS INVOLVING PRODUCT OF GENERALIZED BESSEL FUNCTION OF THE FIRST KIND AND GENERAL CLASS OF POLYNOMIALS

ON A NEW CLASS OF INTEGRALS INVOLVING PRODUCT OF GENERALIZED BESSEL FUNCTION OF THE FIRST KIND AND GENERAL CLASS OF POLYNOMIALS Acta Universitatis Apulensis ISSN: 158-59 http://www.uab.ro/auajournal/ No. 6/16 pp. 97-15 doi: 1.1711/j.aua.16.6.8 ON A NEW CLASS OF INTEGRALS INVOLVING PRODUCT OF GENERALIZED BESSEL FUNCTION OF THE FIRST

More information

AN ANALOG OF THE HARMONIC NUMBERS OVER THE SQUAREFREE INTEGERS

AN ANALOG OF THE HARMONIC NUMBERS OVER THE SQUAREFREE INTEGERS AN ANALOG OF THE HARMONIC NUMBERS OVER THE SQUAREFREE INTEGERS DICK BOLAND Abstract. A nice, short result establishing an asymptotic equivalent of the harmonic numbers, H n, in terms of the reciprocals

More information

Some thoughts concerning power sums

Some thoughts concerning power sums Some thoughts concerning power sums Dedicated to the memory of Zoltán Szvetits (929 20 Gábor Nyul Institute of Mathematics, University of Debrecen H 00 Debrecen POBox 2, Hungary e mail: gnyul@scienceunidebhu

More information

Improved bounds for (kn)! and the factorial polynomial

Improved bounds for (kn)! and the factorial polynomial Divulgaciones Matemáticas Vol 11 No 003), pp 153 159 Improved bounds for kn)! and the factorial polynomial Cotas mejoradas para kn)! y el polinomio factorial Daniel A Morales danoltab@ulave) Facultad de

More information

A New Identity for Complete Bell Polynomials Based on a Formula of Ramanujan

A New Identity for Complete Bell Polynomials Based on a Formula of Ramanujan 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 12 (2009, Article 09.3. A New Identity for Complete Bell Polynomials Based on a Formula of Ramanujan Sadek Bouroubi University of Science and Technology

More information

Closed-form Second Solution to the Confluent Hypergeometric Difference Equation in the Degenerate Case

Closed-form Second Solution to the Confluent Hypergeometric Difference Equation in the Degenerate Case International Journal of Difference Equations ISS 973-669, Volume 11, umber 2, pp. 23 214 (216) http://campus.mst.edu/ijde Closed-form Second Solution to the Confluent Hypergeometric Difference Equation

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson JUST THE MATHS UNIT NUMBER.5 DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) by A.J.Hobson.5. Maclaurin s series.5. Standard series.5.3 Taylor s series.5.4 Exercises.5.5 Answers to exercises

More information

A Symbolic Operator Approach to Several Summation Formulas for Power Series

A Symbolic Operator Approach to Several Summation Formulas for Power Series A Symbolic Operator Approach to Several Summation Formulas for Power Series T. X. He, L. C. Hsu 2, P. J.-S. Shiue 3, and D. C. Torney 4 Department of Mathematics and Computer Science Illinois Wesleyan

More information

Section Taylor and Maclaurin Series

Section Taylor and Maclaurin Series Section.0 Taylor and Maclaurin Series Ruipeng Shen Feb 5 Taylor and Maclaurin Series Main Goal: How to find a power series representation for a smooth function us assume that a smooth function has a power

More information

PolyGamma Functions of Negative Order

PolyGamma Functions of Negative Order Carnegie Mellon University Research Showcase @ CMU Computer Science Department School of Computer Science -998 PolyGamma Functions of Negative Order Victor S. Adamchik Carnegie Mellon University Follow

More information

Infinite series, improper integrals, and Taylor series

Infinite series, improper integrals, and Taylor series Chapter Infinite series, improper integrals, and Taylor series. Determine which of the following sequences converge or diverge (a) {e n } (b) {2 n } (c) {ne 2n } (d) { 2 n } (e) {n } (f) {ln(n)} 2.2 Which

More information

Some Congruences for the Partial Bell Polynomials

Some Congruences for the Partial Bell Polynomials 3 47 6 3 Journal of Integer Seuences, Vol. 009), Article 09.4. Some Congruences for the Partial Bell Polynomials Miloud Mihoubi University of Science and Technology Houari Boumediene Faculty of Mathematics

More information

ON THE COEFFICIENTS OF AN ASYMPTOTIC EXPANSION RELATED TO SOMOS QUADRATIC RECURRENCE CONSTANT

ON THE COEFFICIENTS OF AN ASYMPTOTIC EXPANSION RELATED TO SOMOS QUADRATIC RECURRENCE CONSTANT Applicable Analysis and Discrete Mathematics available online at http://pefmath.etf.bg.ac.yu Appl. Anal. Discrete Math. x (xxxx), xxx xxx. doi:10.2298/aadmxxxxxxxx ON THE COEFFICIENTS OF AN ASYMPTOTIC

More information

5.5 Recurrence Relations and Clenshaw s Recurrence Formula

5.5 Recurrence Relations and Clenshaw s Recurrence Formula 178 Chapter 5. Evaluation of Functions Then the answer is 0 ( ) w =0 d w + i w 0, c 0 2w c + id = d + iw w 0, c

More information

On Some Mean Value Results for the Zeta-Function and a Divisor Problem

On Some Mean Value Results for the Zeta-Function and a Divisor Problem Filomat 3:8 (26), 235 2327 DOI.2298/FIL6835I Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat On Some Mean Value Results for the

More information

On the coefficients of the Báez-Duarte criterion for the Riemann hypothesis and their extensions arxiv:math-ph/ v2 7 Sep 2006

On the coefficients of the Báez-Duarte criterion for the Riemann hypothesis and their extensions arxiv:math-ph/ v2 7 Sep 2006 On the coefficients of the Báez-Duarte criterion for the Riemann hypothesis and their extensions arxiv:math-ph/0608050v2 7 Sep 2006 Mark W. Coffey Department of Physics Colorado School of Mines Golden,

More information

July 21 Math 2254 sec 001 Summer 2015

July 21 Math 2254 sec 001 Summer 2015 July 21 Math 2254 sec 001 Summer 2015 Section 8.8: Power Series Theorem: Let a n (x c) n have positive radius of convergence R, and let the function f be defined by this power series f (x) = a n (x c)

More information

Beukers integrals and Apéry s recurrences

Beukers integrals and Apéry s recurrences 2 3 47 6 23 Journal of Integer Sequences, Vol. 8 (25), Article 5.. Beukers integrals and Apéry s recurrences Lalit Jain Faculty of Mathematics University of Waterloo Waterloo, Ontario N2L 3G CANADA lkjain@uwaterloo.ca

More information

Generating Functions

Generating Functions Semester 1, 2004 Generating functions Another means of organising enumeration. Two examples we have seen already. Example 1. Binomial coefficients. Let X = {1, 2,..., n} c k = # k-element subsets of X

More information

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 Chapter 11 Taylor Series Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 First-Order Approximation We want to approximate function f by some simple function. Best possible approximation

More information

Unit Combinatorics State pigeonhole principle. If k pigeons are assigned to n pigeonholes and n < k then there is at least one pigeonhole containing more than one pigeons. Find the recurrence relation

More information

EXTENDED RECIPROCAL ZETA FUNCTION AND AN ALTERNATE FORMULATION OF THE RIEMANN HYPOTHESIS. M. Aslam Chaudhry. Received May 18, 2007

EXTENDED RECIPROCAL ZETA FUNCTION AND AN ALTERNATE FORMULATION OF THE RIEMANN HYPOTHESIS. M. Aslam Chaudhry. Received May 18, 2007 Scientiae Mathematicae Japonicae Online, e-2009, 05 05 EXTENDED RECIPROCAL ZETA FUNCTION AND AN ALTERNATE FORMULATION OF THE RIEMANN HYPOTHESIS M. Aslam Chaudhry Received May 8, 2007 Abstract. We define

More information

arxiv: v1 [math.gm] 27 Dec 2016

arxiv: v1 [math.gm] 27 Dec 2016 arxiv:171.515v1 [math.gm] 27 Dec 216.3 On Transforming the Generalized Exponential Power Series Henrik Stenlund Visilab Signal Technologies Oy, Finland 27th December, 216 Abstract We transformed the generalized

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

arxiv: v4 [math.nt] 31 Jul 2017

arxiv: v4 [math.nt] 31 Jul 2017 SERIES REPRESENTATION OF POWER FUNCTION arxiv:1603.02468v4 [math.nt] 31 Jul 2017 KOLOSOV PETRO Abstract. In this paper described numerical expansion of natural-valued power function x n, in point x = x

More information

JASSON VINDAS AND RICARDO ESTRADA

JASSON VINDAS AND RICARDO ESTRADA A QUICK DISTRIBUTIONAL WAY TO THE PRIME NUMBER THEOREM JASSON VINDAS AND RICARDO ESTRADA Abstract. We use distribution theory (generalized functions) to show the prime number theorem. No tauberian results

More information

New Multiple Harmonic Sum Identities

New Multiple Harmonic Sum Identities New Multiple Harmonic Sum Identities Helmut Prodinger Department of Mathematics University of Stellenbosch 760 Stellenbosch, South Africa hproding@sun.ac.za Roberto Tauraso Dipartimento di Matematica Università

More information

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE fa it) On the Jacobi Polynomials PA ' Gregory Matviyenko Research Report YALETJ/DCS/RR-1076 June 13, 1995 DTI,* QUALITY DEFECTED 3 YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE & k.-. *,«.

More information

Summation Techniques, Padé Approximants, and Continued Fractions

Summation Techniques, Padé Approximants, and Continued Fractions Chapter 5 Summation Techniques, Padé Approximants, and Continued Fractions 5. Accelerated Convergence Conditionally convergent series, such as 2 + 3 4 + 5 6... = ( ) n+ = ln2, (5.) n converge very slowly.

More information

Fourier series of sums of products of ordered Bell and poly-bernoulli functions

Fourier series of sums of products of ordered Bell and poly-bernoulli functions Kim et al. Journal of Inequalities and Applications 27 27:84 DOI.86/s366-7-359-2 R E S E A R C H Open Access Fourier series of sums of products of ordered ell and poly-ernoulli functions Taekyun Kim,2,DaeSanKim

More information

A FEW REMARKS ON THE SUPREMUM OF STABLE PROCESSES P. PATIE

A FEW REMARKS ON THE SUPREMUM OF STABLE PROCESSES P. PATIE A FEW REMARKS ON THE SUPREMUM OF STABLE PROCESSES P. PATIE Abstract. In [1], Bernyk et al. offer a power series and an integral representation for the density of S 1, the maximum up to time 1, of a regular

More information

VII.8. The Riemann Zeta Function.

VII.8. The Riemann Zeta Function. VII.8. The Riemann Zeta Function VII.8. The Riemann Zeta Function. Note. In this section, we define the Riemann zeta function and discuss its history. We relate this meromorphic function with a simple

More information

As f and g are differentiable functions such that. f (x) = 20e 2x, g (x) = 4e 2x + 4xe 2x,

As f and g are differentiable functions such that. f (x) = 20e 2x, g (x) = 4e 2x + 4xe 2x, srinivasan (rs7) Sample Midterm srinivasan (690) This print-out should have 0 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Determine if

More information

Here, logx denotes the natural logarithm of x. Mrsky [7], and later Cheo and Yien [2], proved that iz;.(»)=^io 8 "0(i).

Here, logx denotes the natural logarithm of x. Mrsky [7], and later Cheo and Yien [2], proved that iz;.(»)=^io 8 0(i). Curtis Cooper f Robert E* Kennedy, and Milo Renberg Dept. of Mathematics, Central Missouri State University, Warrensburg, MO 64093-5045 (Submitted January 1997-Final Revision June 1997) 0. INTRODUCTION

More information

HIGHER-ORDER DIFFERENCES AND HIGHER-ORDER PARTIAL SUMS OF EULER S PARTITION FUNCTION

HIGHER-ORDER DIFFERENCES AND HIGHER-ORDER PARTIAL SUMS OF EULER S PARTITION FUNCTION ISSN 2066-6594 Ann Acad Rom Sci Ser Math Appl Vol 10, No 1/2018 HIGHER-ORDER DIFFERENCES AND HIGHER-ORDER PARTIAL SUMS OF EULER S PARTITION FUNCTION Mircea Merca Dedicated to Professor Mihail Megan on

More information

Research Article Fourier Series of the Periodic Bernoulli and Euler Functions

Research Article Fourier Series of the Periodic Bernoulli and Euler Functions Abstract and Applied Analysis, Article ID 85649, 4 pages http://dx.doi.org/.55/24/85649 Research Article Fourier Series of the Periodic Bernoulli and Euler Functions Cheon Seoung Ryoo, Hyuck In Kwon, 2

More information

Simplifying Coefficients in a Family of Ordinary Differential Equations Related to the Generating Function of the Laguerre Polynomials

Simplifying Coefficients in a Family of Ordinary Differential Equations Related to the Generating Function of the Laguerre Polynomials Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Applications and Applied Mathematics: An International Journal (AAM Vol. 13, Issue 2 (December 2018, pp. 750 755 Simplifying Coefficients

More information

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0 Legendre equation This ODE arises in many physical systems that we shall investigate We choose We then have Substitution gives ( x 2 ) d 2 u du 2x 2 dx dx + ( + )u u x s a λ x λ a du dx λ a λ (λ + s)x

More information

Review of Power Series

Review of Power Series Review of Power Series MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Introduction In addition to the techniques we have studied so far, we may use power

More information

CONTINUED-FRACTION EXPANSIONS FOR THE RIEMANN ZETA FUNCTION AND POLYLOGARITHMS

CONTINUED-FRACTION EXPANSIONS FOR THE RIEMANN ZETA FUNCTION AND POLYLOGARITHMS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 25, Number 9, September 997, Pages 2543 2550 S 0002-9939(97)0402-6 CONTINUED-FRACTION EXPANSIONS FOR THE RIEMANN ZETA FUNCTION AND POLYLOGARITHMS

More information