Survival Guide to Bessel Functions

Size: px
Start display at page:

Download "Survival Guide to Bessel Functions"

Transcription

1 Survival Guide to Bessel Functions December, 13 1 The Problem (Original by Mike Herman; edits and additions by Paul A.) For cylindrical boundary conditions, Laplace s equation is: [ 1 s Φ ] + 1 Φ s s s s φ + Φ z = (1) The way s mies throughout the equation means that the z and φ behavior will have a combined nontrivial influence on the very equation for the function of s in the mode epansion found by separating variables. The resulting functions of s are called Bessel functions, and the usual notation to denote them shows the z and φ behavior in different places: the φ behavior gives the order of the Bessel function and appears in the subscript, while the z behavior appears in the argument of the Bessel function, multiplied by s. Choices: It will turn out that the type of solution encountered depends crucially upon the domain being considered, including the type of boundary conditions assumed. A flow chart method is sketched in the following paragraphs in order to help decide which functions are appropriate. Behavior with z: The first choice concerns the z behavior. In the separation of variables technique, we need the eigenvalues of the sub-operators corresponding to the different coordinates to all sum to zero, in each of the basic solutions used to construct the general solution. This leaves a choice of sign for the eigenvalue of ( / z), and the sign chosen (to satisfy the necessary boundary conditions) determines whether the ordinary or modifield Bessels appear for the radial part. For a positive eigenvalue (eponential behavior in z), the ordinary Bessels (J ν and Y ν ) appear. For a negative eigenvalue (oscillating behavior in z), we find the modified Bessels (I ν and K ν ). Behavior with φ: The net domain to consider is that of φ. The sign ambiguity usually doesn t arise in the eigenvalue of ( / φ) : we usually choose its eigenvalue to be negative (and equal to ν ) because φ is periodic. (It is conceivable that the positive eigenvalues will appear for special situations, such as zero potential on the surface φ = and a fied nonzero potential at another surface φ = φ, giving sinh(νφ) behavior and thus a positive eigenvalue. These cases lead to Bessels of purely imaginary order, and are relatively rare.) When the entire range of φ is in the domain where Laplace s equation holds, this gives ν = m = an integer. In other cases, ν will be found by fitting the boundary conditions. For instance, if the domain is limited to a slice of pie of angular width β, ν will not be restricted to integers, since we don t require periodicity of length in that case. Instead, ν = m β, with m = 1,,3,..., for Dirichlet boundary conditions on the boundaries. For Neumann boundary conditions, the same values of ν apply, but m = is now allowed (since we have cosines rather than sines). For mied boundary condtions (Dirichlet on one side, and Neumann on the other), we must fit an odd number of quarter-wavelengths into φ, so ν = (m+1) β in that case, with m =,1,,... Resulting equations for s: With the above behavior in φ assumed, we can replace φ derivatives with im and z derivatives with +k (case A) or k (case B) in the cylindrical Laplacian (eq. 1 above) to arrive at an equation for S(s). These choices correspond to passing to a Fourier series in φ and either doing a Laplace transform in z (case A) or Fourier transform in z (case B). Case A gives the Bessel equation, which is eq. (6) below, and that for case B gives the modified Bessel equation, which replaces k by k in the 1

2 equation. Recall that we may write nonlinear functions only of dimensionless variables, so both of these can be put into a standard form by switching to the dimensionless variable = ks: [ 1 d ds ] ( d d 1 S = () where the sign gives the ordinary Bessel equation, and the + sign gives the modified Bessel equation. Some of the properties given below are in terms of s and some in terms of the dimensionless instead, for convenience. (Be careful especially when doing derivatives to watch factors of k when translating from s to or back). Solutions Assuming a solution of (sums of terms of) the form we find for the two general cases: Φ(s, φ, z) = S(s)Ψ(φ)Z(z), (3).1 Case A: Non-Cyclic/Eponential in Z (k R, k > ) giving d S ds + 1 ds s ds + d Z dz k Z = () d Ψ dφ +ν Ψ = (5) (k ν s ) S = (6) Note that k is determined by either z or s boundary conditions; e. g., if cylinder is grounded at top (z = L) and bottom (z = ), then the z dependence determines k: Z(z) sin(k n z), where k n = n L. If the cylinder is grounded (Dirichlet boundary conditions) at its radial edge (s = a) instead, then k will be restricted to k n = νn /a, n = 1,,3,..., where νn is the n th zero of J ν : J ν ( νn ) =. (These are instead called z νn in Cahill.) For Neumann boundary conditions, the zeroes of the derivatives of J ν appear (called νn and/or y νn in Jackson): [(d/d)j ν ()] = νn =. Bessel functions of the first kind of order ±ν are the solution for Case A, where: e kz,e kz Z(z) sinh(kz), cosh(kz) This solution is used when you have non-cyclic behavior in z, as in the case where Φ(z = ) = and Φ(z = L) = V(s,φ). In this case, the solutions to the radial equation are: S(s) = J ±ν (ks) However, the two solutions (for the two signs of ν) are linearly dependent when ν = m Z, so we need another solution: S(s) = Y ν (ks) = J ν(ks)cos(ν) J ν (ks) sin(ν) (with a limit ν integer m understood for integer ν.) The above solutions J ν and Y ν are always linearly independent (even when ν / Z). (Note that Y ν is often instead denoted N ν in some tets, such as Jackson.) The domain in question determines which of these is

3 used: if s = is included in the domain, only the J ν appear. (This follows from the s behavior listed below: the Y ν (s) blow up as s.) If s = is not included, we must keep a linear combination of both the J ν and the Y ν in a general solution. Limiting forms of these functions are given for = ks as: Y ν () J ν () 1 Γ(ν +1) ( Γ(ν) [ ( ln ) ] +.577, ν = (, ν where Γ(ν + 1) is the Gamma function: when ν = m = an integer, Γ(m + 1) = m!, the factorial function. Plugging in, we see that J () = 1 and J ν () =, while Y ν ( ). For the behavior at large argument, we have J m ( ) ( cos ν ) Y m ( ) ( sin ν ) Because of this asymptotic behavior, it is sometimes convenient to introduce instead as the two independent solutions the Hankel functions H 1 and H, defined by which will thus have e ±i / behavior as. H (1) ν (ks) = J ν (ks)+iy ν (ks) H () ν (ks) = J ν (ks) iy ν (ks).1.1 Orthogonality and Completeness Relations On the infinite domain s <, the orthogonality relation is and the completeness relation is sj ν (ks)j ν (k s)ds = δ(k k ) k kj ν (ks)j ν (ks )dk = δ(s s ). s Note the appearance of s ds as the integration measure; this comes naturally from the volume element in cylindrical coordinates. (You ve likely noticed that these are basically the same integral with variables switched; recall that orthogonality and completeness also gave the same integral as one another with variables switched for the modes in Fourier transforms, where the domain was also infinite.) When the domain is instead the interior of a finite cylinder of radius a with Dirichlet conditions at s = a, orthogonality becomes instead a sj ν (z νn s/a)j ν (z νn s/a)ds = a J ν+1(z νn )δ nn. where z νn is the n th zero of J ν, as mentioned above. Note that this making the domain finite has given us discrete modes ( quantized numbers) instead, just as it did when changing from Fourier transforms for infinite domain to Fourier series on a finite domain..1. Generating Function [ ] ep (t 1/t) = m= t m J m () 3

4 .1.3 Recursion Relations All solutions of the ordinary Bessel equation (S can be J, Y, H (1), or H () ) obey. Case B: Solutions Cyclic in Z [S ν 1()+S ν+1 ()] = νs ν () S ν 1 () S ν+1 () = d d S ν() Modified Bessel functions are the solutions for Case B, where: e ikz,e ikz Z(z) sin(kz), cos(kz) This solution is used when you have cyclic behavior in z, as in the case where Φ(z = ) = and Φ(z = L) =. These are equivalent to making k imaginary above, but it is more convenient to introduce eplicit real-valued solutions. Real-valued linearly independent solutions are: I ν (ks) = i ν J ν (iks) (7)..1 Properties As, we have K ν (ks) = iν+1 H (1) ν (iks) (8) I ν ( ) 1 ( Γ(ν +1) [ ln ( ] K ν ( ) ) +.577, ν =, ν Γ(ν) ( and so the I ν behave the same as J ν for small : I () = 1 and I ν () =, while the K ν blow up as goes to zero. The similarity with ordinary Bessels is not shared at large, where: I ν ( ) 1 e K ν ( ) e.. Generating Function [ ] ep (t+1/t) = m= t m I m ()..3 Recursion Relations Solutions of the modified Bessel equation obey slightly different relations: [I ν 1() I ν+1 ()] = νi ν () I ν 1 ()+I ν+1 () = d d I ν()

5 for the I ν, but an etra minus sign for the K ν : 3 A few other useful integrals [K ν 1() K ν+1 ()] = νk ν () K ν 1 ()+K ν+1 () = d d K ν() (See also orthogonality and completeness integrals given above.) J ν(ks)sds = 1 J ν (ks)ds = 1/k (s ν k ) J ν(ks)+ 1 s J ν(ks) When J vanishes on the boundaries, this reduces to the J term only, and we can use the recurrence formulas to replace this by Jν+1, as is done in the orthogonality integrals. For integer m, we have the integral representation which generalizes to arbitrary order ν by J ν () = 1 J m () = 1 cos[νφ sinφ] dφ sin(ν) Another integral which appears surprisingly often in physics is K ν () = cos[mφ sinφ] dφ (9) ep[ νt sinht]dt. (1) e cosht cosh(νt)dt (11) 5

1 Solutions in cylindrical coordinates: Bessel functions

1 Solutions in cylindrical coordinates: Bessel functions 1 Solutions in cylindrical coordinates: Bessel functions 1.1 Bessel functions Bessel functions arise as solutions of potential problems in cylindrical coordinates. Laplace s equation in cylindrical coordinates

More information

Solutions to Laplace s Equation in Cylindrical Coordinates and Numerical solutions. ρ + (1/ρ) 2 V

Solutions to Laplace s Equation in Cylindrical Coordinates and Numerical solutions. ρ + (1/ρ) 2 V Solutions to Laplace s Equation in Cylindrical Coordinates and Numerical solutions Lecture 8 1 Introduction Solutions to Laplace s equation can be obtained using separation of variables in Cartesian and

More information

Bessel Functions Michael Taylor. Lecture Notes for Math 524

Bessel Functions Michael Taylor. Lecture Notes for Math 524 Bessel Functions Michael Taylor Lecture Notes for Math 54 Contents 1. Introduction. Conversion to first order systems 3. The Bessel functions J ν 4. The Bessel functions Y ν 5. Relations between J ν and

More information

Lecture 4b. Bessel functions. Introduction. Generalized factorial function. 4b.1. Using integration by parts it is easy to show that

Lecture 4b. Bessel functions. Introduction. Generalized factorial function. 4b.1. Using integration by parts it is easy to show that 4b. Lecture 4b Using integration by parts it is easy to show that Bessel functions Introduction In the previous lecture the separation of variables method led to Bessel's equation y' ' y ' 2 y= () 2 Here

More information

Analogues for Bessel Functions of the Christoffel-Darboux Identity

Analogues for Bessel Functions of the Christoffel-Darboux Identity Analogues for Bessel Functions of the Christoffel-Darboux Identity Mark Tygert Research Report YALEU/DCS/RR-1351 March 30, 2006 Abstract We derive analogues for Bessel functions of what is known as the

More information

The Sommerfeld Polynomial Method: Harmonic Oscillator Example

The Sommerfeld Polynomial Method: Harmonic Oscillator Example Chemistry 460 Fall 2017 Dr. Jean M. Standard October 2, 2017 The Sommerfeld Polynomial Method: Harmonic Oscillator Example Scaling the Harmonic Oscillator Equation Recall the basic definitions of the harmonic

More information

Modified Bessel functions : Iα, Kα

Modified Bessel functions : Iα, Kα Modified Bessel functions : Iα, Kα The Bessel functions are valid even for complex arguments x, and an important special case is that of a purely imaginary argument. In this case, the solutions to the

More information

Boundary Value Problems in Cylindrical Coordinates

Boundary Value Problems in Cylindrical Coordinates Boundary Value Problems in Cylindrical Coordinates 29 Outline Differential Operators in Various Coordinate Systems Laplace Equation in Cylindrical Coordinates Systems Bessel Functions Wave Equation the

More information

Separation of Variables in Polar and Spherical Coordinates

Separation of Variables in Polar and Spherical Coordinates Separation of Variables in Polar and Spherical Coordinates Polar Coordinates Suppose we are given the potential on the inside surface of an infinitely long cylindrical cavity, and we want to find the potential

More information

More on Bessel functions. Infinite domain, δ-function normalization

More on Bessel functions. Infinite domain, δ-function normalization More on Bessel functions Infinite domain, δ-function normalization Consider Bessel s equation on the domain < ρ < as R ½ Bessel s equation, (375) or (393), says ρ d ρ dj ν(kρ) + k 2 ν 2 ρ 2 J ν (kρ) =

More information

MATH 241 Practice Second Midterm Exam - Fall 2012

MATH 241 Practice Second Midterm Exam - Fall 2012 MATH 41 Practice Second Midterm Exam - Fall 1 1. Let f(x = { 1 x for x 1 for 1 x (a Compute the Fourier sine series of f(x. The Fourier sine series is b n sin where b n = f(x sin dx = 1 = (1 x cos = 4

More information

Appendix A Vector Analysis

Appendix A Vector Analysis Appendix A Vector Analysis A.1 Orthogonal Coordinate Systems A.1.1 Cartesian (Rectangular Coordinate System The unit vectors are denoted by x, ŷ, ẑ in the Cartesian system. By convention, ( x, ŷ, ẑ triplet

More information

Laplace s Equation in Cylindrical Coordinates and Bessel s Equation (I)

Laplace s Equation in Cylindrical Coordinates and Bessel s Equation (I) Laplace s Equation in Cylindrical Coordinates and Bessel s Equation I) 1 Solution by separation of variables Laplace s equation is a key equation in Mathematical Physics. Several phenomena involving scalar

More information

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ.

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ. 4 Legendre Functions In order to investigate the solutions of Legendre s differential equation d ( µ ) dθ ] ] + l(l + ) m dµ dµ µ Θ = 0. (4.) consider first the case of m = 0 where there is no azimuthal

More information

Final Examination Solutions

Final Examination Solutions Math. 42 Fulling) 4 December 25 Final Examination Solutions Calculators may be used for simple arithmetic operations only! Laplacian operator in polar coordinates: Some possibly useful information 2 u

More information

Physics 6303 Lecture 11 September 24, LAST TIME: Cylindrical coordinates, spherical coordinates, and Legendre s equation

Physics 6303 Lecture 11 September 24, LAST TIME: Cylindrical coordinates, spherical coordinates, and Legendre s equation Physics 6303 Lecture September 24, 208 LAST TIME: Cylindrical coordinates, spherical coordinates, and Legendre s equation, l l l l l l. Consider problems that are no axisymmetric; i.e., the potential depends

More information

MATH 311 Topics in Applied Mathematics Lecture 25: Bessel functions (continued).

MATH 311 Topics in Applied Mathematics Lecture 25: Bessel functions (continued). MATH 311 Topics in Applied Mathematics Lecture 25: Bessel functions (continued). Bessel s differential equation of order m 0: z 2 d2 f dz 2 + z df dz + (z2 m 2 )f = 0 The equation is considered on the

More information

Electrodynamics I Midterm - Part A - Closed Book KSU 2005/10/17 Electro Dynamic

Electrodynamics I Midterm - Part A - Closed Book KSU 2005/10/17 Electro Dynamic Electrodynamics I Midterm - Part A - Closed Book KSU 5//7 Name Electro Dynamic. () Write Gauss Law in differential form. E( r) =ρ( r)/ɛ, or D = ρ, E= electricfield,ρ=volume charge density, ɛ =permittivity

More information

Physics 342 Lecture 23. Radial Separation. Lecture 23. Physics 342 Quantum Mechanics I

Physics 342 Lecture 23. Radial Separation. Lecture 23. Physics 342 Quantum Mechanics I Physics 342 Lecture 23 Radial Separation Lecture 23 Physics 342 Quantum Mechanics I Friday, March 26th, 2010 We begin our spherical solutions with the simplest possible case zero potential. Aside from

More information

Bessel function - Wikipedia, the free encyclopedia

Bessel function - Wikipedia, the free encyclopedia Bessel function - Wikipedia, the free encyclopedia Bessel function Page 1 of 9 From Wikipedia, the free encyclopedia In mathematics, Bessel functions, first defined by the mathematician Daniel Bernoulli

More information

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems.

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems. Review Outline To review for the final, look over the following outline and look at problems from the book and on the old exam s and exam reviews to find problems about each of the following topics.. Basics

More information

1 A complete Fourier series solution

1 A complete Fourier series solution Math 128 Notes 13 In this last set of notes I will try to tie up some loose ends. 1 A complete Fourier series solution First here is an example of the full solution of a pde by Fourier series. Consider

More information

Spherical Coordinates and Legendre Functions

Spherical Coordinates and Legendre Functions Spherical Coordinates and Legendre Functions Spherical coordinates Let s adopt the notation for spherical coordinates that is standard in physics: φ = longitude or azimuth, θ = colatitude ( π 2 latitude)

More information

Boundary-Value Problems: Part II

Boundary-Value Problems: Part II Chapter 3 Boundary-Value Problems: Part II Problem Set #3: 3., 3.3, 3.7 Due Monday March. th 3. Spherical Coordinates Spherical coordinates are used when boundary conditions have spherical symmetry. The

More information

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p LECTURE 1 Table of Contents Two special equations: Bessel s and Legendre s equations. p. 259-268. Fourier-Bessel and Fourier-Legendre series. p. 453-460. Boundary value problems in other coordinate system.

More information

1 Introduction. Green s function notes 2018

1 Introduction. Green s function notes 2018 Green s function notes 8 Introduction Back in the "formal" notes, we derived the potential in terms of the Green s function. Dirichlet problem: Equation (7) in "formal" notes is Φ () Z ( ) ( ) 3 Z Φ (

More information

5.4 Bessel s Equation. Bessel Functions

5.4 Bessel s Equation. Bessel Functions SEC 54 Bessel s Equation Bessel Functions J (x) 87 # with y dy>dt, etc, constant A, B, C, D, K, and t 5 HYPERGEOMETRIC ODE At B (t t )(t t ), t t, can be reduced to the hypergeometric equation with independent

More information

Steady and unsteady diffusion

Steady and unsteady diffusion Chapter 5 Steady and unsteady diffusion In this chapter, we solve the diffusion and forced convection equations, in which it is necessary to evaluate the temperature or concentration fields when the velocity

More information

Solutions to Problems in Jackson, Classical Electrodynamics, Third Edition. Chapter 2: Problems 11-20

Solutions to Problems in Jackson, Classical Electrodynamics, Third Edition. Chapter 2: Problems 11-20 Solutions to Problems in Jackson, Classical Electrodynamics, Third Edition Homer Reid December 8, 999 Chapter : Problems - Problem A line charge with linear charge density τ is placed parallel to, and

More information

Relevant sections from AMATH 351 Course Notes (Wainwright): Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls):

Relevant sections from AMATH 351 Course Notes (Wainwright): Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls): Lecture 5 Series solutions to DEs Relevant sections from AMATH 35 Course Notes (Wainwright):.4. Relevant sections from AMATH 35 Course Notes (Poulin and Ingalls): 2.-2.3 As mentioned earlier in this course,

More information

4 Power Series Solutions: Frobenius Method

4 Power Series Solutions: Frobenius Method 4 Power Series Solutions: Frobenius Method Now the ODE adventure takes us to series solutions for ODEs, a technique A & W, that is often viable, valuable and informative. These can be readily applied Sec.

More information

Electromagnetism HW 1 math review

Electromagnetism HW 1 math review Electromagnetism HW math review Problems -5 due Mon 7th Sep, 6- due Mon 4th Sep Exercise. The Levi-Civita symbol, ɛ ijk, also known as the completely antisymmetric rank-3 tensor, has the following properties:

More information

SOLUTIONS TO SELECTED PROBLEMS FROM ASSIGNMENTS 3, 4

SOLUTIONS TO SELECTED PROBLEMS FROM ASSIGNMENTS 3, 4 SOLUTIONS TO SELECTED POBLEMS FOM ASSIGNMENTS 3, 4 Problem 5 from Assignment 3 Statement. Let be an n-dimensional bounded domain with smooth boundary. Show that the eigenvalues of the Laplacian on with

More information

Bessel functions. The drum problem: Consider the wave equation (with c = 1) in a disc with homogeneous Dirichlet boundary conditions:

Bessel functions. The drum problem: Consider the wave equation (with c = 1) in a disc with homogeneous Dirichlet boundary conditions: Bessel functions The drum problem: Consider the wave equation (with c = 1) in a disc with homogeneous Dirichlet boundary conditions: u = u t, u(r 0,θ,t) = 0, u u(r,θ,0) = f(r,θ), (r,θ,0) = g(r,θ). t (Note

More information

Physics 505 Fall 2005 Homework Assignment #8 Solutions

Physics 505 Fall 2005 Homework Assignment #8 Solutions Physics 55 Fall 5 Homework Assignment #8 Solutions Textbook problems: Ch. 5: 5., 5.4, 5.7, 5.9 5. A circular current loop of radius a carrying a current I lies in the x-y plane with its center at the origin.

More information

Bessel Functions - Lecture 7

Bessel Functions - Lecture 7 1 Introduction We study the ode; Bessel Functions - Lecture 7 x 2 f ν + xf ν + (x2 ν 2 )f ν = This is a Sturm-Liouville problem where we look for solutions as the variable ν is changed. The equation has

More information

Lecture Notes for MAE 3100: Introduction to Applied Mathematics

Lecture Notes for MAE 3100: Introduction to Applied Mathematics ecture Notes for MAE 31: Introduction to Applied Mathematics Richard H. Rand Cornell University Ithaca NY 14853 rhr2@cornell.edu http://audiophile.tam.cornell.edu/randdocs/ version 17 Copyright 215 by

More information

Fiber Optics. Equivalently θ < θ max = cos 1 (n 0 /n 1 ). This is geometrical optics. Needs λ a. Two kinds of fibers:

Fiber Optics. Equivalently θ < θ max = cos 1 (n 0 /n 1 ). This is geometrical optics. Needs λ a. Two kinds of fibers: Waves can be guided not only by conductors, but by dielectrics. Fiber optics cable of silica has nr varying with radius. Simplest: core radius a with n = n 1, surrounded radius b with n = n 0 < n 1. Total

More information

Waves on 2 and 3 dimensional domains

Waves on 2 and 3 dimensional domains Chapter 14 Waves on 2 and 3 dimensional domains We now turn to the studying the initial boundary value problem for the wave equation in two and three dimensions. In this chapter we focus on the situation

More information

BESSEL FUNCTIONS APPENDIX D

BESSEL FUNCTIONS APPENDIX D APPENDIX D BESSEL FUNCTIONS D.1 INTRODUCTION Bessel functions are not classified as one of the elementary functions in mathematics; however, Bessel functions appear in the solution of many physical problems

More information

x y x 2 2 x y x x y x U x y x y

x y x 2 2 x y x x y x U x y x y Lecture 7 Appendi B: Some sample problems from Boas Here are some solutions to the sample problems assigned for hapter 4 4: 8 Solution: We want to learn about the analyticity properties of the function

More information

PHYS 404 Lecture 1: Legendre Functions

PHYS 404 Lecture 1: Legendre Functions PHYS 404 Lecture 1: Legendre Functions Dr. Vasileios Lempesis PHYS 404 - LECTURE 1 DR. V. LEMPESIS 1 Legendre Functions physical justification Legendre functions or Legendre polynomials are the solutions

More information

Complex Numbers. The set of complex numbers can be defined as the set of pairs of real numbers, {(x, y)}, with two operations: (i) addition,

Complex Numbers. The set of complex numbers can be defined as the set of pairs of real numbers, {(x, y)}, with two operations: (i) addition, Complex Numbers Complex Algebra The set of complex numbers can be defined as the set of pairs of real numbers, {(x, y)}, with two operations: (i) addition, and (ii) complex multiplication, (x 1, y 1 )

More information

Curvilinear coordinates

Curvilinear coordinates C Curvilinear coordinates The distance between two points Euclidean space takes the simplest form (2-4) in Cartesian coordinates. The geometry of concrete physical problems may make non-cartesian coordinates

More information

Qualification Exam: Mathematical Methods

Qualification Exam: Mathematical Methods Qualification Exam: Mathematical Methods Name:, QEID#41534189: August, 218 Qualification Exam QEID#41534189 2 1 Mathematical Methods I Problem 1. ID:MM-1-2 Solve the differential equation dy + y = sin

More information

Boundary value problems for partial differential equations

Boundary value problems for partial differential equations Boundary value problems for partial differential equations Henrik Schlichtkrull March 11, 213 1 Boundary value problem 2 1 Introduction This note contains a brief introduction to linear partial differential

More information

23 Elements of analytic ODE theory. Bessel s functions

23 Elements of analytic ODE theory. Bessel s functions 23 Elements of analytic ODE theory. Bessel s functions Recall I am changing the variables) that we need to solve the so-called Bessel s equation 23. Elements of analytic ODE theory Let x 2 u + xu + x 2

More information

EM waves: energy, resonators. Scalar wave equation Maxwell equations to the EM wave equation A simple linear resonator Energy in EM waves 3D waves

EM waves: energy, resonators. Scalar wave equation Maxwell equations to the EM wave equation A simple linear resonator Energy in EM waves 3D waves EM waves: energy, resonators Scalar wave equation Maxwell equations to the EM wave equation A simple linear resonator Energy in EM waves 3D waves Simple scalar wave equation 2 nd order PDE 2 z 2 ψ (z,t)

More information

3150 Review Problems for Final Exam. (1) Find the Fourier series of the 2π-periodic function whose values are given on [0, 2π) by cos(x) 0 x π f(x) =

3150 Review Problems for Final Exam. (1) Find the Fourier series of the 2π-periodic function whose values are given on [0, 2π) by cos(x) 0 x π f(x) = 350 Review Problems for Final Eam () Find the Fourier series of the 2π-periodic function whose values are given on [0, 2π) by cos() 0 π f() = 0 π < < 2π (2) Let F and G be arbitrary differentiable functions

More information

Homework 7 Solutions

Homework 7 Solutions Homework 7 Solutions # (Section.4: The following functions are defined on an interval of length. Sketch the even and odd etensions of each function over the interval [, ]. (a f( =, f ( Even etension of

More information

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find:

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find: Math B Final Eam, Solution Prof. Mina Aganagic Lecture 2, Spring 20 The eam is closed book, apart from a sheet of notes 8. Calculators are not allowed. It is your responsibility to write your answers clearly..

More information

1 Separation of Variables

1 Separation of Variables Jim ambers ENERGY 281 Spring Quarter 27-8 ecture 2 Notes 1 Separation of Variables In the previous lecture, we learned how to derive a PDE that describes fluid flow. Now, we will learn a number of analytical

More information

Notes on Special Functions

Notes on Special Functions Spring 25 1 Notes on Special Functions Francis J. Narcowich Department of Mathematics Texas A&M University College Station, TX 77843-3368 Introduction These notes are for our classes on special functions.

More information

Connection to Laplacian in spherical coordinates (Chapter 13)

Connection to Laplacian in spherical coordinates (Chapter 13) Connection to Laplacian in spherical coordinates (Chapter 13) We might often encounter the Laplace equation and spherical coordinates might be the most convenient 2 u(r, θ, φ) = 0 We already saw in Chapter

More information

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension In these notes we examine Bloch s theorem and band structure in problems with periodic potentials, as a part of our survey

More information

Physics 6303 Lecture 15 October 10, Reminder of general solution in 3-dimensional cylindrical coordinates. sinh. sin

Physics 6303 Lecture 15 October 10, Reminder of general solution in 3-dimensional cylindrical coordinates. sinh. sin Physics 6303 Lecture 15 October 10, 2018 LAST TIME: Spherical harmonics and Bessel functions Reminder of general solution in 3-dimensional cylindrical coordinates,, sin sinh cos cosh, sin sin cos cos,

More information

Continuum Limit and Fourier Series

Continuum Limit and Fourier Series Chapter 6 Continuum Limit and Fourier Series Continuous is in the eye of the beholder Most systems that we think of as continuous are actually made up of discrete pieces In this chapter, we show that a

More information

CHAPTER 3 POTENTIALS 10/13/2016. Outlines. 1. Laplace s equation. 2. The Method of Images. 3. Separation of Variables. 4. Multipole Expansion

CHAPTER 3 POTENTIALS 10/13/2016. Outlines. 1. Laplace s equation. 2. The Method of Images. 3. Separation of Variables. 4. Multipole Expansion CHAPTER 3 POTENTIALS Lee Chow Department of Physics University of Central Florida Orlando, FL 32816 Outlines 1. Laplace s equation 2. The Method of Images 3. Separation of Variables 4. Multipole Expansion

More information

which implies that we can take solutions which are simultaneous eigen functions of

which implies that we can take solutions which are simultaneous eigen functions of Module 1 : Quantum Mechanics Chapter 6 : Quantum mechanics in 3-D Quantum mechanics in 3-D For most physical systems, the dynamics is in 3-D. The solutions to the general 3-d problem are quite complicated,

More information

MATH 251 Final Examination December 19, 2012 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 19, 2012 FORM A. Name: Student Number: Section: MATH 251 Final Examination December 19, 2012 FORM A Name: Student Number: Section: This exam has 17 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all

More information

VANDERBILT UNIVERSITY. MATH 3120 INTRO DO PDES The Schrödinger equation

VANDERBILT UNIVERSITY. MATH 3120 INTRO DO PDES The Schrödinger equation VANDERBILT UNIVERSITY MATH 31 INTRO DO PDES The Schrödinger equation 1. Introduction Our goal is to investigate solutions to the Schrödinger equation, i Ψ t = Ψ + V Ψ, 1.1 µ where i is the imaginary number

More information

Harmonic Oscillator Eigenvalues and Eigenfunctions

Harmonic Oscillator Eigenvalues and Eigenfunctions Chemistry 46 Fall 217 Dr. Jean M. Standard October 4, 217 Harmonic Oscillator Eigenvalues and Eigenfunctions The Quantum Mechanical Harmonic Oscillator The quantum mechanical harmonic oscillator in one

More information

FOURIER SERIES, TRANSFORMS, AND BOUNDARY VALUE PROBLEMS

FOURIER SERIES, TRANSFORMS, AND BOUNDARY VALUE PROBLEMS fc FOURIER SERIES, TRANSFORMS, AND BOUNDARY VALUE PROBLEMS Second Edition J. RAY HANNA Professor Emeritus University of Wyoming Laramie, Wyoming JOHN H. ROWLAND Department of Mathematics and Department

More information

Applied Nuclear Physics (Fall 2006) Lecture 3 (9/13/06) Bound States in One Dimensional Systems Particle in a Square Well

Applied Nuclear Physics (Fall 2006) Lecture 3 (9/13/06) Bound States in One Dimensional Systems Particle in a Square Well 22.101 Applied Nuclear Physics (Fall 2006) Lecture 3 (9/13/06) Bound States in One Dimensional Systems Particle in a Square Well References - R. L. Liboff, Introductory Quantum Mechanics (Holden Day, New

More information

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case. s of the Fourier Theorem (Sect. 1.3. The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem:

More information

PARTIAL DIFFERENTIAL EQUATIONS and BOUNDARY VALUE PROBLEMS

PARTIAL DIFFERENTIAL EQUATIONS and BOUNDARY VALUE PROBLEMS PARTIAL DIFFERENTIAL EQUATIONS and BOUNDARY VALUE PROBLEMS NAKHLE H. ASMAR University of Missouri PRENTICE HALL, Upper Saddle River, New Jersey 07458 Contents Preface vii A Preview of Applications and

More information

Series Solutions of ODEs. Special Functions

Series Solutions of ODEs. Special Functions C05.tex 6/4/0 3: 5 Page 65 Chap. 5 Series Solutions of ODEs. Special Functions We continue our studies of ODEs with Legendre s, Bessel s, and the hypergeometric equations. These ODEs have variable coefficients

More information

Quantum Orbits. Quantum Theory for the Computer Age Unit 9. Diving orbit. Caustic. for KE/PE =R=-3/8. for KE/PE =R=-3/8. p"...

Quantum Orbits. Quantum Theory for the Computer Age Unit 9. Diving orbit. Caustic. for KE/PE =R=-3/8. for KE/PE =R=-3/8. p... W.G. Harter Coulomb Obits 6-1 Quantum Theory for the Computer Age Unit 9 Caustic for KE/PE =R=-3/8 F p' p g r p"... P F' F P Diving orbit T" T T' Contact Pt. for KE/PE =R=-3/8 Quantum Orbits W.G. Harter

More information

Chapter 9. Electromagnetic Waves

Chapter 9. Electromagnetic Waves Chapter 9. Electromagnetic Waves 9.1 Waves in One Dimension 9.1.1 The Wave Equation What is a "wave?" Let's start with the simple case: fixed shape, constant speed: How would you represent such a string

More information

Bessel Functions and Their Applications: Solution to Schrödinger equation in a cylindrical function of the second kind and Hankel Functions

Bessel Functions and Their Applications: Solution to Schrödinger equation in a cylindrical function of the second kind and Hankel Functions Bessel Functions and Their Applications: Solution to Schrödinger equation in a cylindrical function of the second kind and Hankel Functions 1 Faisal Adamu Idris, 2 Aisha Layla Buhari, 3 Tahir Usman Adamu

More information

3.3 Unsteady State Heat Conduction

3.3 Unsteady State Heat Conduction 3.3 Unsteady State Heat Conduction For many applications, it is necessary to consider the variation of temperature with time. In this case, the energy equation for classical heat conduction, eq. (3.8),

More information

Virtual current density in magnetic flow meter

Virtual current density in magnetic flow meter Virtual current density in magnetic flow meter Problem presented by Claus Nygaard Rasmussen Siemens Flow Instruments Background Siemens Flow Instruments submits this problem for the 51st European Study

More information

M445: Heat equation with sources

M445: Heat equation with sources M5: Heat equation with sources David Gurarie I. On Fourier and Newton s cooling laws The Newton s law claims the temperature rate to be proportional to the di erence: d dt T = (T T ) () The Fourier law

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

Differential Equations

Differential Equations Electricity and Magnetism I (P331) M. R. Shepherd October 14, 2008 Differential Equations The purpose of this note is to provide some supplementary background on differential equations. The problems discussed

More information

14 Fourier analysis. Read: Boas Ch. 7.

14 Fourier analysis. Read: Boas Ch. 7. 14 Fourier analysis Read: Boas Ch. 7. 14.1 Function spaces A function can be thought of as an element of a kind of vector space. After all, a function f(x) is merely a set of numbers, one for each point

More information

Special Functions of Mathematical Physics

Special Functions of Mathematical Physics Arnold F. Nikiforov Vasilii B. Uvarov Special Functions of Mathematical Physics A Unified Introduction with Applications Translated from the Russian by Ralph P. Boas 1988 Birkhäuser Basel Boston Table

More information

Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian:

Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian: Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian: let s look at one piece first: P and Q obey: Probability

More information

Relevant self-assessment exercises: [LIST SELF-ASSESSMENT EXERCISES HERE]

Relevant self-assessment exercises: [LIST SELF-ASSESSMENT EXERCISES HERE] Chapter 5 Fourier Analysis of Finite Difference Methods In this lecture, we determine the stability of PDE discretizations using Fourier analysis. First, we begin with Fourier analysis of PDE s, and then

More information

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series Definition 1 Fourier Series A function f is said to be piecewise continuous on [a, b] if there exists finitely many points a = x 1 < x 2

More information

The Hydrogen Atom. Nucleus charge +Ze mass m 1 coordinates x 1, y 1, z 1. Electron charge e mass m 2 coordinates x 2, y 2, z 2

The Hydrogen Atom. Nucleus charge +Ze mass m 1 coordinates x 1, y 1, z 1. Electron charge e mass m 2 coordinates x 2, y 2, z 2 The Hydrogen Ato The only ato that can be solved exactly. The results becoe the basis for understanding all other atos and olecules. Orbital Angular Moentu Spherical Haronics Nucleus charge +Ze ass coordinates

More information

Partial Differential Equations for Engineering Math 312, Fall 2012

Partial Differential Equations for Engineering Math 312, Fall 2012 Partial Differential Equations for Engineering Math 312, Fall 2012 Jens Lorenz July 17, 2012 Contents Department of Mathematics and Statistics, UNM, Albuquerque, NM 87131 1 Second Order ODEs with Constant

More information

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0 Legendre equation This ODE arises in many physical systems that we shall investigate We choose We then have Substitution gives ( x 2 ) d 2 u du 2x 2 dx dx + ( + )u u x s a λ x λ a du dx λ a λ (λ + s)x

More information

Tyn Myint-U Lokenath Debnath. Linear Partial Differential Equations for Scientists and Engineers. Fourth Edition. Birkhauser Boston Basel Berlin

Tyn Myint-U Lokenath Debnath. Linear Partial Differential Equations for Scientists and Engineers. Fourth Edition. Birkhauser Boston Basel Berlin Tyn Myint-U Lokenath Debnath Linear Partial Differential Equations for Scientists and Engineers Fourth Edition Birkhauser Boston Basel Berlin Preface to the Fourth Edition Preface to the Third Edition

More information

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008 Problem Set 1 Due: Friday, Aug 29th, 2008 Course page: http://www.physics.wustl.edu/~alford/p217/ Review of complex numbers. See appendix K of the textbook. 1. Consider complex numbers z = 1.5 + 0.5i and

More information

Introductions to ExpIntegralEi

Introductions to ExpIntegralEi Introductions to ExpIntegralEi Introduction to the exponential integrals General The exponential-type integrals have a long history. After the early developments of differential calculus, mathematicians

More information

Solutions to Problem Sheet for Week 6

Solutions to Problem Sheet for Week 6 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Week 6 MATH90: Differential Calculus (Advanced) Semester, 07 Web Page: sydney.edu.au/science/maths/u/ug/jm/math90/

More information

Chapter 5.8: Bessel s equation

Chapter 5.8: Bessel s equation Chapter 5.8: Bessel s equation Bessel s equation of order ν is: x 2 y + xy + (x 2 ν 2 )y = 0. It has a regular singular point at x = 0. When ν = 0,, 2,..., this equation comes up when separating variables

More information

Notes on the CEV model

Notes on the CEV model Notes on the CEV model Andrew Lesniewski Ellington Management Group 53 Forest Avenue Old Greenwich, CT 687 First draft of March 2, 24 This draft of November 6, 29 Statement of the problem We construct

More information

Fields of a Dipole Near a Layered Substrate

Fields of a Dipole Near a Layered Substrate Appendix C Fields of a Dipole Near a Layered Substrate µ z θ µ 1 ε 1 µ 2 ε 2 µ 3 ε 3 d z o x,y Figure C.1: An electric dipole with moment µ is located at r o = (,, z o ) near a layered substrate. The fields

More information

Taylor Series and Asymptotic Expansions

Taylor Series and Asymptotic Expansions Taylor Series and Asymptotic Epansions The importance of power series as a convenient representation, as an approimation tool, as a tool for solving differential equations and so on, is pretty obvious.

More information

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R 20 The Hydrogen Atom 1. We want to solve the time independent Schrödinger Equation for the hydrogen atom. 2. There are two particles in the system, an electron and a nucleus, and so we can write the Hamiltonian

More information

Solutions to Exercises 6.1

Solutions to Exercises 6.1 34 Chapter 6 Conformal Mappings Solutions to Exercises 6.. An analytic function fz is conformal where f z. If fz = z + e z, then f z =e z z + z. We have f z = z z += z =. Thus f is conformal at all z.

More information

MAT389 Fall 2016, Problem Set 4

MAT389 Fall 2016, Problem Set 4 MAT389 Fall 2016, Problem Set 4 Harmonic conjugates 4.1 Check that each of the functions u(x, y) below is harmonic at every (x, y) R 2, and find the unique harmonic conjugate, v(x, y), satisfying v(0,

More information

Review (2) Calculus II (201-nyb-05/05,06) Winter 2019

Review (2) Calculus II (201-nyb-05/05,06) Winter 2019 Review () Calculus II (-nyb-5/5,6) Winter 9 Note. You should also review the integrals eercises on the first review sheet. Eercise. Evaluate each of the following integrals. a. sin 3 ( )cos ( csc 3 (log)cot

More information

23. The Finite Fourier Transform and the Fast Fourier Transform Algorithm

23. The Finite Fourier Transform and the Fast Fourier Transform Algorithm 23. The Finite Fourier Transform and the Fast Fourier Transform Algorithm 23.1 Introduction: Fourier Series Early in the Nineteenth Century, Fourier studied sound and oscillatory motion and conceived of

More information

Subject: Mathematics III Subject Code: Branch: B. Tech. all branches Semester: (3rd SEM) i) Dr. G. Pradhan (Coordinator) ii) Ms.

Subject: Mathematics III Subject Code: Branch: B. Tech. all branches Semester: (3rd SEM) i) Dr. G. Pradhan (Coordinator) ii) Ms. Subject: Mathematics III Subject Code: BSCM1205 Branch: B. Tech. all branches Semester: (3 rd SEM) Lecture notes prepared by: i) Dr. G. Pradhan (Coordinator) Asst. Prof. in Mathematics College of Engineering

More information

1 Exponential Functions Limit Derivative Integral... 5

1 Exponential Functions Limit Derivative Integral... 5 Contents Eponential Functions 3. Limit................................................. 3. Derivative.............................................. 4.3 Integral................................................

More information

Computation of the scattering amplitude in the spheroidal coordinates

Computation of the scattering amplitude in the spheroidal coordinates Computation of the scattering amplitude in the spheroidal coordinates Takuya MINE Kyoto Institute of Technology 12 October 2015 Lab Seminar at Kochi University of Technology Takuya MINE (KIT) Spheroidal

More information

arxiv:gr-qc/ v1 11 May 2000

arxiv:gr-qc/ v1 11 May 2000 EPHOU 00-004 May 000 A Conserved Energy Integral for Perturbation Equations arxiv:gr-qc/0005037v1 11 May 000 in the Kerr-de Sitter Geometry Hiroshi Umetsu Department of Physics, Hokkaido University Sapporo,

More information