New asymptotic expansion for the Γ (x) function

Size: px
Start display at page:

Download "New asymptotic expansion for the Γ (x) function"

Transcription

1 New asymptotic epansion for the Γ function Gergő Nemes December 7, Abstract Using a series transformation, Stirling-De Moivre asymptotic series approimation to the Gamma function is converted into a new one with better convergence properties. The new formula is compared with those of Stirling, Laplace and Ramanujan for real arguments greater than 0.5 and turns out to be, for equal number of correction terms, numerically superior to all of them. As a side benefit, a closed-form approimation has turned up during the analysis which is about as good as 3rd order Stirling s maimum relative error smaller than e-0 for real arguments greater or equal to 0. Note: this article is an etended version of an older one [7] to which it adds the estimate of the remainder. Introduction. The main result In this paper, as we claimed in the abstract, we present a new asymptotic epansion for the gamma function for real arguments greater or equal than one. We give an eplicit formula for the coefficients in the series and estimate the error. After the proof, we compared our new formula with some classical results. The numerical comparison shows that for equal number of correction terms the new formula is the most accurate and it is highly recommended for computing the Gamma function for large real arguments. Theorem. Let, then for every n, the following epression holds: G k Γ e 2k + R n,. k0 where R n O 2n and the Gk coefficients are given by G k m,m 2,...,m k 0 2m +4m km k 2k k r B mr 2r, G 0,.2 m r! 2r 2r where B r denotes the r th Bernoulli number [4]. Moreover, if n +, then 8e /5 n 2n R n n + e +..3 n 2n 2n nemesgery@gmail.com

2 2 The proof of the theorem 2. Eplicit formula for the coefficients The proof of our theorem is based on the following well-known and more precise version of the Stirling-De Moivre series [3]. Theorem 2. Let, then for every n, the following epression holds: log Γ 2 where the S n remainder satisfies log + 2 log + S n where B k denotes the k th Bernoulli number. 2k 2k 2k + S n, 2. B 2n, 2.2 2n 2n 2 Proof. A simple algebraic manipulation of the above epansion gives Γ e log /2 2k 2k 2k + S n Taking the eponential of both sides gives Γ e / /2 ep 2k 2k 2k Sn ep By the Maclaurin series of the eponential function we obtain Sn ep 2k 2k 2k ep 2.5 Sn ep ep 2k 2k 2k 2.6 Sn B l 2k ep l! 2k 2k 2k. 2.7 l 0 Applying the Cauchy product and collecting the coefficients of 2k we obtain Sn ep l 0 l! where the G k coefficients are given by G k m,m 2,...,m k 0 2m +4m km k 2k 2k 2k 2k k r l k0 G k 2k + R n, 2.8 B mr 2r, G 0, 2.9 m r! 2r 2r and R n O 2n. This completes the proof of the first part of the theorem. 2

3 2.2 The estimate of the remainder We will estimate uniformly by and n the value of the remainder R n by the method of Karatsuba []. Proof. In the first part of the proof we saw that First let Sn ep Sn ep ep 2k 2k 2k 2k 2k 2k j 0 k0 G k 2k + R n. 2.0 K j j, 2. thus K 2j G j if 0 j n and K 2j+ 0 if j 0. Let us verify the order of the factor ep. Assume that n +, then by the well known inequality S n B 2n 2n 2n 2n 4 n 2n < n 2n 2n 9 On the other hand we have Sn ep k! 2.2 n 2n B 2n Sn Now by the properties of the Stirling series one can find ep 2k 2k 2k + S n From 2.2 and 2.5 we find that ep 2k 2k 2k From 2.4 and 2.6 we have ep ep 2k 2k 2k + S n j 2 k S n + 2δ n, 0 < δ n <. 2.4 < ep ep k 2k 2k + S n S n ep ep 2k 2k 2k 2k 2k 2k < ep. 5 S n + 2δ n + 2η n e /5 S n for η n. Comparing 2.0, 2. and 2.8 we find the following epression for our remainder R n K j j + 2η ne /5 S n, n

4 and R n j 2 K j j + 2e/5 S n j 2 K j j + e/5 B 2n n 2n 2n We are going to estimate the value of the sum. Let f z : ep 2k 2k z2k K j z j. 2.2 j 0 Hence the K j coefficients are the coefficients in the Taylor epansion of f. Thus for every w > 0 we have K j f v dv i v w vj+ From this Moreover, f we iϕ K j w f we iϕ dϕ f we iϕ 0 w j+ ma 0 ϕ w j Let w /n, from 2.3 2k 2k w2k B2k ep 2k 2k w2k ep 4 k 2k kw 2k Hence f we iϕ e valid when w /n and by 2.23 we finally have 2k 2k w2k k < k 2k K j en j Substituting this into 2.20 and noting that K 2 0 we obtain R n j 2 en j j + e/5 B 2n n 2n n 2n 2n e n/ + e/5 B 2n n 2n 2n 2.27 n 2n 8e n + e + /5 n 2n n 2n 2n e /5 n 2n n + e +, 2.29 n 2n 2n which completes the proof. 3 Numerical properties 3. The computation of the coefficients From.2 we can compute the numerical values of G k. The Bernoulli numbers start B j, 2, 6, 0, 30, 0, 42, 0,,... j

5 So the first few values of the G k coefficients are G 0 G 2 B 2 2 G 2 2 B B G 3 30 B B 2B B G 4 56 B B 2B B B 4B B Thus the epansion. starts Γ + e The following table shows the numerical values of the first eleven coefficients. G G G G G G G G G G G Table with numerical values of G k. If we formally write ep 2k 2k 2k G k, 3.2 2k k then the following recurrence holds for k. G k 2k k m0 B 2m+2 G k m, G 0, 3.3 2m + which gives the same as above. This can be shown by differentiating both sides of 3.2 and equating the coefficients of 2k. 3.2 Numerical comparisons Although we considered an asymptotic formula, i. e. a formula which is optimized for use with large values of, it is for practical purposes also of interest to know the behaviour for small values of. Therefore we will compare in this paragraph the numerical performance 5

6 of some asymptotic formula to the Gamma function with our formula in the range [ ]. We compare the following approimation formulas [5,6] e ep Stirling, e Laplace, e Ramanujan, e Nemes. 3.7 The second epression is sometimes incorrectly called Stirling s formula see [2]. The following graph shows the relative error of these formulas to the Gamma function. The plotted quantity is ln a /Γ a /Γ. The first computed values are for 0.5. Thick traces indicate a > Γ, thin ones a < Γ. Color codes for various families: blue - Stirling, green - Laplace, brown - Ramanujan, red - Nemes a denotes the corresponding approimation. The number after a name indicates the power of / in the last kept term in the epansion. The following curves overlap: Laplace 2 overlaps Stirling, Ramanujan 2 overlaps Nemes 2 for large, Nemes 4 overlaps Nemes Closed, Nemes 6 overlaps Stirling 5. For Nemes Closed formula, see Section 4.. Figure : Relative errors of Gamma function approimations. Conclusion. From the graph we see that the first and the third Laplace approimations outperform the corresponding Ramanujan formulas, however these epansions contain the same number of terms. Ramanujan 2 gives better approimation than Laplace 2 and Nemes 2, though the latter is nearly identical for larger values of. The graph also 6

7 shows that, for equal number of correction terms, the Nemes formulae are always better than all the other e.g., Nemes 4 is better than Stirling 3, Ramanujan 2 and Laplace 2. It seems that for numerical computation the most useful are the Stirling and Nemes formulas. These epansions use only half of the powers of the variable contrary to the Laplace and Ramanujan series. The behavior of the closed formula is very interesting, it gives approimately the same value as Nemes 4 and a better one than Stirling 3, even though it contains only one correction term. 4 Corollaries 4. Closed approimation The structure of the epansion. induces the following closed approimation to the Gamma function. Corollary. Let, then Γ e Proof. If t < Let t <, then 52 + t t t t , which from the approimation is reasonable compare it with Asymptotic epansion of n n! From Stirling s formula it is well known that n n! n e. 4.4 By our new formula we can easily deduce a complete asymptotic epansion for n n!. Corollary 2. Let n be a positive integer, then n n P k log n n! e n k 4.5 where P k is a polynomial in degree k and for every real number we have P k where V 2i+ 0 and V 2i G i for i 0. k j0 V k j 2 j j! j, 4.6 7

8 Proof. For positive integer n we have nγ n n!, thus by our formula n n n! n n G k e n 2k 4.7 or We know that n n! n e 2n t ep 2n log t j 0 2n n G k. 4.8 n2k j! log t j, 4.9 2n hence setting t n and applying the definition of V i gives n n n! e j! j 0 log n j Now the Cauchy product of the two series gives the desired form. 2n V k n k. 4.0 Acknowledgment I would like to thank Peter Luschny, Péter Simon and Stanislav Sýkora for their useful help and many advice. References [] E. A. Karatsuba. On the asymptotic representation of the Euler gamma function by Ramanujan. Elsevier Science B.V., 200. [2] E. T. Copson. Asymptotic Epansions. Cambridge University Press, 965. [3] E. Whittaker and G. Watson. A Course of Modern Analysis. Cambridge University Press, 963. [4] M. Abramowitz and I. A. Stegun eds.. Handbook of Mathematical Functions. Dover, 965. [5] P. Luschny. An overview and comparison of different approimations of the factorial function [6] S. Ragahavan and S. S. Rangachari eds.. S. Ramanujan: The lost notebook and other unpublished papers. Springer, 988. [7] G. Nemes. New asymptotic epansion for the Γz function

New asymptotic expansion for the Γ (z) function.

New asymptotic expansion for the Γ (z) function. New asymptotic expansion for the Γ z function. Gergő Nemes Institute of Mathematics, Eötvös Loránd University 7 Budapest, Hungary September 4, 007 Published in Stan s Library, Volume II, 3 Dec 007. Link:

More information

Euler-Maclaurin summation formula

Euler-Maclaurin summation formula Physics 4 Spring 6 Euler-Maclaurin summation formula Lecture notes by M. G. Rozman Last modified: March 9, 6 Euler-Maclaurin summation formula gives an estimation of the sum N in f i) in terms of the integral

More information

Extension of Summation Formulas involving Stirling series

Extension of Summation Formulas involving Stirling series Etension of Summation Formulas involving Stirling series Raphael Schumacher arxiv:6050904v [mathnt] 6 May 06 Abstract This paper presents a family of rapidly convergent summation formulas for various finite

More information

Taylor Series and Asymptotic Expansions

Taylor Series and Asymptotic Expansions Taylor Series and Asymptotic Epansions The importance of power series as a convenient representation, as an approimation tool, as a tool for solving differential equations and so on, is pretty obvious.

More information

Taylor Series and Series Convergence (Online)

Taylor Series and Series Convergence (Online) 7in 0in Felder c02_online.te V3 - February 9, 205 9:5 A.M. Page CHAPTER 2 Taylor Series and Series Convergence (Online) 2.8 Asymptotic Epansions In introductory calculus classes the statement this series

More information

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer.

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer. Problem Sheet,. i) Draw the graphs for [] and {}. ii) Show that for α R, α+ α [t] dt = α and α+ α {t} dt =. Hint Split these integrals at the integer which must lie in any interval of length, such as [α,

More information

On the stirling expansion into negative powers of a triangular number

On the stirling expansion into negative powers of a triangular number MATHEMATICAL COMMUNICATIONS 359 Math. Commun., Vol. 5, No. 2, pp. 359-364 200) On the stirling expansion into negative powers of a triangular number Cristinel Mortici, Department of Mathematics, Valahia

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sci. Technol., 15(2) (2013), pp. 68-72 International Journal of Pure and Applied Sciences and Technology ISSN 2229-6107 Available online at www.ijopaasat.in Research Paper Generalization

More information

NEW ASYMPTOTIC EXPANSION AND ERROR BOUND FOR STIRLING FORMULA OF RECIPROCAL GAMMA FUNCTION

NEW ASYMPTOTIC EXPANSION AND ERROR BOUND FOR STIRLING FORMULA OF RECIPROCAL GAMMA FUNCTION M athematical Inequalities & Applications Volume, Number 4 8), 957 965 doi:.753/mia-8--65 NEW ASYMPTOTIC EXPANSION AND ERROR BOUND FOR STIRLING FORMULA OF RECIPROCAL GAMMA FUNCTION PEDRO J. PAGOLA Communicated

More information

The Generating Functions for Pochhammer

The Generating Functions for Pochhammer The Generating Functions for Pochhammer Symbol { }, n N Aleksandar Petoević University of Novi Sad Teacher Training Faculty, Department of Mathematics Podgorička 4, 25000 Sombor SERBIA and MONTENEGRO Email

More information

Calculation of Cylindrical Functions using Correction of Asymptotic Expansions

Calculation of Cylindrical Functions using Correction of Asymptotic Expansions Universal Journal of Applied Mathematics & Computation (4), 5-46 www.papersciences.com Calculation of Cylindrical Functions using Correction of Asymptotic Epansions G.B. Muravskii Faculty of Civil and

More information

COMPLETE MONOTONICITIES OF FUNCTIONS INVOLVING THE GAMMA AND DIGAMMA FUNCTIONS. 1. Introduction

COMPLETE MONOTONICITIES OF FUNCTIONS INVOLVING THE GAMMA AND DIGAMMA FUNCTIONS. 1. Introduction COMPLETE MONOTONICITIES OF FUNCTIONS INVOLVING THE GAMMA AND DIGAMMA FUNCTIONS FENG QI AND BAI-NI GUO Abstract. In the article, the completely monotonic results of the functions [Γ( + 1)] 1/, [Γ(+α+1)]1/(+α),

More information

Pre-Calculus and Trigonometry Capacity Matrix

Pre-Calculus and Trigonometry Capacity Matrix Pre-Calculus and Capacity Matri Review Polynomials A1.1.4 A1.2.5 Add, subtract, multiply and simplify polynomials and rational epressions Solve polynomial equations and equations involving rational epressions

More information

A Symbolic Operator Approach to Several Summation Formulas for Power Series

A Symbolic Operator Approach to Several Summation Formulas for Power Series A Symbolic Operator Approach to Several Summation Formulas for Power Series T. X. He, L. C. Hsu 2, P. J.-S. Shiue 3, and D. C. Torney 4 Department of Mathematics and Computer Science Illinois Wesleyan

More information

The incomplete gamma functions. Notes by G.J.O. Jameson. These notes incorporate the Math. Gazette article [Jam1], with some extra material.

The incomplete gamma functions. Notes by G.J.O. Jameson. These notes incorporate the Math. Gazette article [Jam1], with some extra material. The incomplete gamma functions Notes by G.J.O. Jameson These notes incorporate the Math. Gazette article [Jam], with some etra material. Definitions and elementary properties functions: Recall the integral

More information

On a series of Ramanujan

On a series of Ramanujan On a series of Ramanujan Olivier Oloa To cite this version: Olivier Oloa. On a series of Ramanujan. Gems in Experimental Mathematics, pp.35-3,, . HAL Id: hal-55866 https://hal.archives-ouvertes.fr/hal-55866

More information

arxiv:math-ph/ v1 10 Jan 2005

arxiv:math-ph/ v1 10 Jan 2005 Asymptotic and eact series representations for the incomplete Gamma function arxiv:math-ph/5119v1 1 Jan 5 Paolo Amore Facultad de Ciencias, Universidad de Colima, Bernal Díaz del Castillo 34, Colima, Colima,

More information

Notes on the CEV model

Notes on the CEV model Notes on the CEV model Andrew Lesniewski Ellington Management Group 53 Forest Avenue Old Greenwich, CT 687 First draft of March 2, 24 This draft of November 6, 29 Statement of the problem We construct

More information

MATH39001 Generating functions. 1 Ordinary power series generating functions

MATH39001 Generating functions. 1 Ordinary power series generating functions MATH3900 Generating functions The reference for this part of the course is generatingfunctionology by Herbert Wilf. The 2nd edition is downloadable free from http://www.math.upenn. edu/~wilf/downldgf.html,

More information

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series C.7 Numerical series Pag. 147 Proof of the converging criteria for series Theorem 5.29 (Comparison test) Let and be positive-term series such that 0, for any k 0. i) If the series converges, then also

More information

1. Introduction Interest in this project began with curiosity about the Laplace transform of the Digamma function, e as ψ(s + 1)ds,

1. Introduction Interest in this project began with curiosity about the Laplace transform of the Digamma function, e as ψ(s + 1)ds, ON THE LAPLACE TRANSFORM OF THE PSI FUNCTION M. LAWRENCE GLASSER AND DANTE MANNA Abstract. Guided by numerical experimentation, we have been able to prove that Z 8 / x x + ln dx = γ + ln) [cosx)] and to

More information

Name. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Name. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. REVIEW Eam #3 : 3.2-3.6, 4.1-4.5, 5.1 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Use the Leading Coefficient Test to determine the end behavior

More information

Bessel function - Wikipedia, the free encyclopedia

Bessel function - Wikipedia, the free encyclopedia Bessel function - Wikipedia, the free encyclopedia Bessel function Page 1 of 9 From Wikipedia, the free encyclopedia In mathematics, Bessel functions, first defined by the mathematician Daniel Bernoulli

More information

Computer Problems for Taylor Series and Series Convergence

Computer Problems for Taylor Series and Series Convergence Computer Problems for Taylor Series and Series Convergence The two problems below are a set; the first should be done without a computer and the second is a computer-based follow up. 1. The drawing below

More information

Tail Approximation of the Skew-Normal by the Skew-Normal Laplace: Application to Owen s T Function and the Bivariate Normal Distribution

Tail Approximation of the Skew-Normal by the Skew-Normal Laplace: Application to Owen s T Function and the Bivariate Normal Distribution Journal of Statistical and Econometric ethods vol. no. 3 - ISS: 5-557 print version 5-565online Scienpress Ltd 3 Tail Approimation of the Skew-ormal by the Skew-ormal Laplace: Application to Owen s T Function

More information

The Gamma Function. July 9, Louisiana State University SMILE REU. The Gamma Function. N. Cannady, T. Ngo, A. Williamson.

The Gamma Function. July 9, Louisiana State University SMILE REU. The Gamma Function. N. Cannady, T. Ngo, A. Williamson. The The Louisiana State University SMILE REU July 9, 2010 The Developed as the unique extension of the factorial to non-integral values. The Developed as the unique extension of the factorial to non-integral

More information

Harmonic Numbers. Math. 55 Some Inequalities May 9, :54 pm

Harmonic Numbers. Math. 55 Some Inequalities May 9, :54 pm This document was created with FrameMaker 44 Math. 55 Some Inequalities May 9, 1999 1:54 pm The Eercises after Ch. 3.2 in our tetbook, Discrete Mathematics and Its Applications 4th. ed. by K. Rosen (1999),

More information

10.4: WORKING WITH TAYLOR SERIES

10.4: WORKING WITH TAYLOR SERIES 04: WORKING WITH TAYLOR SERIES Contributed by OpenSta Mathematics at OpenSta CNX In the preceding section we defined Taylor series and showed how to find the Taylor series for several common functions

More information

BESSEL FUNCTIONS APPENDIX D

BESSEL FUNCTIONS APPENDIX D APPENDIX D BESSEL FUNCTIONS D.1 INTRODUCTION Bessel functions are not classified as one of the elementary functions in mathematics; however, Bessel functions appear in the solution of many physical problems

More information

Advanced Higher Grade

Advanced Higher Grade Prelim Eamination / 5 (Assessing Units & ) MATHEMATICS Advanced Higher Grade Time allowed - hours Read Carefully. Full credit will be given only where the solution contains appropriate woring.. Calculators

More information

Computing the Principal Branch of log-gamma

Computing the Principal Branch of log-gamma Computing the Principal Branch of log-gamma by D.E.G. Hare Symbolic Computation Group Department of Computer Science University of Waterloo Waterloo, Canada Revised: August 11, 1994 Abstract The log-gamma

More information

Pre-Calculus and Trigonometry Capacity Matrix

Pre-Calculus and Trigonometry Capacity Matrix Information Pre-Calculus and Capacity Matri Review Polynomials A1.1.4 A1.2.5 Add, subtract, multiply and simplify polynomials and rational epressions Solve polynomial equations and equations involving

More information

Notes for Expansions/Series and Differential Equations

Notes for Expansions/Series and Differential Equations Notes for Expansions/Series and Differential Equations In the last discussion, we considered perturbation methods for constructing solutions/roots of algebraic equations. Three types of problems were illustrated

More information

Polyexponentials. Khristo N. Boyadzhiev Ohio Northern University Departnment of Mathematics Ada, OH

Polyexponentials. Khristo N. Boyadzhiev Ohio Northern University Departnment of Mathematics Ada, OH Polyexponentials Khristo N. Boyadzhiev Ohio Northern University Departnment of Mathematics Ada, OH 45810 k-boyadzhiev@onu.edu 1. Introduction. The polylogarithmic function [15] (1.1) and the more general

More information

CONGRUENCES FOR BERNOULLI - LUCAS SUMS

CONGRUENCES FOR BERNOULLI - LUCAS SUMS CONGRUENCES FOR BERNOULLI - LUCAS SUMS PAUL THOMAS YOUNG Abstract. We give strong congruences for sums of the form N BnVn+1 where Bn denotes the Bernoulli number and V n denotes a Lucas sequence of the

More information

Introduction on Bernoulli s numbers

Introduction on Bernoulli s numbers Introduction on Bernoulli s numbers Pascal Sebah and Xavier Gourdon numbers.computation.free.fr/constants/constants.html June 2, 2002 Abstract This essay is a general and elementary overview of some of

More information

The WKBJ Wavefunctions in the Classically Forbbiden Region: the Connection Formulae

The WKBJ Wavefunctions in the Classically Forbbiden Region: the Connection Formulae Apeiron, Vol. 1, No., April 005 01 The WKBJ Wavefunctions in the Classically Forbbiden Region: the Connection Formulae K. J.Oyewumi*, C. O. Akoshile, T. T. Ibrahim Department of Physics, University of

More information

MOMENTS OF HYPERGEOMETRIC HURWITZ ZETA FUNCTIONS

MOMENTS OF HYPERGEOMETRIC HURWITZ ZETA FUNCTIONS MOMENTS OF HYPERGEOMETRIC HURWITZ ZETA FUNCTIONS ABDUL HASSEN AND HIEU D. NGUYEN Abstract. This paper investigates a generalization the classical Hurwitz zeta function. It is shown that many of the properties

More information

Math Honors Calculus I Final Examination, Fall Semester, 2013

Math Honors Calculus I Final Examination, Fall Semester, 2013 Math 2 - Honors Calculus I Final Eamination, Fall Semester, 2 Time Allowed: 2.5 Hours Total Marks:. (2 Marks) Find the following: ( (a) 2 ) sin 2. (b) + (ln 2)/(+ln ). (c) The 2-th Taylor polynomial centered

More information

ON THE COEFFICIENTS OF AN ASYMPTOTIC EXPANSION RELATED TO SOMOS QUADRATIC RECURRENCE CONSTANT

ON THE COEFFICIENTS OF AN ASYMPTOTIC EXPANSION RELATED TO SOMOS QUADRATIC RECURRENCE CONSTANT Applicable Analysis and Discrete Mathematics available online at http://pefmath.etf.bg.ac.yu Appl. Anal. Discrete Math. x (xxxx), xxx xxx. doi:10.2298/aadmxxxxxxxx ON THE COEFFICIENTS OF AN ASYMPTOTIC

More information

Asymptotics of Integrals of. Hermite Polynomials

Asymptotics of Integrals of. Hermite Polynomials Applied Mathematical Sciences, Vol. 4, 010, no. 61, 04-056 Asymptotics of Integrals of Hermite Polynomials R. B. Paris Division of Complex Systems University of Abertay Dundee Dundee DD1 1HG, UK R.Paris@abertay.ac.uk

More information

Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind

Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind Filomat 28:2 (24), 39 327 DOI.2298/FIL4239O Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Explicit formulas for computing Bernoulli

More information

Final Exam Review Sheet Algebra for Calculus Fall Find each of the following:

Final Exam Review Sheet Algebra for Calculus Fall Find each of the following: Final Eam Review Sheet Algebra for Calculus Fall 007 Find the distance between each pair of points A) (,7) and (,) B), and, 5 5 Find the midpoint of the segment with endpoints (,) and (,) Find each of

More information

Elementary properties of the gamma function

Elementary properties of the gamma function Appendi G Elementary properties of the gamma function G.1 Introduction The elementary definition of the gamma function is Euler s integral: 1 Γ(z) = 0 t z 1 e t. (G.1) For the sake of convergence of the

More information

A Note about the Pochhammer Symbol

A Note about the Pochhammer Symbol Mathematica Moravica Vol. 12-1 (2008), 37 42 A Note about the Pochhammer Symbol Aleksandar Petoević Abstract. In this paper we give elementary proofs of the generating functions for the Pochhammer symbol

More information

On the Convergence of the Summation Formulas Constructed by Using a Symbolic Operator Approach

On the Convergence of the Summation Formulas Constructed by Using a Symbolic Operator Approach On the Convergence of the Summation Formulas Constructed by Using a Symbolic Operator Approach Tian-Xiao He 1, Leetsch C. Hsu 2, and Peter J.-S. Shiue 3 1 Department of Mathematics and Computer Science

More information

Ph.D. Katarína Bellová Page 1 Mathematics 1 (10-PHY-BIPMA1) EXAM SOLUTIONS, 20 February 2018

Ph.D. Katarína Bellová Page 1 Mathematics 1 (10-PHY-BIPMA1) EXAM SOLUTIONS, 20 February 2018 Ph.D. Katarína Bellová Page Mathematics 0-PHY-BIPMA) EXAM SOLUTIONS, 0 February 08 Problem [4 points]: For which positive integers n does the following inequality hold? n! 3 n Solution: Trying first few

More information

SOME INEQUALITIES FOR THE q-digamma FUNCTION

SOME INEQUALITIES FOR THE q-digamma FUNCTION Volume 10 (009), Issue 1, Article 1, 8 pp SOME INEQUALITIES FOR THE -DIGAMMA FUNCTION TOUFIK MANSOUR AND ARMEND SH SHABANI DEPARTMENT OF MATHEMATICS UNIVERSITY OF HAIFA 31905 HAIFA, ISRAEL toufik@mathhaifaacil

More information

National Quali cations AHEXEMPLAR PAPER ONLY

National Quali cations AHEXEMPLAR PAPER ONLY National Quali cations AHEXEMPLAR PAPER ONLY EP/AH/0 Mathematics Date Not applicable Duration hours Total marks 00 Attempt ALL questions. You may use a calculator. Full credit will be given only to solutions

More information

Parametrix approximations for non constant coefficient parabolic PDEs

Parametrix approximations for non constant coefficient parabolic PDEs MPA Munich Personal epec Archive Parametri approimations for non constant coefficient parabolic PDEs Paolo Foschi and Luca Pieressa and Sergio Polidoro Dept. Matemates, Univ. of Bologna, Italy, Dpt. of

More information

Research Article On Rational Approximations to Euler s Constant γ and to γ log a/b

Research Article On Rational Approximations to Euler s Constant γ and to γ log a/b Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 9, Article ID 66489, pages doi:.55/9/66489 Research Article On Rational Approximations to Euler s Constant

More information

1 Basic algebra. A few formulas: (a+b) 2 = a 2 +2ab+b 2 (a+b) 3 = a 3 +3a 2 b+3ab 2 +b 3.

1 Basic algebra. A few formulas: (a+b) 2 = a 2 +2ab+b 2 (a+b) 3 = a 3 +3a 2 b+3ab 2 +b 3. Basic algebra A few formulas: (a+b) 2 = a 2 +2ab+b 2 (a+b) 3 = a 3 +3a 2 b+3ab 2 +b 3. The coefficients follow from PASCAL S TRIANGLE, the epansion is called BINOMIAL. Also: a 2 b 2 = (a b)(a+b) a 3 b

More information

Graphing Exponential Functions

Graphing Exponential Functions MHF UI Unit Da Graphing Eponential Functions. Using a table of values (no decimals), graph the function.. For the function, state: a) domain b) range c) equation of the asmptote d) -intercept e) -intercept

More information

A196837: Ordinary Generating Functions for Sums of Powers of the First n Positive Integers

A196837: Ordinary Generating Functions for Sums of Powers of the First n Positive Integers Karlsruhe October 14, 2011 November 1, 2011 A196837: Ordinary Generating Functions for Sums of Powers of the First n Positive Integers Wolfdieter L a n g 1 The sum of the k th power of the first n positive

More information

are the q-versions of n, n! and . The falling factorial is (x) k = x(x 1)(x 2)... (x k + 1).

are the q-versions of n, n! and . The falling factorial is (x) k = x(x 1)(x 2)... (x k + 1). Lecture A jacques@ucsd.edu Notation: N, R, Z, F, C naturals, reals, integers, a field, complex numbers. p(n), S n,, b(n), s n, partition numbers, Stirling of the second ind, Bell numbers, Stirling of the

More information

Course. Print and use this sheet in conjunction with MathinSite s Maclaurin Series applet and worksheet.

Course. Print and use this sheet in conjunction with MathinSite s Maclaurin Series applet and worksheet. Maclaurin Series Learning Outcomes After reading this theory sheet, you should recognise the difference between a function and its polynomial epansion (if it eists!) understand what is meant by a series

More information

ON THE TAYLOR COEFFICIENTS OF THE HURWITZ ZETA FUNCTION

ON THE TAYLOR COEFFICIENTS OF THE HURWITZ ZETA FUNCTION ON THE TAYLOR COEFFICIENTS OF THE HURWITZ ZETA FUNCTION Khristo N. Boyadzhiev Department of Mathematics, Ohio Northern University, Ada, Ohio, 45810 k-boyadzhiev@onu.edu Abstract. We find a representation

More information

Chapter 3 Single Random Variables and Probability Distributions (Part 1)

Chapter 3 Single Random Variables and Probability Distributions (Part 1) Chapter 3 Single Random Variables and Probability Distributions (Part 1) Contents What is a Random Variable? Probability Distribution Functions Cumulative Distribution Function Probability Density Function

More information

Mathematics 132 Calculus for Physical and Life Sciences 2 Exam 3 Review Sheet April 15, 2008

Mathematics 132 Calculus for Physical and Life Sciences 2 Exam 3 Review Sheet April 15, 2008 Mathematics 32 Calculus for Physical and Life Sciences 2 Eam 3 Review Sheet April 5, 2008 Sample Eam Questions - Solutions This list is much longer than the actual eam will be (to give you some idea of

More information

y + α x s y + β x t y = 0,

y + α x s y + β x t y = 0, 80 Chapter 5. Series Solutions of Second Order Linear Equations. Consider the differential equation y + α s y + β t y = 0, (i) where α = 0andβ = 0 are real numbers, and s and t are positive integers that

More information

H2 Mathematics 2017 Promotion Exam Paper 1 Question (VJC Answer all questions [100 marks]. By using an algebraic approach, solve. 3 x.

H2 Mathematics 2017 Promotion Exam Paper 1 Question (VJC Answer all questions [100 marks]. By using an algebraic approach, solve. 3 x. H Mathematics 07 Promotion Eam Paper Question (VJC Answer all questions [00 marks]. By using an algebraic approach, solve 0. [] Verify that = 5 i is a root of the equation + 9 9 = 0. Hence, without the

More information

HL Test 2018 Calculus Option [50 marks]

HL Test 2018 Calculus Option [50 marks] HL Test 208 Calculus Option [50 marks] a. Given that n > lnn for n > 0, use the comparison test to show that the series n=0 is divergent. [ marks] METHOD ln(n + 2) < n + 2 (A) > n+2 (for n 0) A Note: Award

More information

Name Date Period. Pre-Calculus Midterm Review Packet (Chapters 1, 2, 3)

Name Date Period. Pre-Calculus Midterm Review Packet (Chapters 1, 2, 3) Name Date Period Sections and Scoring Pre-Calculus Midterm Review Packet (Chapters,, ) Your midterm eam will test your knowledge of the topics we have studied in the first half of the school year There

More information

Variations on a Theme by James Stirling

Variations on a Theme by James Stirling Variations on a Theme by James Stirling Diego Dominici Department of Mathematics State University of New York at New Paltz 75 S. Manheim Blvd. Suite 9 New Paltz, NY 1561-443 USA Phone: (845) 57-607 Fax:

More information

Contents. Preface xi. vii

Contents. Preface xi. vii Preface xi 1. Real Numbers and Monotone Sequences 1 1.1 Introduction; Real numbers 1 1.2 Increasing sequences 3 1.3 Limit of an increasing sequence 4 1.4 Example: the number e 5 1.5 Example: the harmonic

More information

MATHEMATICAL FORMULAS AND INTEGRALS

MATHEMATICAL FORMULAS AND INTEGRALS HANDBOOK OF MATHEMATICAL FORMULAS AND INTEGRALS Second Edition ALAN JEFFREY Department of Engineering Mathematics University of Newcastle upon Tyne Newcastle upon Tyne United Kingdom ACADEMIC PRESS A Harcourt

More information

Simplifying Coefficients in a Family of Ordinary Differential Equations Related to the Generating Function of the Laguerre Polynomials

Simplifying Coefficients in a Family of Ordinary Differential Equations Related to the Generating Function of the Laguerre Polynomials Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Applications and Applied Mathematics: An International Journal (AAM Vol. 13, Issue 2 (December 2018, pp. 750 755 Simplifying Coefficients

More information

Department of Mathematics, University of Wisconsin-Madison Math 114 Worksheet Sections (4.1),

Department of Mathematics, University of Wisconsin-Madison Math 114 Worksheet Sections (4.1), Department of Mathematics, University of Wisconsin-Madison Math 114 Worksheet Sections (4.1), 4.-4.6 1. Find the polynomial function with zeros: -1 (multiplicity ) and 1 (multiplicity ) whose graph passes

More information

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows:

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows: MAT 4 Solutions Eam 4 (Applications of Differentiation) a Applying the Quotient Rule we compute the derivative function of f as follows: f () = 43 e 4 e (e ) = 43 4 e = 3 (4 ) e Hence f '( ) 0 for = 0

More information

y x is symmetric with respect to which of the following?

y x is symmetric with respect to which of the following? AP Calculus Summer Assignment Name: Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number. Part : Multiple Choice Solve

More information

A GENERALIZATION OF POST-WIDDER OPERATORS

A GENERALIZATION OF POST-WIDDER OPERATORS ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII AL.I. CUZA DIN IAŞI S.N.) MATEMATICĂ Tomul LXII 16 f.1 A GENERALIZATION OF POST-WIDDER OPERATORS BASED ON -INTEGERS BY DIDEM AYDIN ALI ARAL and GÜLEN BAŞCANBAZ-TUNCA

More information

PRELIMINARIES FOR HYPERGEOMETRIC EQUATION. We will only consider differential equations with regular singularities in this lectures.

PRELIMINARIES FOR HYPERGEOMETRIC EQUATION. We will only consider differential equations with regular singularities in this lectures. PRELIMINARIES FOR HYPERGEOMETRIC EQUATION EDMUND Y.-M. CHIANG Abstract. We give a brief introduction to some preliminaries for Gauss hypergeometric equations. We will only consider differential equations

More information

8-1 Exploring Exponential Models

8-1 Exploring Exponential Models 8- Eploring Eponential Models Eponential Function A function with the general form, where is a real number, a 0, b > 0 and b. Eample: y = 4() Growth Factor When b >, b is the growth factor Eample: y =

More information

Transformation formulas for the generalized hypergeometric function with integral parameter differences

Transformation formulas for the generalized hypergeometric function with integral parameter differences Transformation formulas for the generalized hypergeometric function with integral parameter differences A. R. Miller Formerly Professor of Mathematics at George Washington University, 66 8th Street NW,

More information

ON MORDELL-TORNHEIM AND OTHER MULTIPLE ZETA-FUNCTIONS. (m + n) s 3. n s 2

ON MORDELL-TORNHEIM AND OTHER MULTIPLE ZETA-FUNCTIONS. (m + n) s 3. n s 2 ON MORDELL-TORNHEIM AND OTHER MULTIPLE ZETA-FUNCTIONS KOHJI MATSUMOTO. Introduction In 950, Tornheim [4] introduced the double series m s n s 2 (m + n) s 3 (.) m= n= of three variables, and studied its

More information

Appèl Polynomial Series Expansions

Appèl Polynomial Series Expansions International Mathematical Forum, 5, 2010, no. 14, 649-662 Appèl Polynomial Series Epansions G. Dattoli ENEA UTS Fisiche Avanzate Centro Ricerche Frascati C.P. 67-00044 Frascati, Rome, Italy Dattoli@frascati.enea.it

More information

Algebraic Functions, Equations and Inequalities

Algebraic Functions, Equations and Inequalities Algebraic Functions, Equations and Inequalities Assessment statements.1 Odd and even functions (also see Chapter 7)..4 The rational function a c + b and its graph. + d.5 Polynomial functions. The factor

More information

3.2 Logarithmic Functions and Their Graphs

3.2 Logarithmic Functions and Their Graphs 96 Chapter 3 Eponential and Logarithmic Functions 3.2 Logarithmic Functions and Their Graphs Logarithmic Functions In Section.6, you studied the concept of an inverse function. There, you learned that

More information

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes Paper Reference(s) 6665/01 Edecel GCE Core Mathematics C Silver Level S Time: 1 hour 0 minutes Materials required for eamination papers Mathematical Formulae (Green) Items included with question Nil Candidates

More information

rama.tex; 21/03/2011; 0:37; p.1

rama.tex; 21/03/2011; 0:37; p.1 rama.tex; /03/0; 0:37; p. Multiple Gamma Function and Its Application to Computation of Series and Products V. S. Adamchik Department of Computer Science, Carnegie Mellon University, Pittsburgh, USA Abstract.

More information

Survival Guide to Bessel Functions

Survival Guide to Bessel Functions Survival Guide to Bessel Functions December, 13 1 The Problem (Original by Mike Herman; edits and additions by Paul A.) For cylindrical boundary conditions, Laplace s equation is: [ 1 s Φ ] + 1 Φ s s s

More information

MATHEMATICS AND STATISTICS

MATHEMATICS AND STATISTICS 011-AS-M & S 44 INTRODUCTION MATHEMATICS AND STATISTICS ADVANCED SUPPLEMENTARY LEVEL This syllabus has been designed mainly for candidates who wish to further their study of mathematics beyond the Certificate

More information

Sharp inequalities and complete monotonicity for the Wallis ratio

Sharp inequalities and complete monotonicity for the Wallis ratio Sharp inequalities and complete monotonicity for the Wallis ratio Cristinel Mortici Abstract The aim of this paper is to prove the complete monotonicity of a class of functions arising from Kazarinoff

More information

Advanced Higher Grade

Advanced Higher Grade Practice Eamination A (Assessing Units & ) MATHEMATICS Advanced Higher Grade Time allowed - hours 0 minutes Read Carefully. Full credit will be given only where the solution contains appropriate working..

More information

IRRATIONAL FACTORS SATISFYING THE LITTLE FERMAT THEOREM

IRRATIONAL FACTORS SATISFYING THE LITTLE FERMAT THEOREM International Journal of Number Theory Vol., No. 4 (005) 499 5 c World Scientific Publishing Company IRRATIONAL FACTORS SATISFYING THE LITTLE FERMAT THEOREM Int. J. Number Theory 005.0:499-5. Downloaded

More information

Exponential Growth and Decay - M&M's Activity

Exponential Growth and Decay - M&M's Activity Eponential Growth and Decay - M&M's Activity Activity 1 - Growth 1. The results from the eperiment are as follows: Group 1 0 4 1 5 2 6 3 4 15 5 22 6 31 2. The scatterplot of the result is as follows: 3.

More information

2014 Mathematics. Advanced Higher. Finalised Marking Instructions

2014 Mathematics. Advanced Higher. Finalised Marking Instructions 0 Mathematics Advanced Higher Finalised ing Instructions Scottish Qualifications Authority 0 The information in this publication may be reproduced to support SQA qualifications only on a noncommercial

More information

On the number of ways of writing t as a product of factorials

On the number of ways of writing t as a product of factorials On the number of ways of writing t as a product of factorials Daniel M. Kane December 3, 005 Abstract Let N 0 denote the set of non-negative integers. In this paper we prove that lim sup n, m N 0 : n!m!

More information

Contents. I Basic Methods 13

Contents. I Basic Methods 13 Preface xiii 1 Introduction 1 I Basic Methods 13 2 Convergent and Divergent Series 15 2.1 Introduction... 15 2.1.1 Power series: First steps... 15 2.1.2 Further practical aspects... 17 2.2 Differential

More information

Named numbres. Ngày 25 tháng 11 năm () Named numbres Ngày 25 tháng 11 năm / 7

Named numbres. Ngày 25 tháng 11 năm () Named numbres Ngày 25 tháng 11 năm / 7 Named numbres Ngày 25 tháng 11 năm 2011 () Named numbres Ngày 25 tháng 11 năm 2011 1 / 7 Fibonacci, Catalan, Stirling, Euler, Bernoulli Many sequences are famous. 1 1, 2, 3, 4,... the integers. () Named

More information

MATHEMATICAL FORMULAS AND INTEGRALS

MATHEMATICAL FORMULAS AND INTEGRALS MATHEMATICAL FORMULAS AND INTEGRALS ALAN JEFFREY Department of Engineering Mathematics University of Newcastle upon Tyne Newcastle upon Tyne United Kingdom Academic Press San Diego New York Boston London

More information

2013 Mathematics. Advanced Higher. Finalised Marking Instructions

2013 Mathematics. Advanced Higher. Finalised Marking Instructions 0 Mathematics Advanced Higher Finalised ing Instructions Scottish Qualifications Authority 0 The information in this publication may be reproduced to support SQA qualifications only on a noncommercial

More information

Lecture 4b. Bessel functions. Introduction. Generalized factorial function. 4b.1. Using integration by parts it is easy to show that

Lecture 4b. Bessel functions. Introduction. Generalized factorial function. 4b.1. Using integration by parts it is easy to show that 4b. Lecture 4b Using integration by parts it is easy to show that Bessel functions Introduction In the previous lecture the separation of variables method led to Bessel's equation y' ' y ' 2 y= () 2 Here

More information

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26.

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26. Answer Key 969 BC 97 BC. C. E. B. D 5. E 6. B 7. D 8. C 9. D. A. B. E. C. D 5. B 6. B 7. B 8. E 9. C. A. B. E. D. C 5. A 6. C 7. C 8. D 9. C. D. C. B. A. D 5. A 6. B 7. D 8. A 9. D. E. D. B. E. E 5. E.

More information

RAMANUJAN: A TALE OF TWO EVALUATIONS

RAMANUJAN: A TALE OF TWO EVALUATIONS ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 46, Number 3, 06 RAMANUJAN: A TALE OF TWO EVALUATIONS DONALD J. MANZOLI ABSTRACT. In 887, beneath a canopy of stars, Srinivasa Ramanujan commenced his brief

More information

Numerical Verification of the Lagrange s Mean Value Theorem using MATLAB 1*

Numerical Verification of the Lagrange s Mean Value Theorem using MATLAB 1* VOL 4, NO, October 4 ISSN 5-77 -4 All rights reserved http://wwwejournalofscienceorg Numerical Verification of the Lagrange s Mean Value Theorem using MATLAB * Carlos Figueroa, Carlos Robles C, Raul Riera

More information

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain.

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. For example f(x) = 1 1 x = 1 + x + x2 + x 3 + = ln(1 + x) = x x2 2

More information

Euler s Formula for.2n/

Euler s Formula for.2n/ Euler s Formula for.2n/ Timothy W. Jones January 28, 208 Abstract In this article we derive a formula for zeta(2) and zeta(2n). Introduction In this paper we derive from scratch k 2 D 2 6 () and k 2p D.

More information

Certain Indefinite Integrals Involving Laguerre Polynomials

Certain Indefinite Integrals Involving Laguerre Polynomials Global Journal of Science Frontier Research Mathematics and Decision Sciences Volume 2 Issue 8 Version. Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc.

More information

ON VALUES OF THE PSI FUNCTION

ON VALUES OF THE PSI FUNCTION Journal of Applied Mathematics and Computational Mechanics 07, 6(), 7-8 www.amcm.pcz.pl p-issn 99-9965 DOI: 0.75/jamcm.07..0 e-issn 353-0588 ON VALUES OF THE PSI FUNCTION Marcin Adam, Bożena Piątek, Mariusz

More information