Nonthermal Dark Matter from Moduli decay. Bhaskar Dutta. Texas A&M University

Size: px
Start display at page:

Download "Nonthermal Dark Matter from Moduli decay. Bhaskar Dutta. Texas A&M University"

Transcription

1 Nontheral Dark atter ro oduli decay Bhaskar Dutta Texas A& University Hidden Dark atter Workshop, CTP, University o ichigan 1

2 Outline Theral and Non-theral Dark atter (D) oduli Decay and D Baryogenesis ro the Decay o oduli Necessary Conditions or Successul odels Exaple o a oduli odel Dark Radiation (DR) and D correlation Exaple o visible sector odel Non-Theral Scenarios at the LHC and Direct Detection Expt. Conclusion

3 Questions Iportant questions: What is the origin o dark atter? Dark Energy 68% Dark atter 7% How does it explain the dark atter content? Is there any correlation between baryon and dark atter abundance? Atos 5% S Consequences or: Particle Physics odels Theral History o the Universe 3

4 Dark atter: Theral Production o theral non-relativistic D: D D Non-relativistic Freeze-Out: Hubble expansion doinates over the interaction rate 1 Dark atter content: ~ D v reeze out v 310 v T 6 0 ~ D ~ Assuing : c 3 s /T Y becoes constant or T>T a c ~O(10 - ) with c ~ O(100) GeV leads to the correct relic abundance 4

5 Dark atter: Theral Suitable D Candidate: Weakly Interacting assive Particle (WIP) Typical in Physics beyond the S (LSP, LKP, ) ost Coon: Neutralino (SUSY odels) Neutralino: ixture o Wino, Higgsino and Bino saller annihilation cross-section Larger annihilation cross-section Larger/Saller Annihilation Proble or theral scenario 5

6 Theral D 7% Status o Theral D Experiental constraints: ann v Gaa-rays constraints: Dwar spheroidals, Galactic center Large Crosssection is constrained ann v o : saller than the theral value Geringer-Saeth, Koushiappas 11, Hooper, Kelso, Queiroz, Astropart.Phys. 13 6

7 LHC Constraints and Status o D LHC constraints on irst generation squark ass + Higgs ass: Natural SUSY and dark atter [Baer, Barger, Huang, ickelson, ustaayev and Tata 1; Gogoladze, Nasir, Shai 1, Hall, Pinner, Ruderan, 11; Papucchi, Ruderan, Weiler 11], Higgs ass 15 GeV & Cosological gravitino solution [Allahverdi, Dutta, Sinha 1] Higgsino dark atter Higgsino dark atter has larger annihilation cross-section Typically > 3 x 10-6 c 3 /sec or sub-tev ass Theral underproduction o sub-tev Higgsino Unnatural SUSY: Wino D- Larger annihilation cross-section (or saller wino ass) Arkani-Haid, Gupta, Kapla, Weiner, Zorawsky 1 7

8 LHC status Recent Higgs search results ro Atlas and CS indicate that h ~16 GeV in the tight SS window <135 GeV (1st gen.) ~ 1.7 TeV For heavy ~ q ~q, ~ g ~ t1 g ~ ~ t ~ g 1.3 TeV produced ro, 700 GeV ~ t1 produced directly, 660 GeV (special case) 1 ~e / ~ ~ t1 excluded between 110 and 80 GeV or a ass-less or or a ass dierence >100 GeV, sall D is associated with sall issing energy Can lead to over production o relic abundance ~ 1 0 ~ 1 asses between 100 and 600 GeV are excluded 0 or ass-less ~ 1 or ~ 1 or or the ass dierence >50 GeV decaying into e/ Can lead to over production o relic abundance 8

9 Status o Theral D Theral equilibriu above T is an assuption. T T Non-standard theral history at is generic in soe explicit UV copletions o the S. Acharya, Kuar, Bobkov, Kane, Shao 08 Acharya, Kane, Watson, Kuar 09 Allahverdi, Cicoli, Dutta, Sinha, 13 D content will be dierent in non-standard theral histories (i.e., i there is entropy production at ). T T Barrow 8, Kaionkowski, Turner 90 D will be a strong probe o the theral history ater it is discovered and a odel is established.

10 Theral, Non-theral ann v : Large ulticoponent/non-theral; Sall Non-theral LHC: Deterine the odel, easure D D annihilation ro galaxy, extragalactic sources Annihilation into photons: Feri, HAWC, H.E.S.S. Annihilation into neutrinos: IceCube Annihilation into electron-positrons: AS 10

11 Beyond Theral D ann v 310 Obtaining correct relic density or : 6 c 3 s 1 1) (theral underproduction): ann v c 3 s 1 Baer, Box, Suy 09 ulti-coponent D (WIP + non-wip) Exaple: ixed Higgsino/axion D ann v Zurek 13 Asyetric D (D content can have large ) ) (theral overproduction): D ro WIP decay Ex: Axino D, Gravitino D ann v c 3 s 1 Covi, Ki, Roszkowski 99 Feng, Rajaraan, Takayaa 03

12 The oduli decay width: Non-Theral D Dark atter ro oduli decay: oduli are heavy scalar ields that acquire ass ater SUSY breaking and are gravitationally coupled to atter T r ~ 3 c p start oscillating when H < t doinate the Universe beore decaying and reheating it c 1/ p 1/ T r T BBN 50 3 ev TeV For T r <T : Non-theral dark atter Inlation Radiation doination oduli doination Decay o oduli radiation doination. 3T r Abundance o decay products Y. 4. e.g., oroi, Randall 99; Acharya, Kane, Watson 08,Randall; Kitano, urayaa, Ratz 08; Dutta, Leblond, Sinha 09; Allahverdi, Cicoli, Dutta, Sinha, 13 1

13 D abundance Dark atter ro oduli D in 1. First ter on the RHS is the annihilation scenario Requires: th T ann n v s ann v.[ n T r th Since T r < T, we need ann v ann v wino/higgsino D Gaa-rays constraints: Dwar spheroidals, Galactic center D > 40 GeV, T < 30 T r T r > 70 ev D s obs v v [Hooper, Kelso, Queiroz,; Geringer-Saeth, Koushiappas] Th T T r, Y Br D ]. Second ter on the RHS is the branching scenario Can accoodate large and sall annihilation cross-sections Bino/Wino/Higgsino are all ok Y is sall to prevent the Br D ro becoing too sall (actually in realistic scenarios: Br 5 x10-3 => T r < 70eV) (or ~ 5 x10 6 GeV) 13

14 Dark atter ro oduli Decays dilutes any previous relics Theral D gets diluted i T r < T ~ D /0 ~ O(10) GeV Axionic D gets diluted i T r < L QCD ~ 00 ev ( a ~10 14 is allowed or T r T BBN ) [Fox,Pierce,Thoas 04] Baryon asyetry gets diluted i produced beore decay Non-theral D Production ro decay Annihilation scenario or T r close to T D production with large cross-section: Wino/Higgsino Branching scenario or saller T r (annihilation cross-section does not atter) Baryon asyetry ro decay Cladogenesis o D and Baryogenesis [Allaverdi, Dutta, Sinha 11] 14

15 Dark atter ro oduli Branching scenario solves the coincidence proble Baryon abundance in this odel: n s B Y Br B Y appears in the D abundance as well, Y ~ BR B ~ easy to satisy or baryogenesis, e (one loop actor) ~ b D 1 D Y Br Y Br B D 1 D Br Br B D 1 5 W=r/r c ; r=n For D ~ 5 B, e BR B ~ BR D n B ~ n D The D abundance and Baryon asyetry are ostly saturated by Y, Brs contribute the reaining not uch particle physics uncertainty

16 Baryogenesis ro oduli N W extra i N u c i X X, ' ij X d c i d c j X : S singlet; : Color triplet, hypercharge 4/3 Baryogenesis ro decays o X, X X or N N ~ : can be the D candidate : Allahverdi, Dutta, ohapatra, Sinha 1 X N N nb nb B Y Br N s Br N : branching ratio o oduli decay to N Assuing that N produces Baryon Asyetry e : asyetry actor in the N decay Y ~ , <0.1, Br N ~ B = 9x

17 17 Baryogenesis Fro X decay Typically, e 1, is O(10 - ) or CP violating phase O(1) and l~o(1) Baryogenesis ro oduli N N X X X d d X u N W c j c i ij c i i extra ' Siilarly, e

18 Conditions or odels Two typical probles or oduli decay Gravitino Proble: [Endo,Haaguchi,Takahashi 06][Nakaura,Yaaguchi 06] I 3/ <40 TeV Gravitino decays ater the BBN > 3/ can lead to D overproduction Large branching ratio o oduli into light Axions N e [Cicoli,Conlon,Quevedo 1][Higaki,Takahashi 1] 4/3 7 4 rad (1 N e ) 8 11 Current bound ro Planck+WAP9+ACT+SPT+BAO+HST (at 95% CL) : N e =

19 Ex: NT D in Large Volue Scenarios K 3ln( T T ), b b W W Ae at s lux Balasubraanian, Berglund, Conlon, Quevedo 05 Large volue can be obtained ater stabilization o v 3/ b 3/ np ( Tb Tb For large volue, one can have a sequestered scenario such that: 3/ vis b ) / Cicoli, Conlon, Quevedo 08 sot b ( For exaple, TeV scale SUSY can be obtained or: ~ 3/ sot 3/ b ) / ~ 10 GeV, ~ 510 GeV, b sot ~ 1 TeV [Detailed ass spectra, Aparicio, Cicoli, Kippendor, aharana, Quevedo 14 No Gravitino Proble

20 Br 3 The decay to gauge bosons arises at one-loop level: 3 S 3 gg ~ ln( b ) 4 P The decay to Higgs controlled by the Giudice-asiero ter: H NT D in Large Volue Scenarios u H d b 3 Z 4 P The decay to gauginos (and Higgsinos) is ass suppressed: sot gg ~~ Br 1 P 3/ LVS set up can successully accoodate non-theral D. Y can be quite sall ~ : branching and annhilations are ok / 0 Allahverdi, Cicoli, Dutta, Sinha 13

21 NT D in Large Volue Scenarios I the doinant decay ode is to gauge boson inal states decays into D particle via 3-body: g gg ~ ~ Since g ~ BR 10 3 D produces dark atter at the end o the decay chain The 3 body decay width larger than the -body decay width o oduli into gauginos [ g ~ g ~ is suppressed by ( gaugino / ) copared to gg ] Y ~ (using ~5 x 10 6 GeV) Y D : Y BR D ~ 10-1 D ~ O(100) GeV is allowed Solves the coincidence proble 1

22 D-DR Correlation in LVS: The axionic partner o, denoted by is not eaten up by anoalous U(1) s. a a b b acquires an exponentially suppressed ass. is produced ro a b a b 1 48 D-DR Correlation 3 P b decay: ab Cicoli, Conlon, Quevedo 13 Bulk axions are ultra-relativistic and behave as DR. a b 0 N e contribute to the eective nuber o neutrinos : 3 ( cvis ctot ) 43chid N e 48 P 7c vis ( N e N 3.04) e

23 D-DR Correlation Decay to visible sector ainly produces gauge bosons and Higgs: gg K S ~ 4 ZH u H b b d 3 P h.c. gg a b a H u H d b Z 4 P 3 tot H u H d a b a b Bound ro Planck+WAP9+ACT+SPT+BAO+HST at 95% N e N e 1 Z 3 We get a lower bound on T r

24 P r tot vis r T g C C T 4 1/ * ) ( ) ( ) ( * g TeV O T ev O r D-DR Correlation 3 3 4, 4 P vis vis P tot tot C C 1, Z C Z C tot vis Using 4 1/ 1/ 4 * )] 30 /( [ vis r g T

25 D-DR Correlation Abundance o D particles produced ro decay: Y n s 3T 4 r Br : Branching scenario Z 3, ~ GeV T r O( GeV ) Y 10 6 Br n s n s obs : Branching scenario does not work Avoiding excess o DR within LVS preers Annihilation scenario Higgsino-type D. 5

26 D-DR Correlation Obtaining the correct relic density in Annihilation scenario needs: T r T 3 10 v ann 6 ann c v 3 s 1 Assuing S-wave annihilation, which is valid or the Higgsinotype D, is directly constrained by Feri. For Higgsino-type D, using the b inal state, the bound reads: T ~ 0 40 GeV 1 T r (18 GeV ) GeV Upper bound on v ann T r gets bounded ro below

27 D-DR Correlation T r T ann c v 3 s 1 T ~ 0 Allowed by the Feri data in the annihilation scenario Over production in the branching scenario

28 D-DR Correlation T r 1 5C 88 C vis hid g * ( T r ) 1 / 4 P using N e 43 7 C C hid vis The Feri bound is translated to constraint in N e plane: ~ GeV Allahverdi., Cicoli, Dutta, Sinha N e, : set lower bound on D ass

29 odel Exaples: can be a visible sector ield S (oduli is a hidden sector ield) W s hsx X 1 s S W=W s +W N,X s ~ O(1) TeV, X ~ O(10) TeV, N ~ O(0.5) TeV S Decay + D Annihilation or no annihilation works BR D ~ 10-6 Y s =(3/4)T r / s ~ 10-4 n D /s ~ Allahverdi, Dutta, Sinha, 13 9

30 odel Exaple S Decay + Branching ratio Baryogenesis ~ 0.01 ~ 1 8 N1 X or ( N1 / X ) ~ 10-4 ~ 10 - Y s =(3/4)T r / s ~ 10-4 ~

31 Non-theral Cross Sections Scenarios via Probe the D sector directly: One interesting way: CD pp ~ ~ jj Preselection: issing E T > 50 GeV, leading jets (j 1,j ) :p T (j 1 ),p T (j ) >30 GeV Dh(j 1, j ) > 4. and h j1 h j < 0. Optiization: Tagged jets : p T > 50 GeV, j1j > 1500 GeV; Events with loosely identiied leptons(l = e; ; t h ) and b-quark jets: rejected. issing E T : optiized or dierent value o the LSP ass. Delannoy, Dutta, Gurrola, Kaon, Sinha et al 13 31

32 W extra Non-Theral LHC i N u c i X ' ij Final states at the LHC New Particles: Heavy colored states: d c i S Singlet: LHC signals: new colored states -spin 0- are pair produced high E T our jets in the inal states new colored states spin ½- are pair produced, high E T our jets +issing energy [via cascade decays into squarks etc] d c j X X, Distinguishing Feature: 4 high E T jets and 4 high E T jets + issing energy X X X N N N 3

33 Non-Theral LHC I N is the D candidate, i.e., N ~ p onojet Dijet Dijet pair Dutta, Gao, Kaon 14 Dijet + issing Energy 33

34 D via onojet at LHC Also, ono-top, di-tops in this odel onojet Cobining various observable, we can probe ann. cross-section 34

35 Direct Detection Dark atter Candidates:, Direct detection scattering cross-section: N ~ Suppose: N ~ ~ N, c i N ~ Xu i Scatters o a quark via s-channel exchange o X N ~ is the D particle (spin-0) For l i ~1, x ~ 1 TeV, I N (spin ½) is D, N ~ p (to prevent N decay and p-decay), s N-p is c (SI) and 10-4 c (SD)

36 Conclusion The origin o D content is a big puzzle We will be able to understand the history o the early universe Theral D is a very attractive scenario However, it contains certain assuptions about theral history Alternatives with a non-standard theral history are otivated Typically arise in UV copletions Can ease the tension with tightening experiental liits Non-theral D arising ro oduli decay is a viable scenario can yield the correct density or large & sall annihilation rates Successul realization in explicit constructions is nontrivial

Dark Matter: Thermal Versus Non-thermal. Bhaskar Dutta. Texas A&M University

Dark Matter: Thermal Versus Non-thermal. Bhaskar Dutta. Texas A&M University Dark Matter: Theral Versus Non-theral Bhaskar Dutta Texas A&M University IACS, Kolkata, India Deceber 19, 014 1 Outline Theral and Non-theral Dark Matter (DM) Moduli Decay and DM Baryogenesis ro the Decay

More information

Dark Matter: Thermal Versus Non-thermal. Bhaskar Dutta. Texas A&M University

Dark Matter: Thermal Versus Non-thermal. Bhaskar Dutta. Texas A&M University Dark Matter: Thermal Versus Non-thermal Bhaskar Dutta Texas A&M University Identiication o Dark Matter with a Cross-Disciplinary Approach Madrid, May 8th, 015 1 Outline Thermal and Non-Thermal Dark Matter

More information

Non-Thermal Dark Matter from Moduli Decay. Bhaskar Dutta. Texas A&M University

Non-Thermal Dark Matter from Moduli Decay. Bhaskar Dutta. Texas A&M University Non-Thermal Dark Matter rom Moduli Decay Bhaskar Dutta Texas A&M University Allahverdi, Dutta, Sinha, PRD87 (2013) 075024, PRDD86 (2012) 095016, PRD83 (2011) 083502, PRD82 (2010) 035004 Allahverdi, Dutta,

More information

Dark Matter from Non-Standard Cosmology

Dark Matter from Non-Standard Cosmology Dark Matter from Non-Standard Cosmology Bhaskar Dutta Texas A&M University Miami 2016 December 16, 2016 1 Some Outstanding Issues Questions 1. Dark Matter content ( is 27%) 2. Electroweak Scale 3. Baryon

More information

Baryon-Dark Matter Coincidence. Bhaskar Dutta. Texas A&M University

Baryon-Dark Matter Coincidence. Bhaskar Dutta. Texas A&M University Baryon-Dark Matter Coincidence Bhaskar Dutta Texas A&M University Based on work in Collaboration with Rouzbeh Allahverdi and Kuver Sinha Phys.Rev. D83 (2011) 083502, Phys.Rev. D82 (2010) 035004 Miami 2011

More information

SUSY at the LHC. Bhaskar Dutta Texas A&M University. LHCP 2018, 4-9 June

SUSY at the LHC. Bhaskar Dutta Texas A&M University. LHCP 2018, 4-9 June SUSY at the LHC Bhaskar Dutta Texas A&M University LHCP 2018, 4-9 June 2018 1 SUSY Solutions of many puzzles: DM candidate associated with 27% of the Universe Hierarchy problem (quantum correction of the

More information

Inflation and the LHC

Inflation and the LHC Inflation and the LHC Rouzbeh Allahverdi University of New Mexico PPC 00: 4 th International Workshop On The Interconnection Between Particle Physics And Cosology, Torino, Italy July 5, 00 Outline: Introduction

More information

Probing SUSY Dark Matter with Vector Boson Fusion at the LHC

Probing SUSY Dark Matter with Vector Boson Fusion at the LHC Probing SUSY Dark Matter with Vector Boson Fusion at the LHC Alfredo Gurrola (Vanderbilt University) 1 Snowmass Meeting Particle Physics & Cosmology The identity of dark matter is one of the most profound

More information

Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University

Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University Probing Light Nonthermal Dark Matter @ LHC Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University Outline Minimal extension to SM for baryogenesis & dark matter Current constraints

More information

Probing SUSY Dark Matter at the LHC

Probing SUSY Dark Matter at the LHC Probing SUSY Dark Matter at the LHC Kechen Wang Mitchell Institute for Fundamental Physics and Astronomy Texas A&M University Preliminary Examination, Feb, 24 OUTLINE Supersymmetry dark matter (DM) Relic

More information

Flavor Violation at the LHC. Bhaskar Dutta. Texas A&M University

Flavor Violation at the LHC. Bhaskar Dutta. Texas A&M University Flavor Violation at the LHC Bhaskar Dutta Texas A&M University Sixth Workshop on Theory, Phenomenology and Experiments in Flavour Physics - FPCapri2016, June 13th, 2016 1 Outline 1. Colored, Non colored

More information

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea mued mass spectrum Figure 3.2: (Taken from [46]). The full spectrum of the UED model at the first KK level,

More information

Nonthermal Dark Matter & Top polarization at Collider

Nonthermal Dark Matter & Top polarization at Collider Nonthermal Dark Matter & Top polarization at Collider Yu Gao Texas A&M University R.Allahverdi, M. Dalchenko, B.Dutta, YG, T. Kamon, in progress B. Dutta, YG, T. Kamon, arxiv: PRD 89 (2014) 9, 096009 R.

More information

Astroparticle Physics at Colliders

Astroparticle Physics at Colliders Astroparticle Physics at Colliders Manuel Drees Bonn University Astroparticle Physics p. 1/29 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/29 Contents 1) Introduction:

More information

SUSY Models, Dark Matter and the LHC. Bhaskar Dutta Texas A&M University

SUSY Models, Dark Matter and the LHC. Bhaskar Dutta Texas A&M University SUSY odels, Dark atter and the LHC Bhaskar Dutta Texas A& University 11/7/11 Bethe Forum 11 1 Discovery Time We are about to enter into an era of major discovery Dark atter: we need new particles to explain

More information

LHC Capability for Dark Matter

LHC Capability for Dark Matter LHC Capability for Dark atter 5// Bhaskar Dutta Texas A& University Discovery Time We are about to enter into an era of major discovery Dark atter: we need new particles to explain the content of the universe

More information

Searching for Non-Colored SUSY at CMS. Alfredo Gurrola Vanderbilt University Dark Matter Workshop at Mitchell Institute TAMU, May 25, 2016

Searching for Non-Colored SUSY at CMS. Alfredo Gurrola Vanderbilt University Dark Matter Workshop at Mitchell Institute TAMU, May 25, 2016 Searching for Non-Colored SUSY at CMS Alfredo Gurrola Vanderbilt University Dark Matter Workshop at Mitchell Institute TAMU, May 25, 2016 1 30,000,000,000,000,000,000,000 stars in 350 billion large galaxies

More information

Dark Matter WIMP and SuperWIMP

Dark Matter WIMP and SuperWIMP Dark Matter WIMP and SuperWIMP Shufang Su U. of Arizona S. Su Dark Matters Outline Dark matter evidence New physics and dark matter WIMP candidates: neutralino LSP in MSSM direct/indirect DM searches,

More information

Theory Group. Masahiro Kawasaki

Theory Group. Masahiro Kawasaki Theory Group Masahiro Kawasaki Current members of theory group Staffs Masahiro Kawasaki (2004~) cosmology Masahiro Ibe (2011~) particle physics Postdoctoral Fellows Shuichiro Yokoyama Shohei Sugiyama Daisuke

More information

The Story of Wino Dark matter

The Story of Wino Dark matter The Story of Wino Dark matter Varun Vaidya Dept. of Physics, CMU DIS 2015 Based on the work with M. Baumgart and I. Rothstein, 1409.4415 (PRL) & 1412.8698 (JHEP) Evidence for dark matter Rotation curves

More information

Overview of LHC Searches in Colorless SUSY Sectors

Overview of LHC Searches in Colorless SUSY Sectors Overview of LHC Searches in Colorless SUSY Sectors Teruki Kamon Texas A&M University & Kyungpook National University WCU High Energy Collider Physics Seminar Kyungpook National University Daegu, Korea

More information

Dark Matter Phenomenology

Dark Matter Phenomenology Dark Matter Phenomenology Peisi Huang Texas A&M University PPC 207, TAMU-CC PH, C. Wagner arxiv:404.0392 PH, R. Roglans, D. Spiegel, Y. Sun and C. Wagner arxiv:70.02737 Neutralino Dark Matter Phenomenology

More information

WIMP Dark Matter + SUSY

WIMP Dark Matter + SUSY WIMP Dark Matter + SUSY Clifford Cheung Dark Matter in Southern California Ingredients for a miracle (WIMP): #1) Particle is neutral + stable. #2) Particle couples to SM with weak scale annihilation cross-section.

More information

Astroparticle Physics and the LC

Astroparticle Physics and the LC Astroparticle Physics and the LC Manuel Drees Bonn University Astroparticle Physics p. 1/32 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/32 Contents 1) Introduction:

More information

LHC Impact on DM searches

LHC Impact on DM searches LHC Impact on DM searches Complementarity between collider and direct searches for DM Outline Introduction (complementarity of DM searches) Dark Matter signals at the LHC (missing ET, jets, etc... ) Particular

More information

String Compactifications and low-energy SUSY: The last attempts?

String Compactifications and low-energy SUSY: The last attempts? String Compactifications and low-energy SUSY: The last attempts? F. Quevedo, ICTP/Cambridge Strings 2015, Bangalore, June 2015 Collaborations with (linear combinations of): L. Aparicio, M. Cicoli, B Dutta,

More information

Antiproton Limits on Decaying Gravitino Dark Matter

Antiproton Limits on Decaying Gravitino Dark Matter Antiproton Limits on Decaying Gravitino Dark Matter Michael Grefe Departamento de Física Teórica Instituto de Física Teórica UAM/CSIC Universidad Autónoma de Madrid Particle Theory Journal Club Rudolf

More information

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March EW Naturalness in Light of the LHC Data Maxim Perelstein, Cornell U. ACP Winter Conference, March 3 SM Higgs: Lagrangian and Physical Parameters The SM Higgs potential has two terms two parameters: Higgs

More information

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter Brussels 20/4/12 Relating the Baryon Asymmetry to WIMP Miracle Dark Matter PRD 84 (2011) 103514 (arxiv:1108.4653) + PRD 83 (2011) 083509 (arxiv:1009.3227) John McDonald, LMS Consortium for Fundamental

More information

Supersymmetric dark matter with low reheating temperature of the Universe

Supersymmetric dark matter with low reheating temperature of the Universe Supersymmetric dark matter with low reheating temperature of the Universe Sebastian Trojanowski National Center for Nuclear Research, Warsaw COSMO 204 Chicago, August 29, 204 L. Roszkowski, ST, K. Turzyński

More information

Radiative natural SUSY with mixed axion-higgsino CDM

Radiative natural SUSY with mixed axion-higgsino CDM Radiative natural SUSY with mixed axion-higgsino CDM Howie Baer University of Oklahoma ``The imagination of nature is far, far greater than that of man : a data-driven approach to where SUSY might be hiding

More information

Dark matter in split extended supersymmetry

Dark matter in split extended supersymmetry Dark matter in split extended supersymmetry Vienna 2 nd December 2006 Alessio Provenza (SISSA/ISAS) based on AP, M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) hep ph/0609059 Dark matter: experimental clues

More information

Naturalness and mixed axion-higgsino dark matter

Naturalness and mixed axion-higgsino dark matter Naturalness and mixed axion-higgsino dark matter Howard Baer University of Oklahoma UCLA DM meeting, Feb. 18, 2016 ADMX What is the connection? LZ The naturalness issue: Naturalness= no large unnatural

More information

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism Kalliopi Petraki University of Melbourne (in collaboration with: R. Volkas, N. Bell, I. Shoemaker) COSMO

More information

Measuring Dark Matter Properties with High-Energy Colliders

Measuring Dark Matter Properties with High-Energy Colliders Measuring Dark Matter Properties with High-Energy Colliders The Dark Matter Problem The energy density of the universe is mostly unidentified Baryons: 5% Dark Matter: 20% Dark Energy: 75% The dark matter

More information

Models of New Physics for Dark Matter

Models of New Physics for Dark Matter Models of New Physics for Dark Matter Carlos Muñoz instituto de física teórica ift-uam/csic departamento de física teórica dft-uam 1 PPC 2010, Torino, July 12-16 Crucial Moment for SUSY in next few years:

More information

Mixed Wino-Axion DM in String Theory and the 130 GeV γ-line signal

Mixed Wino-Axion DM in String Theory and the 130 GeV γ-line signal Mixed Wino-Axion DM in String Theory and the 130 GeV γ-line signal Piyush Kumar June 27 th, 2012 String Phenomenology Conference Isaac Newton Institute, Cambridge Based on: 1205.5789 (Acharya, Kane, P.K.,

More information

Supersymmetry in Cosmology

Supersymmetry in Cosmology Supersymmetry in Cosmology Raghavan Rangarajan Ahmedabad University raghavan@ahduni.edu.in OUTLINE THE GRAVITINO PROBLEM SUSY FLAT DIRECTIONS AND THEIR COSMOLOGIAL IMPLICATIONS SUSY DARK MATTER SUMMARY

More information

Moduli-induced axion problem

Moduli-induced axion problem Moduli-induced axion problem Kazunori Nakayama (University of Tokyo) T.Higaki, KN, F.Takahashi, JHEP1307,005 (2013) [1304.7987] SUSY2013 @ ICTP, Trieste, Italy (2013/8/26) What we have shown : Kahler

More information

Axino Phenomenology in the Kim-Nilles mechanism

Axino Phenomenology in the Kim-Nilles mechanism CP3, SDU, Odense, 11 Aug. 2014 Axino Phenomenology in the Kim-Nilles mechanism Eung Jin Chun Outline Introduction to strong CP problem & axion. KSVZ & DFSZ axion models. Supersymmetric axion models and

More information

Summary of Group C ILC Physics Capability

Summary of Group C ILC Physics Capability Summary of Group C ILC Physics Capability B. Barish, F. Borzumati, A. Cohen, M. Endo, K. Fujii, M. Ibe, A. Ishikawa, S. Kanemura, E. Kato, R. Kitano, J. Lykken, M. Nojiri, T. Sanuki, M. Spiropulu, Y. Sumino,

More information

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1 DARK MATTER Martti Raidal NICPB & University of Helsinki 28.05.2010 Tvärminne summer school 1 Energy budget of the Universe 73,4% - Dark Energy WMAP fits to the ΛCDM model Distant supernova 23% - Dark

More information

Status of ATLAS+CMS SUSY searches

Status of ATLAS+CMS SUSY searches Status of ATLAS+CMS SUSY searches Renaud Brunelière Uni. Freiburg ~ ~ pp b b1 X candidate 2 b-tagged jets pt ~ 152 GeV and 96 GeV E miss T ~ 205 GeV, M CT (bb) ~ 201 GeV Status of ATLAS+CMS SUSY searches

More information

The Dark Matter Puzzle and a Supersymmetric Solution. Andrew Box UH Physics

The Dark Matter Puzzle and a Supersymmetric Solution. Andrew Box UH Physics The Dark Matter Puzzle and a Supersymmetric Solution Andrew Box UH Physics Outline What is the Dark Matter (DM) problem? How can we solve it? What is Supersymmetry (SUSY)? One possible SUSY solution How

More information

Non-universal SUGRA Signals at the LHC

Non-universal SUGRA Signals at the LHC Non-universal SUGRA Signals at the LHC Selections from the Cosmo Secret Cube Catalogue Transformer Cube Standard odel Cube PPC Cube Premiere Props Teruki Kamon, and Bhaskar Dutta itchell Institute for

More information

3.5 kev X-ray line and Supersymmetry

3.5 kev X-ray line and Supersymmetry Miami-2014, Fort Lauderdale, Florida Bartol Research Institute Department Physics and Astronomy University of Delaware, USA in collaboration with Bhaskar Dutta, Rizwan Khalid and Qaisar Shafi, JHEP 1411,

More information

Composite gluino at the LHC

Composite gluino at the LHC Composite gluino at the LHC Thomas Grégoire University of Edinburgh work in progress with Ami Katz What will we see at the LHC? Natural theory of EWSB? Supersymmetry? Higgs as PGSB (LH, RS-like)? Extra-

More information

Andrey Katz C. Brust, AK, S. Lawrence, and R. Sundrum; arxiv:

Andrey Katz C. Brust, AK, S. Lawrence, and R. Sundrum; arxiv: SUSY, the Third Generation and the LHC Andrey Katz C. Brust, AK, S. Lawrence, and R. Sundrum; arxiv:1011.6670 Harvard University January 9, 2012 Andrey Katz (Harvard) SUSY petite January 9, 2012 1 / 27

More information

Project Paper May 13, A Selection of Dark Matter Candidates

Project Paper May 13, A Selection of Dark Matter Candidates A688R Holly Sheets Project Paper May 13, 2008 A Selection of Dark Matter Candidates Dark matter was first introduced as a solution to the unexpected shape of our galactic rotation curve; instead of showing

More information

Baryogenesis via mesino oscillations

Baryogenesis via mesino oscillations Baryogenesis via mesino oscillations AKSHAY GHALSASI, DAVE MCKEEN, ANN NELSON arxiv:1508.05392 The one minute summary 2 Mesino a bound state of colored scalar and quark Model analogous to Kaon system Mesinos

More information

Prospects and Blind Spots for Neutralino Dark Matter

Prospects and Blind Spots for Neutralino Dark Matter Prospects and Blind Spots for Neutralino Dark Matter Josh Ruderman October 6 GGI 01 Cliff Cheung, Lawrence Hall, David Pinner, JTR 111.xxxx ] WIMP-Nucleon Cross Section [cm 10 10 10 10 10 10-39 -40-41

More information

LHC searches for dark matter.! Uli Haisch

LHC searches for dark matter.! Uli Haisch LHC searches for dark matter! Uli Haisch Evidence for dark matter Velocity Observed / 1 p r Disk 10 5 ly Radius Galaxy rotation curves Evidence for dark matter Bullet cluster Mass density contours 10 7

More information

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe Raghavan Rangarajan Physical Research Laboratory Ahmedabad with N. Sahu, A. Sarkar, N. Mahajan OUTLINE THE MATTER-ANTIMATTER ASYMMETRY

More information

Search for SUperSYmmetry SUSY

Search for SUperSYmmetry SUSY PART 3 Search for SUperSYmmetry SUSY SUPERSYMMETRY Symmetry between fermions (matter) and bosons (forces) for each particle p with spin s, there exists a SUSY partner p~ with spin s-1/2. q ~ g (s=1)

More information

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC 15.01.2010 Marek Olechowski Institut of Theoretical Physics, University of Warsaw LIGHT GLUINOS? Early supersymmetry discovery potential of the LHC Phenomenology

More information

kev sterile Neutrino Dark Matter in Extensions of the Standard Model

kev sterile Neutrino Dark Matter in Extensions of the Standard Model kev sterile Neutrino Dark Matter in Extensions of the Standard Model Manfred Lindner Max-Planck-Institut für Kernphysik, Heidelberg F. Bezrukov, H. Hettmannsperger, ML, arxiv:0912.4415, PRD81,085032 The

More information

Searching for sneutrinos at the bottom of the MSSM spectrum

Searching for sneutrinos at the bottom of the MSSM spectrum Searching for sneutrinos at the bottom of the MSSM spectrum Arindam Chatterjee Harish-Chandra Research Insitute, Allahabad In collaboration with Narendra Sahu; Nabarun Chakraborty, Biswarup Mukhopadhyay

More information

The Cosmological Moduli Problem and Non-thermal Histories of the Universe

The Cosmological Moduli Problem and Non-thermal Histories of the Universe The Cosmological Moduli Problem and Non-thermal Histories of the Universe Kuver Sinha Mitchell Institute for Fundamental Physics Texas A M University LEPP Seminar Cornell University Introduction Affleck-Dine

More information

Searches for Natural SUSY with RPV. Andrey Katz. C. Brust, AK, R. Sundrum, Z. Han, AK, M. Son, B. Tweedie, 1210.XXXX. Harvard University

Searches for Natural SUSY with RPV. Andrey Katz. C. Brust, AK, R. Sundrum, Z. Han, AK, M. Son, B. Tweedie, 1210.XXXX. Harvard University Searches for C. Brust, AK, R. Sundrum, 126.2353 Z. Han, AK, M. Son, B. Tweedie, 121.XXXX Harvard University Frontiers Beyond the Standard Model III, Minneapolis, October 13, 212 (Harvard) October, 13 1

More information

Split SUSY and the LHC

Split SUSY and the LHC Split SUSY and the LHC Pietro Slavich LAPTH Annecy IFAE 2006, Pavia, April 19-21 Why Split Supersymmetry SUSY with light (scalar and fermionic) superpartners provides a technical solution to the electroweak

More information

Lecture 12: SUSY3. 1

Lecture 12: SUSY3.  1 Lecture 1: SUSY3 Department of Physics and Astronomy Texas A&M University & Department of Physics Kyungpook National University http://faculty.physics.tamu.edu/kamon/teaching/phys84wcu/ 1 So far Recaps

More information

WIMPs and superwimps. Jonathan Feng UC Irvine. MIT Particle Theory Seminar 17 March 2003

WIMPs and superwimps. Jonathan Feng UC Irvine. MIT Particle Theory Seminar 17 March 2003 WIMPs and superwimps Jonathan Feng UC Irvine MIT Particle Theory Seminar 17 March 2003 Dark Matter The dawn (mid-morning?) of precision cosmology: Ω DM = 0.23 ± 0.04 Ω total = 1.02 ± 0.02 Ω baryon = 0.044

More information

Effective Theory for Electroweak Doublet Dark Matter

Effective Theory for Electroweak Doublet Dark Matter Effective Theory for Electroweak Doublet Dark Matter University of Ioannina, Greece 3/9/2016 In collaboration with Athanasios Dedes and Vassilis Spanos ArXiv:1607.05040 [submitted to PhysRevD] Why dark

More information

Dark Matter Decay and Cosmic Rays

Dark Matter Decay and Cosmic Rays Dark Matter Decay and Cosmic Rays Christoph Weniger Deutsches Elektronen Synchrotron DESY in collaboration with A. Ibarra, A. Ringwald and D. Tran see arxiv:0903.3625 (accepted by JCAP) and arxiv:0906.1571

More information

The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation

The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation Stefano Scopel Korea Institute of Advanced Study (based on: J. S. Lee, S. Scopel, PRD75, 075001 (2007)) PPP7, Taipei, Taiwan,

More information

LHC and Dark Matter 07/23/10. Bhaskar Dutta Texas A&M University

LHC and Dark Matter 07/23/10. Bhaskar Dutta Texas A&M University LHC and Dark atter 7/3/ Bhaskar Dutta Texas A& University Discovery Time We are about to enter into an era of major discovery Dark atter: we need new particles to explain the content of the universe Standard

More information

Creating Matter-Antimatter Asymmetry from Dark Matter Annihilations in Scotogenic Scenarios

Creating Matter-Antimatter Asymmetry from Dark Matter Annihilations in Scotogenic Scenarios Creating Matter-Antimatter Asymmetry from Dark Matter Annihilations in Scotogenic Scenarios Based on arxiv:1806.04689 with A Dasgupta, S K Kang (SeoulTech) Debasish Borah Indian Institute of Technology

More information

Testing msugra and Extensions at the LHC

Testing msugra and Extensions at the LHC Testing msugra and Extensions at the LHC Bhaskar Dutta and Teruki Kamon Texas A& University BS 9, Northeastern University, Boston nd June 9 Discovery Time We are about to enter into an era of major discovery

More information

Where is SUSY? Institut für Experimentelle Kernphysik

Where is SUSY?   Institut für Experimentelle Kernphysik Where is SUSY? Institut ür Experimentelle Kernphysik KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschat www.kit.edu I supersymmetric particles exist,

More information

Yasunori Nomura. UC Berkeley; LBNL

Yasunori Nomura. UC Berkeley; LBNL Yasunori Nomura UC Berkeley; LBNL LHC 7 & 8 Discovery of the Higgs boson with M H 126 GeV No new physics Great success of the Standard Model 0 100 200 300 400 M H (GeV) Nature seems to be fine-tuned (at

More information

THE STATUS OF NEUTRALINO DARK MATTER

THE STATUS OF NEUTRALINO DARK MATTER THE STATUS OF NEUTRALINO DARK MATTER BIBHUSHAN SHAKYA CORNELL UNIVERSITY CETUP 2013 Workshop June 25, 2013 Based on hep-ph 1208.0833, 1107.5048 with Maxim Perelstein, hep-ph 1209.2427 The favorite / most

More information

The Constrained E 6 SSM

The Constrained E 6 SSM The Constrained E 6 SSM and its signatures at the LHC Work with Moretti and Nevzorov; Howl; Athron, Miller, Moretti, Nevzorov Related work: Demir, Kane, T.Wang; Langacker, Nelson; Morrissey, Wells; Bourjaily;

More information

Baryogenesis via mesino oscillations

Baryogenesis via mesino oscillations 1 Baryogenesis via mesino oscillations AKSHAY GHALSASI, DAVE MCKEEN, ANN NELSON JOHNS HOPKINS SEP 29 2015 arxiv:1508.05392 The one minute summary 2 Mesino a bound state of colored scalar and quark Model

More information

IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY

IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY Jonathan Feng University of California, Irvine 28-29 July 2005 PiTP, IAS, Princeton 28-29 July 05 Feng 1 Graphic: N. Graf OVERVIEW This Program anticipates

More information

Kaluza-Klein Dark Matter

Kaluza-Klein Dark Matter Kaluza-Klein Dark Matter Hsin-Chia Cheng UC Davis Pre-SUSY06 Workshop Complementary between Dark Matter Searches and Collider Experiments Introduction Dark matter is the best evidence for physics beyond

More information

An update on scalar singlet dark matter

An update on scalar singlet dark matter Pat Scott Department of Physics, McGill University With: Jim Cline, Kimmo Kainulainen & Christoph Weniger (arxiv:1306.4710) Slides available from http://www.physics.mcgill.ca/ patscott What is the scalar

More information

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Peter Krieger Carleton University Physics Motivations Experimental Theoretical New particles searches Standard Model Higgs

More information

Split SUSY at LHC and a 100 TeV collider

Split SUSY at LHC and a 100 TeV collider Split SUSY at LHC and a 100 TeV collider Thomas Grégoire With Hugues Beauchesne and Kevin Earl 1503.03099 GGI - 2015 Status of Supersymmetry stop searches gluino searches m t & 700GeV m g & 1.4TeV What

More information

SUSY naturalness with implications for LHC, ILC, axion and WIMP detection. Howard Baer University of Oklahoma

SUSY naturalness with implications for LHC, ILC, axion and WIMP detection. Howard Baer University of Oklahoma SUSY naturalness with implications for LHC, ILC, axion and WIMP detection Howard Baer University of Oklahoma 1 is 2 fine-tuned? 2 is 2 fine-tuned? 2=2 b + b 3 is 2 fine-tuned? 2=2 b + b lim =? b 4 Prime

More information

Natural SUSY and the LHC

Natural SUSY and the LHC Natural SUSY and the LHC Clifford Cheung University of California, Berkeley Lawrence Berkeley National Lab N = 4 SYM @ 35 yrs I will address two questions in this talk. What is the LHC telling us about

More information

Revisiting gravitino dark matter in thermal leptogenesis

Revisiting gravitino dark matter in thermal leptogenesis Revisiting gravitino dark matter in thermal leptogenesis Motoo Suzuki Institute for Cosmic Ray Research (ICRR) The University of Tokyo arxiv:1609.06834 JHEP1702(2017)063 In collaboration with Masahiro

More information

Simplified models in collider searches for dark matter. Stefan Vogl

Simplified models in collider searches for dark matter. Stefan Vogl Simplified models in collider searches for dark matter Stefan Vogl Outline Introduction/Motivation Simplified Models for the LHC A word of caution Conclusion How to look for dark matter at the LHC? experimentally

More information

The Yang and Yin of Neutrinos

The Yang and Yin of Neutrinos The Yang and Yin of Neutrinos Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA The Yang and Yin of Neutrinos (2018) back to start 1 Contents Introduction The

More information

sin(2θ ) t 1 χ o o o

sin(2θ ) t 1 χ o o o Production of Supersymmetric Particles at High-Energy Colliders Tilman Plehn { Search for the MSSM { Production of Neutralinos/Charginos { Stop Mixing { Production of Stops { R Parity violating Squarks

More information

SUPERSYMETRY FOR ASTROPHYSICISTS

SUPERSYMETRY FOR ASTROPHYSICISTS Dark Matter: From the Cosmos to the Laboratory SUPERSYMETRY FOR ASTROPHYSICISTS Jonathan Feng University of California, Irvine 29 Jul 1 Aug 2007 SLAC Summer Institute 30 Jul 1 Aug 07 Feng 1 Graphic: N.

More information

Minimal SUSY SU(5) GUT in High- scale SUSY

Minimal SUSY SU(5) GUT in High- scale SUSY Minimal SUSY SU(5) GUT in High- scale SUSY Natsumi Nagata Nagoya University 22 May, 2013 Planck 2013 Based on J. Hisano, T. Kuwahara, N. Nagata, 1302.2194 (accepted for publication in PLB). J. Hisano,

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

SUSY and Exotics. UK HEP ForumFrom the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1 SUSY and Exotics Standard Model and the Origin of Mass Puzzles of Standard Model and Cosmology Bottom-up and top-down motivation Extra dimensions Supersymmetry - MSSM -NMSSM -E 6 SSM and its exotics UK

More information

MSSM4G: MOTIVATIONS AND ALLOWED REGIONS

MSSM4G: MOTIVATIONS AND ALLOWED REGIONS MSSM4G: MOTIVATIONS AND ALLOWED REGIONS ATLAS SUSY WG Meeting CERN Jonathan Feng, University of California, Irvine 31 January 2018 Based on 1510.06089, 1608.00283 with Mohammad Abdullah (Texas A&M), Sho

More information

How high could SUSY go?

How high could SUSY go? How high could SUSY go? Luc Darmé LPTHE (Paris), UPMC November 24, 2015 Based on works realised in collaboration with K. Benakli, M. Goodsell and P. Slavich (1312.5220, 1508.02534 and 1511.02044) Introduction

More information

CMS Searches for SUSY in Final States with Taus. Alfredo Gurrola (Vanderbilt) on behalf of the CMS Collaboration

CMS Searches for SUSY in Final States with Taus. Alfredo Gurrola (Vanderbilt) on behalf of the CMS Collaboration CMS Searches for SUSY in Final States with Taus Alfredo Gurrola (Vanderbilt) on behalf of the CMS Collaboration Why SUSY with Taus? 2 Theoretical motivation ( Naturalness ) SUSY can cancel top loop corrections

More information

Overview of Dark Matter models. Kai Schmidt-Hoberg

Overview of Dark Matter models. Kai Schmidt-Hoberg Overview of Dark Matter models. Kai Schmidt-Hoberg Evidence for dark matter. Compelling evidence for dark matter on all astrophysical scales: Galactic scales: Rotation curves of Galaxies Kai Schmidt-Hoberg

More information

DM & SUSY Direct Search at ILC. Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK

DM & SUSY Direct Search at ILC. Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK & SUSY Direct Search at ILC Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK Contents The ILC has access to new physics via: Precision Higgs measurements Precision top measurements

More information

Cosmological Constraint on the Minimal Universal Extra Dimension Model

Cosmological Constraint on the Minimal Universal Extra Dimension Model Cosmological Constraint on the Minimal Universal Extra Dimension Model Mitsuru Kakizaki (Bonn University) September 7, 2007 @ KIAS In collaboration with Shigeki Matsumoto (Tohoku Univ.) Yoshio Sato (Saitama

More information

SUSY w/o the LHC: Neutralino & Gravitino LSPs

SUSY w/o the LHC: Neutralino & Gravitino LSPs SUSY w/o Prejudice @ the LHC: Neutralino & Gravitino LSPs 1206.4321 & 1206.5800 7/3/12 M.W. Cahill-Rowley, J.L. Hewett, S. Hoeche, A. Ismail, T.G.R. Searches for SUSY @ the LHC have not found any signals

More information

Big-Bang nucleosynthesis, early Universe and relic particles. Alexandre Arbey. Moriond Cosmology La Thuile, Italy March 23rd, 2018

Big-Bang nucleosynthesis, early Universe and relic particles. Alexandre Arbey. Moriond Cosmology La Thuile, Italy March 23rd, 2018 Big-Bang nucleosynthesis, early Universe and relic particles Alexandre Arbey Lyon U. & CERN TH Moriond Cosmology 2018 La Thuile, Italy March 23rd, 2018 Introduction Alexandre Arbey Moriond Cosmology 2018

More information

Exotic scalars. Stefania Gori. Second MCTP Spring Symposium on Higgs Boson Physics. The University of Chicago & Argonne National Laboratory

Exotic scalars. Stefania Gori. Second MCTP Spring Symposium on Higgs Boson Physics. The University of Chicago & Argonne National Laboratory Exotic Exotic scalars scalars and and the the Higgs Higgs to to gamma gamma -- gamma gamma rate rate Stefania Gori The University of Chicago & Argonne National Laboratory Second MCTP Spring Symposium on

More information

Inflation from a SUSY Axion Model

Inflation from a SUSY Axion Model Inflation from a SUSY Axion Model Masahiro Kawasaki (ICRR, Univ of Tokyo) with Naoya Kitajima (ICRR, Univ of Tokyo) Kazunori Nakayama (Univ of Tokyo) Based on papers MK, Kitajima, Nakayama, PRD 82, 123531

More information

Constraining minimal U(1) B L model from dark matter observations

Constraining minimal U(1) B L model from dark matter observations Constraining minimal U(1) B L model from dark matter observations Tanushree Basak Physical Research Laboratory, India 10th PATRAS Workshop on Axions, WIMPs and WISPs CERN Geneva, Switzerland July 3, 2014

More information