DM & SUSY Direct Search at ILC. Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK

Size: px
Start display at page:

Download "DM & SUSY Direct Search at ILC. Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK"

Transcription

1 & SUSY Direct Search at ILC Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK

2 Contents The ILC has access to new physics via: Precision Higgs measurements Precision top measurements Direct searches Search for Search for SUSY particles (incl. ) Other precision probes of indirect search for new particles I will cover the last two topics. 2

3 Mass Mass Spectra for Other NPs (heavy) If is the only particle that is kinematically accessible: At LHC: Discovery possible At ILC: Discovery possible Reach depends on type of à complementarity between LHC/ILC LHC and ILC have complementary capabilities in searches. 3

4 Dark Matter Searches Indirect Detection Direct Detection Colliders Complementary ways to search for 4

5 Dark Matter Searches q LHC q e + ILC e- different initial state à complementary sensitivity to 5

6 Dark Matter Searches g q LHC q mono-jets also, mono-photons mono-z/w/h γ e + ILC mono-photons e- different initial state à complementary sensitivity to 6

7 e.g.) Leptophilic e + ILC e- q, N l LHC, Direct Detection q, N γ à loop suppression l ILC has unique sensitivity to electron- coupling 7

8 ILC 500 GeV [Chae, Perelstein, ] LEP limits [Fox, Harnik, Kopp, Tsai, ] 8

9 Mono-photon Status (1) Signal: WIMP pair production with ISR photon e+ e- à γ Initial state radiation (ISR) photon Missing energy + missing momentum Observables: E γ, θ γ mass reach ~ s/2 Backgrounds: Radiative neutrino production e+ e- à ν ν γ à ν ν γ γ Contribution will be known / can be calibrated. Bhabha scattering e+ e- à e+ e- γ where the electrons go down the beam pipe undetected. Coverage of forward detectors crucial. [C.Bartels, Ph.D. Thesis at DESY] 9

10 Mono-photon Status (2) Geant4-based full simulation study Publication: C. Bartels, M. Berggren, J. List, EPJC 72:2213 [arxiv: ] s = 500 GeV 1 GeV < M WIMP < 250 GeV WHIZARD 1.96 ilcsoft v01-06 Beam parameters: RDR Detector models: LDC_PrimeSc_02, ILD_00 Update plan: Other s, WHIZARD 2, latest software tools, TDR parameters, ILD_v1_o5 model 10

11 11 Mass What if? Other NPs 250 GeV Indirect searches can exceed reach of direct search

12 Effective Field Theory New physics interaction mediated by a heavy particle can be integrated out to give a four-point contact interaction: g mediator g effective operator g f g q 2 M 2 (f µ f)( µ ) 1 2 (f µf)( µ ) EFT is valid for M med >> 2M ; identify: = M/ g f g *Outside the domain of validity, must take into account effects of on-shell resonance enhancement and off-shell production. 12

13 Effective Field Theory New physics interaction mediated by a heavy particle can be integrated out to give a four-point contact interaction: g mediator g effective operator g mediator g effective operator *In general, t-channel diagrams also exist 13

14 e+e- à 2 fermion process e+e- à ff with f = u/d/s, c, b, t, e, µ, τ e+e- à WW, ZZ may also be useful e + f Observables: Polarized cross sections Forward backward asymmetries (or equivalently differential cross section) _ e- f The large cross section of these events implies measurements will quickly become systematically limited. Need to demonstrate control of all the relevant systematics; it will immediately pay off! Z study [TDR] Baseline [Snowmass] LumiUp [Snowmass] Luminosity 0.2% 0.1% 0.05% Polarization 0.25% 0.1% 0.05% b-tagging 0.5% 0.3% 0.15% 14

15 e+e- à 2f [SUSY example] [Harigaya, Ichikawa, Kundu, Matsumoto & Shirai ] Binned likelihood analysis of differential cross sections, comparing expected number of events in B vs. that of. Wino Mass - s/2 [GeV] Efficiencies assumed: leptons 100%, b-jet 80%, c-jet 50% e+e- à µ+µ- e+e- à bb Other assumptions P(e-,e+) = (-0.8,+0.6), Lumi = 3 ab-1 Indirect reach significantly higher than direct search if systematics is under control e.g. for s=500 GeV, e+e- àµ+µ- : Wino mass reach = 350 GeV (for total systematics 0.3%) CM Energy [GeV] 15

16 Supersymmetry (SUSY) u d c t s b ~ u ~ d ~ c ~ s ~ t ~ b ν ν ν e µ τ e µ τ ν ~ ~ ν ν ~ e µ τ ~ e µ ~ ~ τ γ Z 0 W ± ~ ~ ± W g ~ 0 0 g G ~ G ~ B W 0 h H A H 0 0 ± ~ ~ ~ ± 2 H H H ü ü ü 16

17 SUSY Electroweak Sector Bino-like LSP Wino-like LSP Higgsino-like LSP LSP/NLSP typically degenerate (depends on mixing) 17

18 Sensitivity to SUSY Gluino search at LHC Chargino/Neutralino search at ILC à Comparison assuming gaugino mass relations Bino LSP (Gravity mediation Wino LSP (Anomaly mediation LHC 8 TeV (heavy squarks) LHC 300 fb -1, s=14 TeV Preliminary LHC 3000 fb -1, s=14 TeV ILC 500 GeV ILC 1 TeV (no relation between µ and M 3) Higgsino LSP M 3 (TeV) [Gluino mass] *Assumptions: MSUGRA/GMSB relation M 1 :M 2 :M 3 = 1:2:6; AMSB relation M 1 :M 2 :M 3 = 3.3:1:

19 Natural Radiative SUSY: µ not far above 100GeV Typically Δm of 20 GeV or less Challenging for LHC 19

20 Naturalness and Light Higgsino Naturalness arguments [e.g. Baer et al, ] imply existence of light Higgsinos at O(100) GeV. Higgsino LSP scenarios typically lead to compressed spectra: à small mass gaps between LSP and NLSPs Small mass gaps (20 MeV < ΔM < 30 GeV) challenging for LHC à No problem for ILC [ ] (a) Before ATLAS Run 1 (b) After ATLAS Run 1 20

21 Power of Beam Polarization Bkg. Suppression W + W - (Largest bkg in SUSY searches) Chargino pair K. Fujii Decomposition Slepton pair WW-fusion Higgs prod. Pol(e - ) -0.8 Pol (e + ) +0.3 (σ/σ0)vvh 1.8x1.3=2.34 Signal Enhancement 21

22 Higgsinos in Natural SUSY (ΔM~1 GeV) 22 e e + ISR +1 1 W + W soft [Berggren et al ] M(C1) ~ M(N1) ~ 170 GeV, ΔM ~ 1.6 and 0.8 GeV Only very soft particles in the final states à Require a hard ISR to reduce large two-photon background. Separation of chargino and neutralino channels clearly possible: 2 Mχ 2 Mχ Production Cross section ( +0 0 ) 80 fb ( 01 02) 50 fb Precision Expected for 500 GeV, 500 fb-1 P(e-,e+)=(-0.8,+0.3) M =1.6 GeV M =0.8 GeV

23 Gaugino Mass Extraction [Baer et al ] e + e +1 1, M(C1)~118 GeV, M(N1)~103 GeV à ΔM=15GeV ILC ILC LHC 100fb -1 Preliminary [Baer, List] In this benchmark point, M 1 and M 2 are expected to be measured to few % or better. à Test of gaugino mass relation Assume: Gluino LHC Ewkino ILC à Test of gaugino mass relation by LHC/ILC synergy à Discrimination of SUSY breaking models Full simulation study is started. 23

24 Stau coannihilation (ΔM~10 GeV) Study of stau pair production at the ILC Observation of lighter and heavier stau states with decay to neutralino + hadronic tau Benchmark point: m(n1) = 98 GeV m(stau1) = 108 GeV m(stau2) = 195 GeV (e + e +1 (e + e +2 1 ) = 158 fb 2 ) = 18 fb Bechtle, Berggren, List, Schade, Stempel, arxiv: , PRD82, (2010) Signal bkg SUSY bkg s=500 GeV, Lumi=500 fb-1, P(e-,e+)=(+0.8,-0.3) Stau1 mass ~0.1%, Stau2 mass ~3% à LSP mass ~1.7% 24

25 WMAP/Planck (68% CL) Relic Abundance ESA/Planck Once a candidate is discovered, it is crucial to check the consistency with the measured relic abundance. Precise measurements of mass and couplings at the ILC relic density Baltz, Battaglia, Peskin, Wizansky PRD74 (2006) , arxiv:hep-ph/

26 Summary ILC capabilities for new physics: Higgs, top, direct searches, other indirect probes. Dark Matter: Collider search complementary to direct detection / indirect detection ILC advantages: Electron- coupling Precise measurements allow check with observed relic density SUSY: Well-motivated even after LHC data. Important parameter space remains to be explored. ILC advantages: Compressed spectra (challenging for LHC) Coupling structure determination (via beam polarization) Discrimination of SUSY breaking mechanism (gaugino mass relations) Indirect probes (e.g. e+e- à 2f): Mass reach can be higher than s/2 if systematics is under control. Dedicated studies on systematics are desired. 26

BSM searches at ILC. Tohoku Forum for Creativity Tohoku Univ. Eriko Kato 1/29

BSM searches at ILC. Tohoku Forum for Creativity Tohoku Univ. Eriko Kato 1/29 BSM searches at ILC Tohoku Forum for Creativity 2013.10.22. Tohoku Univ. Eriko Kato 1/29 New Physics at the TeV scale 2/24 Issues motivating physics study at TeV scale: Naturalness Radiative correction

More information

Probing SUSY Dark Matter with Vector Boson Fusion at the LHC

Probing SUSY Dark Matter with Vector Boson Fusion at the LHC Probing SUSY Dark Matter with Vector Boson Fusion at the LHC Alfredo Gurrola (Vanderbilt University) 1 Snowmass Meeting Particle Physics & Cosmology The identity of dark matter is one of the most profound

More information

Probing SUSY Contributions to Muon g-2 at LHC and ILC

Probing SUSY Contributions to Muon g-2 at LHC and ILC Probing SUSY Contributions to Muon g-2 at LHC and ILC Motoi Endo (Tokyo) Based on papers in collaborations with ME, Hamaguchi, Iwamoto, Yoshinaga ME, Hamaguchi, Kitahara, Yoshinaga ME, Hamaguchi, Iwamoto,

More information

Overview of LHC Searches in Colorless SUSY Sectors

Overview of LHC Searches in Colorless SUSY Sectors Overview of LHC Searches in Colorless SUSY Sectors Teruki Kamon Texas A&M University & Kyungpook National University WCU High Energy Collider Physics Seminar Kyungpook National University Daegu, Korea

More information

Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung

Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung e + Z*/γ τ + e - τ Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung 1 Outline Introduction of the International Linear Collider (ILC) Introduction of (g μ -2) in the

More information

Status of ATLAS+CMS SUSY searches

Status of ATLAS+CMS SUSY searches Status of ATLAS+CMS SUSY searches Renaud Brunelière Uni. Freiburg ~ ~ pp b b1 X candidate 2 b-tagged jets pt ~ 152 GeV and 96 GeV E miss T ~ 205 GeV, M CT (bb) ~ 201 GeV Status of ATLAS+CMS SUSY searches

More information

Probing SUSY Dark Matter at the LHC

Probing SUSY Dark Matter at the LHC Probing SUSY Dark Matter at the LHC Kechen Wang Mitchell Institute for Fundamental Physics and Astronomy Texas A&M University Preliminary Examination, Feb, 24 OUTLINE Supersymmetry dark matter (DM) Relic

More information

Early SUSY Searches in Events with Leptons with the ATLAS-Detector

Early SUSY Searches in Events with Leptons with the ATLAS-Detector Early SUSY Searches in Events with Leptons with the ATLAS-Detector Timo Müller Johannes Gutenberg-Universität Mainz 2010-29-09 EMG Annual Retreat 2010 Timo Müller (Universität Mainz) Early SUSY Searches

More information

SUSY searches at LHC and HL-LHC perspectives

SUSY searches at LHC and HL-LHC perspectives SUSY searches at LHC and HL-LHC perspectives Maximilian Goblirsch-Kolb, on behalf of the ATLAS and CMS collaborations 26.10.2017, LCWS 2017, Strasbourg SUSY particle production in p-p collisions Two main

More information

Sneutrino dark matter and its LHC phenomenology

Sneutrino dark matter and its LHC phenomenology Sneutrino dark matter and its LHC phenomenology Chiara Arina Physics challenges in the face of LHC-14 workshop @ IFT 1 September 23 th 2014 Bolshoi simulation, NASA Sneutrino dark matter in the MSSM? Left-handed

More information

Summary of Group C ILC Physics Capability

Summary of Group C ILC Physics Capability Summary of Group C ILC Physics Capability B. Barish, F. Borzumati, A. Cohen, M. Endo, K. Fujii, M. Ibe, A. Ishikawa, S. Kanemura, E. Kato, R. Kitano, J. Lykken, M. Nojiri, T. Sanuki, M. Spiropulu, Y. Sumino,

More information

Jürgen R. Reuter, DESY. BSM Physics at High-Energy ee Colliders

Jürgen R. Reuter, DESY. BSM Physics at High-Energy ee Colliders BSM Physics at + High-Energy e e Colliders Jürgen R. Reuter, DESY J.R.Reuter BSM Physics at High-Energy ee Colliders CLIC 2015, CERN, 28.1.2015 Physics at High-Energy e+ e- Colliders High-energy e+ e-

More information

Measuring Dark Matter Properties with High-Energy Colliders

Measuring Dark Matter Properties with High-Energy Colliders Measuring Dark Matter Properties with High-Energy Colliders The Dark Matter Problem The energy density of the universe is mostly unidentified Baryons: 5% Dark Matter: 20% Dark Energy: 75% The dark matter

More information

The HL-LHC physics program

The HL-LHC physics program 2013/12/16 Workshop on Future High Energy Circular Collider 1 The HL-LHC physics program Takanori Kono (KEK/Ochanomizu University) for the ATLAS & CMS Collaborations Workshop on Future High Energy Circular

More information

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea mued mass spectrum Figure 3.2: (Taken from [46]). The full spectrum of the UED model at the first KK level,

More information

SFB project B1: Jenny List DESY - Hamburg SFB Kolloquium Physics beyond the Standard Model at the ILC:

SFB project B1: Jenny List DESY - Hamburg SFB Kolloquium Physics beyond the Standard Model at the ILC: SFB project B1: Physics beyond the Standard Model at the ILC Contents: Jenny List DESY - Hamburg SFB Kolloquium 26.10.2006 A few words to introduce myself Physics beyond the Standard Model at the ILC:

More information

CMS Search for Supersymmetry at the LHC

CMS Search for Supersymmetry at the LHC CMS Search for Supersymmetry at the LHC [Credits] Images of Baryon Acoustic Bscillations with Cosmic Microwave Background by E.M. Huff, the SDSS-III team, and the South Pole Telescope team. Graphic by

More information

Contributions by M. Peskin, E. Baltz, B. Sadoulet, T. Wizansky

Contributions by M. Peskin, E. Baltz, B. Sadoulet, T. Wizansky Contributions by M. Peskin, E. Baltz, B. Sadoulet, T. Wizansky Dark Matter established as major component of the Universe: CMB determination of its relic density further confirmed by SNs and galaxy clusters;

More information

Search for Supersymmetry at CMS

Search for Supersymmetry at CMS Search for Supersymmetry at CMS Teruki Kamon on behalf of the CMS Collaboration Mitchell Institute for Fundamental Physics and Astronomy Texas A&M University Mitchell Conference on Collider Physics, Dark

More information

Dark matter searches and prospects at the ATLAS experiment

Dark matter searches and prospects at the ATLAS experiment Dark matter searches and prospects at the ATLAS experiment Wendy Taylor (York University) for the ATLAS Collaboration TeVPA 2017 Columbus, Ohio, USA August 7-11, 2017 Dark Matter at ATLAS Use 13 TeV proton-proton

More information

CMS Searches for New Physics

CMS Searches for New Physics CMS Searches for New Physics Christian Autermann, for the CMS collaboration I. Phys. Inst. RWTH Aachen University, Germany QCD14 2 Overview Searches for New Physics at CMS Inclusive search for Supersymmetry

More information

Searching for Non-Colored SUSY at CMS. Alfredo Gurrola Vanderbilt University Dark Matter Workshop at Mitchell Institute TAMU, May 25, 2016

Searching for Non-Colored SUSY at CMS. Alfredo Gurrola Vanderbilt University Dark Matter Workshop at Mitchell Institute TAMU, May 25, 2016 Searching for Non-Colored SUSY at CMS Alfredo Gurrola Vanderbilt University Dark Matter Workshop at Mitchell Institute TAMU, May 25, 2016 1 30,000,000,000,000,000,000,000 stars in 350 billion large galaxies

More information

SUSY Phenomenology & Experimental searches

SUSY Phenomenology & Experimental searches SUSY Phenomenology & Experimental searches Alex Tapper Slides available at: http://www.hep.ph.ic.ac.uk/tapper/lecture.html Reminder Supersymmetry is a theory which postulates a new symmetry between fermions

More information

SUSY Models, Dark Matter and the LHC. Bhaskar Dutta Texas A&M University

SUSY Models, Dark Matter and the LHC. Bhaskar Dutta Texas A&M University SUSY odels, Dark atter and the LHC Bhaskar Dutta Texas A& University 11/7/11 Bethe Forum 11 1 Discovery Time We are about to enter into an era of major discovery Dark atter: we need new particles to explain

More information

Discovery Physics at the Large Hadron Collider

Discovery Physics at the Large Hadron Collider + / 2 GeV N evt 4 10 3 10 2 10 CMS 2010 Preliminary s=7 TeV -1 L dt = 35 pb R > 0.15 R > 0.20 R > 0.25 R > 0.30 R > 0.35 R > 0.40 R > 0.45 R > 0.50 10 1 100 150 200 250 300 350 400 [GeV] M R Discovery

More information

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002 Physics at e + e - Linear Colliders 4. Supersymmetric particles M. E. Peskin March, 2002 In this final lecture, I would like to discuss supersymmetry at the LC. Supersymmetry is not a part of the Standard

More information

SUSY at the LHC. Bhaskar Dutta Texas A&M University. LHCP 2018, 4-9 June

SUSY at the LHC. Bhaskar Dutta Texas A&M University. LHCP 2018, 4-9 June SUSY at the LHC Bhaskar Dutta Texas A&M University LHCP 2018, 4-9 June 2018 1 SUSY Solutions of many puzzles: DM candidate associated with 27% of the Universe Hierarchy problem (quantum correction of the

More information

Supersymmetry Without Prejudice at the LHC

Supersymmetry Without Prejudice at the LHC Supersymmetry Without Prejudice at the LHC Conley, Gainer, JLH, Le, Rizzo arxiv:1005.asap J. Hewett, 10 09 Supersymmetry With or Without Prejudice? The Minimal Supersymmetric Standard Model has ~120 parameters

More information

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential IL NUOVO CIMENTO 4 C (27) 8 DOI.393/ncc/i27-78-7 Colloquia: IFAE 26 Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential M. Testa LNF-INFN - Frascati (RM), Italy

More information

Supersymmetry at the ILC

Supersymmetry at the ILC Supersymmetry at the ILC Abdelhak DJOUADI (LPT Paris Sud). Introduction 2. High precision measurements 3. Determination of the SUSY lagrangian 4. Connection to cosmology 5. Conclusion For more details,

More information

Searches for Supersymmetry at ATLAS

Searches for Supersymmetry at ATLAS Searches for Supersymmetry at ATLAS Renaud Brunelière Uni. Freiburg On behalf of the ATLAS Collaboration pp b b X candidate 2 b-tagged jets pt 52 GeV and 96 GeV E T 205 GeV, M CT (bb) 20 GeV Searches for

More information

Top Quark Physics at the LHC

Top Quark Physics at the LHC Top Quark Physics at the LHC Ayana Arce HEP 0 Lectures #7 March 4, 203 Outline Introduction 2 Why are top quarks interesting? 3 Creating Top Quarks 4 Identifying Top Quarks 5 Some LHC results 6 Beyond

More information

New physics at the LHC

New physics at the LHC New physics at the LHC Giacomo Polesello INFN Sezione di Pavia Motivations for going beyond Standard Model Observations unexplained by SM Dark matter problem Matter-antimatter asymmetry problem Fine-tuning

More information

The search for missing energy events at the LHC and implications for dark matter search (ATLAS and CMS)

The search for missing energy events at the LHC and implications for dark matter search (ATLAS and CMS) The search for missing energy events at the LHC and implications for dark matter search (ATLAS and CMS) Valery P. Andreev UCLA representing the CMS collaboration th UCLA Symposium on Sources and Detection

More information

Search for squarks and gluinos with the ATLAS detector. Jeanette Lorenz (LMU München)

Search for squarks and gluinos with the ATLAS detector. Jeanette Lorenz (LMU München) Search for squarks and gluinos with the ATLAS detector Jeanette Lorenz (LMU München) Research Area B Science Day, Supersymmetry Symmetry between fermions and bosons Only possible extension of Poincare

More information

SUSY at Accelerators (other than the LHC)

SUSY at Accelerators (other than the LHC) SUSY at Accelerators (other than the LHC) Beate Heinemann, University of Liverpool Introduction Final LEP Results First Tevatron Run 2 Results Summary and Outlook IDM 2004, Edinburgh, September 2004 Why

More information

SUSY at Accelerators (other than the LHC)

SUSY at Accelerators (other than the LHC) SUSY at Accelerators (other than the LHC) Beate Heinemann, University of Liverpool Introduction Final LEP Results First Tevatron Run 2 Results Summary and Outlook IDM 2004, Edinburgh, September 2004 Why

More information

James E. Brau Center for High Energy Physics, University of Oregon, Eugene, OR USA

James E. Brau Center for High Energy Physics, University of Oregon, Eugene, OR USA 5 GeV ILC Operating Scenarios Center for High Energy Physics, University of Oregon, Eugene, OR USA E-mail: jimbrau@uoregon.edu Tim Barklow SLAC National Accelerator Laboratory, Menlo Park, CA USA E-mail:

More information

arxiv:hep-ph/ v1 17 Apr 2000

arxiv:hep-ph/ v1 17 Apr 2000 SEARCH FOR NEW PHYSICS WITH ATLAS AT THE LHC arxiv:hep-ph/0004161v1 17 Apr 2000 V.A. MITSOU CERN, EP Division, CH-1211 Geneva 23, Switzerland and University of Athens, Physics Department, Nuclear and Particle

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Abdelhak DJOUADI (LPT Orsay/Next Southampton)

Abdelhak DJOUADI (LPT Orsay/Next Southampton) SUSY@ILC Abdelhak DJOUADI (LPT Orsay/Next Southampton) 1. Probing SUSY 2. Precision SUSY measurements at the ILC 3. Determining the SUSY Lagrangian 4. Summary From the physics chapter of the ILC Reference

More information

Yukawa and Gauge-Yukawa Unification

Yukawa and Gauge-Yukawa Unification Miami 2010, Florida Bartol Research Institute Department Physics and Astronomy University of Delaware, USA in collaboration with Ilia Gogoladze, Rizwan Khalid, Shabbar Raza, Adeel Ajaib, Tong Li and Kai

More information

CMS Searches for SUSY in Hadronic Final States

CMS Searches for SUSY in Hadronic Final States CMS Searches for SUSY in Hadronic Final States Teruki Kamon on behalf of the CMS Collaboration Mitchell Institute for Fundamental Physics and Astronomy Texas A&M University JnHF 2018: Santa Fe Jets and

More information

SUSY searches at the LHC * and Dark Matter

SUSY searches at the LHC * and Dark Matter SUSY searches at the LHC * and Dark Matter Elisabetta Barberio ATL-PHYS-SLIDE-2009-025 26 February 2009 School of Physics The University of Melbourne/Australia Dark 2009: Seventh International Heidelberg

More information

SUSY Searches : lessons from the first LHC Run

SUSY Searches : lessons from the first LHC Run SUSY Searches : lessons from the first LHC Run P. Pralavorio, On behalf of the ATLAS and CMS Collaborations. CPPM, Aix-Marseille Univ. and CNRS/INP3, 63 avenue de Luminy, case 9, 388 Marseille cedex 9,

More information

ATLAS-CONF October 15, 2010

ATLAS-CONF October 15, 2010 ATLAS-CONF-2010-096 October 15, 2010 Data-driven background estimation for the H τ + τ τ h search at 7 TeV with the ATLAS detector Ian Howley 7 December 2010 1 Motivation One of the primary LHC physics

More information

The ILC and its complementarity to the LHC

The ILC and its complementarity to the LHC The ILC and its complementarity to the LHC Outline: 1. ILC physics motivation 2. ILC LHC synergy 31 st Johns Hopkins Workshop Heidelberg 2007 3. LHC ILC implications Klaus Desch Universität Bonn The Terascale

More information

Summary of ILD performance at SPS1a

Summary of ILD performance at SPS1a Summary of ILD performance at SPSa Mikael Berggren, Nicola d Ascenzo, Peter Schade, and Olga Stempel DESY -FLC Notekstr. 85, 67 Hamburg -Germany arxiv:9.434v [hep-ex] 4 Feb 9 The performance of the ILD

More information

Status of Supersymmetric Models

Status of Supersymmetric Models Status of Supersymmetric Models Sudhir K Vempati CHEP, IISc Bangalore Institute of Physics, Bhubhaneswar Feb, 203 Outline Why Supersymmetry? Structure of MSSM Experimental Status New models of SUSY S/(S+B)

More information

Beyond the SM: SUSY. Marina Cobal University of Udine

Beyond the SM: SUSY. Marina Cobal University of Udine Beyond the SM: SUSY Marina Cobal University of Udine Why the SM is not enough The gauge hierarchy problem Characteristic energy of the SM: M W ~100 GeV Characteristic energy scale of gravity: M P ~ 10

More information

Probing the Connection Between Supersymmetry and Dark Matter

Probing the Connection Between Supersymmetry and Dark Matter Probing the Connection Between Supersymmetry and Dark Matter Bhaskar Dutta Texas A&M University Physics Colloquium, OSU, March 30, 2006 March 30, 2006 Probing the Connection Between SUSY and Dark Matter

More information

Search for SUperSYmmetry SUSY

Search for SUperSYmmetry SUSY PART 3 Search for SUperSYmmetry SUSY SUPERSYMMETRY Symmetry between fermions (matter) and bosons (forces) for each particle p with spin s, there exists a SUSY partner p~ with spin s-1/2. q ~ g (s=1)

More information

LHC signals for SUSY discovery and measurements

LHC signals for SUSY discovery and measurements 06 March 2009 ATL-PHYS-SLIDE-2009-038 LHC signals for SUSY discovery and measurements Vasiliki A. Mitsou (for the ATLAS and CMS Collaborations) IFIC Valencia PROMETEO I: LHC physics and cosmology 2-6 March,

More information

Discovery potential for SUGRA/SUSY at CMS

Discovery potential for SUGRA/SUSY at CMS Discovery potential for SUGRA/SUSY at CMS Stefano Villa, Université de Lausanne, April 14, 2003 (Based on talk given at SUGRA20, Boston, March 17-21, 2003) Many thanks to: Massimiliano Chiorboli, Filip

More information

Searches for Beyond SM Physics with ATLAS and CMS

Searches for Beyond SM Physics with ATLAS and CMS Searches for Beyond SM Physics with ATLAS and CMS (University of Liverpool) on behalf of the ATLAS and CMS collaborations 1 Why beyond SM? In 2012 the Standard Model of Particle Physics (SM) particle content

More information

Searches for electroweak production of supersymmetric gauginos and sleptons with the ATLAS detector

Searches for electroweak production of supersymmetric gauginos and sleptons with the ATLAS detector Searches for electroweak production of supersymmetric gauginos and sleptons with the ATLAS detector Christopher Bock on behalf of the ATLAS Collaboration SUSY5 - August 7, 5 Introduction Outline Introduction

More information

Taller de Altas Energías Michael Holzbock September 7, LMU Munich

Taller de Altas Energías Michael Holzbock September 7, LMU Munich Search for top squark pair production in final states with two τ leptons, jets, and missing transverse momentum in s = TeV pp-collisions with the ATLAS detector Taller de Altas Energías 6 Michael Holzbock

More information

ILC Operating Scenarios. ILC Parameters Joint Working Group

ILC Operating Scenarios. ILC Parameters Joint Working Group June 24, 2015 ILC-NOTE-2015-068 DESY 15-2 IHEP-AC-2015-002 KEK Preprint 2015-17 SLAC-PUB-16309 June, 2015 ILC Operating Scenarios ILC Parameters Joint Working Group T. Barklow, J. Brau, K. Fujii, J. Gao,

More information

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Peter Krieger Carleton University Physics Motivations Experimental Theoretical New particles searches Standard Model Higgs

More information

Overall CMS SUSY search strategy

Overall CMS SUSY search strategy GGI workshop Overall CMS SUSY search strategy Filip Moortgat (ETH Zurich) Florence, October 22, 2012 GGI workshop 2012 Filip Moortgat (ETH Zurich) 1 Outline Strategy for the first data Assume pair production

More information

CERN, December, Searches for Dark Matter at the LHC in forward proton mode

CERN, December, Searches for Dark Matter at the LHC in forward proton mode CERN, 18-19 December, 2019 Searches for Dark Matter at the LHC in forward proton mode Valery Khoze (IPPP, Durham & PNPI, St. Petersburg)) (in collaboration with Marek Tasevsky, Lucian Harland-Lang and

More information

Searches for SUSY & Exotics with ATLAS

Searches for SUSY & Exotics with ATLAS Searches for SUSY & Exotics with ATLAS Evelyn Thomson University of Pennsylvania May 17 2017 BLV 2017 Cleveland, Ohio 1 Outline Introduction Supersymmetry searches Gluinos Scalar top Electroweakinos Exotic

More information

Collider Searches for Dark Matter

Collider Searches for Dark Matter Collider Searches for Dark Matter AMELIA BRENNAN COEPP-CAASTRO WORKSHOP 1 ST MARCH 2013 Introduction Enough introductions to dark matter (see yesterday) Even though we don t know if DM interacts with SM,

More information

Recent Results on New Phenomena and Higgs Searches at DZERO

Recent Results on New Phenomena and Higgs Searches at DZERO Recent Results on New Phenomena and Higgs Searches at DZERO Neeti Parashar Louisiana Tech University Ruston, Louisiana U.S.A. 1 Outline Motivation for DØ Run II Detector at Fermilab The Fermilab Tevatron

More information

Searches for Exotica with CMS

Searches for Exotica with CMS Searches for Exotica with CMS Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA NTU, Singapore 17 th May 2017 Introduction to Searches Searches for Outline New

More information

LHC and Dark Matter 07/23/10. Bhaskar Dutta Texas A&M University

LHC and Dark Matter 07/23/10. Bhaskar Dutta Texas A&M University LHC and Dark atter 7/3/ Bhaskar Dutta Texas A& University Discovery Time We are about to enter into an era of major discovery Dark atter: we need new particles to explain the content of the universe Standard

More information

Perspectives on Future Supersymmetry at Colliders

Perspectives on Future Supersymmetry at Colliders Perspectives on Future Supersymmetry at Colliders Sunghoon Jung Korea Institute for Advanced Study (KIAS) The Future of High Energy Physics @ HKUST IAS Based on collaborations with B.Batell, E.J.Chun,

More information

LHC searches for momentum dependent DM interactions

LHC searches for momentum dependent DM interactions LHC searches for momentum dependent interactions Daniele Barducci w/ A. Bharucha, Desai, Frigerio, Fuks, Goudelis, Kulkarni, Polesello and Sengupta arxiv:1609.07490 Daniele Barducci LHC searches for momentum

More information

Physics analyses with LHC data collected in CMS experiment

Physics analyses with LHC data collected in CMS experiment Physics analyses with LHC data collected in CMS experiment Kajari Mazumdar DHEP Annual talk: Kajari Mazumdar 1 Platter Activities of recent times Standard Model (SM) physics: Drell-Yan process Mass distribution

More information

A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING

A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING UC @ Santa Barbara Feb. 2nd, 2011 A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING Tao Liu UC @ Santa Barbara Higgs Boson And Particle Physics The Standard Model (SM) is a successful theory of describing the

More information

THE STATUS OF NEUTRALINO DARK MATTER

THE STATUS OF NEUTRALINO DARK MATTER THE STATUS OF NEUTRALINO DARK MATTER BIBHUSHAN SHAKYA CORNELL UNIVERSITY CETUP 2013 Workshop June 25, 2013 Based on hep-ph 1208.0833, 1107.5048 with Maxim Perelstein, hep-ph 1209.2427 The favorite / most

More information

SEARCH FOR PHYSICS BEYOND STANDARD MODEL AT THE LHC. Daniele del Re Sapienza Università & INFN Sezione Roma

SEARCH FOR PHYSICS BEYOND STANDARD MODEL AT THE LHC. Daniele del Re Sapienza Università & INFN Sezione Roma SEARCH FOR PHYSICS BEYOND STANDARD MODEL AT THE LHC Daniele del Re Sapienza Università & INFN Sezione Roma WHY BSM Several open issues implying Physics beyond Standard Model. Some examples: 1. Why only

More information

DPG Sascha Caron (Freiburg)

DPG Sascha Caron (Freiburg) DPG 2010 Sascha Caron (Freiburg) Outline 2 Reminder: Why is SUSY interesting? SUSY production at LHC LHC, ATLAS and CMS status What can we expect in the next 2 years? Summary SUSY Reminder 3 SUPERSYMMETRY

More information

arxiv:hep-ex/ v1 30 Sep 1997

arxiv:hep-ex/ v1 30 Sep 1997 CMS CR 997/0 SEARCHES FOR SUSY AT LHC arxiv:hep-ex/970903v 30 Sep 997 For the CMS Collaboration Avtandyl Kharchilava Institute of Physics, Georgian Academy of Sciences, Tbilisi ABSTRACT One of the main

More information

Composite gluino at the LHC

Composite gluino at the LHC Composite gluino at the LHC Thomas Grégoire University of Edinburgh work in progress with Ami Katz What will we see at the LHC? Natural theory of EWSB? Supersymmetry? Higgs as PGSB (LH, RS-like)? Extra-

More information

Slepton, Charginos and Neutralinos at the LHC

Slepton, Charginos and Neutralinos at the LHC Slepton, Charginos and Neutralinos at the LHC Shufang Su U. of Arizona, UC Irvine S. Su In collaboration with J. Eckel, W. Shepherd, arxiv:.xxxx; T. Han, S. Padhi, arxiv:.xxxx; Outline Limitation of current

More information

Stop NLSPs. David Shih Rutgers University. Based on: Kats & DS ( ) Kats, Meade, Reece & DS ( )

Stop NLSPs. David Shih Rutgers University. Based on: Kats & DS ( ) Kats, Meade, Reece & DS ( ) Stop NLSPs David Shih Rutgers University Based on: Kats & DS (06.0030) Kats, Meade, Reece & DS (0.6444) This year, the LHC has performed extremely well. ATLAS and CMS have collected over 5/fb of data each!!

More information

DPF2015. Search for Chargino and Neutralino using Two Jets in Vector-Boson-Fusion Topology at CMS

DPF2015. Search for Chargino and Neutralino using Two Jets in Vector-Boson-Fusion Topology at CMS DPF5 Search for Chargino and Neutralino using Two Jets in Vector-Boson-Fusion Topology at CMS Andrés Flórez - Uniandes (COL) On behalf of the CMS Collaboration August 4, 5 Andrés Flórez (Uniandes - Colombia)

More information

Cosmology at the LHC

Cosmology at the LHC Cosmology at the LHC R. Arnowitt*, A. Aurisano*^, B. Dutta*, T. Kamon*, N. Kolev**, P. Simeon*^^, D. Toback*, P. Wagner*^ *Department of Physics, Texas A&M University **Department of Physics, Regina University

More information

Supersymmetry IV. Hitoshi Murayama (Berkeley) PiTP 05, IAS

Supersymmetry IV. Hitoshi Murayama (Berkeley) PiTP 05, IAS Supersymmetry IV Hitoshi Murayama (Berkeley) PiTP 05, IAS Plan Mon: Non-technical Overview what SUSY is supposed to give us Tue: From formalism to the MSSM Global SUSY formalism, Feynman rules, soft SUSY

More information

Searching for Dark Matter at the LHC

Searching for Dark Matter at the LHC Searching for Dark Matter at the LHC Tongyan Lin KICP/UChicago UCIrvine Seminar February 19, 2014 Dark matter, 2014 WIMP Miracle Weak-scale annihilation cross section gets you in the right ballpark to

More information

Theory Group. Masahiro Kawasaki

Theory Group. Masahiro Kawasaki Theory Group Masahiro Kawasaki Current members of theory group Staffs Masahiro Kawasaki (2004~) cosmology Masahiro Ibe (2011~) particle physics Postdoctoral Fellows Shuichiro Yokoyama Shohei Sugiyama Daisuke

More information

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G and Signatures of D-Type Gauge Mediation Ken Hsieh Michigan State Univeristy KH, Ph. D. Thesis (2007) ArXiv:0708.3970 [hep-ph] Other works with M. Luty and Y. Cai (to appear) MSU HEP Seminar November 6,

More information

Physics at the ILC. Ariane Frey, MPI München 38. Herbstschule Maria Laach Ariane Frey, MPI München

Physics at the ILC. Ariane Frey, MPI München 38. Herbstschule Maria Laach Ariane Frey, MPI München Physics at the ILC Beyond the Standard Model: Supersymmetry Extra Dimensions Heavy Z, Z, Strong EWSB Precision Physics (top, W, ) CLIC top, W LHC ILC Synergy Ariane Frey, MPI München 1 Higgs Profile Use

More information

Emerging the 7 TeV LHC & the LC

Emerging the 7 TeV LHC & the LC Emerging BSM @ the 7 TeV LHC & the LC T.G. Rizzo 03/16/11 THE QUESTIONS: How is electroweak symmetry broken? How is the hierarchy stabilized? What is the origin of flavor? Are there more than 4 dimensions?

More information

Master Thesis Topics 2013/14 in Experimental Particle Physics

Master Thesis Topics 2013/14 in Experimental Particle Physics July 2, 23 Master Thesis Topics 23/4 in Experimental Particle Physics at LS Schaile At LS Schaile we offer a broad spectrum of master thesis topics in experimental elementary particle physics. Contacts:

More information

Dark Matter in ATLAS

Dark Matter in ATLAS Dark Matter in ATLAS Silvia Resconi INFN Milano (on behalf of the ATLAS Collaboration) Ordinary Matter Dark Matter Dark Energy Rencontre de Moriond: QCD and High Energy Interactions 21st March 2016 Outline

More information

Probing Dark Matter at the LHC

Probing Dark Matter at the LHC July 15, 2016 PPC2016 1 Probing Dark Matter at the LHC SM SM DM DM Search for production of DM particles from interacting SM particles Models tested at ATLAS assume DM WIMP Infer DM production through

More information

Study of supersymmetric tau final states with Atlas at LHC: discovery prospects and endpoint determination

Study of supersymmetric tau final states with Atlas at LHC: discovery prospects and endpoint determination Study of supersymmetric tau final states with Atlas at LHC: discovery prospects and endpoint determination University of Bonn Outlook: supersymmetry: overview and signal LHC and ATLAS invariant mass distribution

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -017/130 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH11 GENEVA 3, Switzerland 08 May 017 (v3, 11 May 017) Searches for

More information

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC 15.01.2010 Marek Olechowski Institut of Theoretical Physics, University of Warsaw LIGHT GLUINOS? Early supersymmetry discovery potential of the LHC Phenomenology

More information

PoS(CORFU2016)133. SUSY searches with the ATLAS detector

PoS(CORFU2016)133. SUSY searches with the ATLAS detector Instituto de Física Corpuscular (IFIC), CSIC Universitat de València, Parc Científic de la U.V., C/ Catedrático José Beltrán 2, E-46980 Paterna (Valencia), Spain E-mail: vasiliki.mitsou@ific.uv.es Supersymmetry

More information

SUSY searches with ATLAS

SUSY searches with ATLAS SUSY searches with ATLAS on behalf of the ATLAS Collaboration University of Victoria / TRIUMF, Canada June 29 2015 QFTHEP - Samara 1/23 Outline: From Mysterious to Science ATLAS and the LHC are zooming

More information

Light neutralino dark matter

Light neutralino dark matter Light Neutralino Dark Matter Shufang Su U. of Arizona Mitchell Workshop Texas A&M May 15, 2014 S. Su T. Han, Z. Liu and SS, to appear Outline Introduction/Motiation Light neutralino dark matter A1 /H1

More information

LHC Studies on the Electroweak Sector of MSSM

LHC Studies on the Electroweak Sector of MSSM LHC Studies on the Electroweak Sector of MSSM Shufang Su U. of Arizona, UC Irvine S. Su In collaboration with J. Eckel, W. Shepherd, arxiv:.65; T. Han, S. Padhi, arxiv:.xxxx; Outline Limitation of current

More information

Detection of SUSY Signals in Stau-Neutralino

Detection of SUSY Signals in Stau-Neutralino Detection of SUSY Signals in Stau-Neutralino Coannhilation at the LHC - Finger Print of CDM - R. Arnowitt, 1) A. Aurisano, 1)* B. Dutta, 1) T. Kamon, 1) V. Khotilovich, 1)* N. Kolev, ) P. Simeon, 1)**

More information

Doing LHC analyses without knowing everything

Doing LHC analyses without knowing everything Doing LHC analyses without knowing everything Alan Barr University of Oxford 27/03/2013 Alan Barr, University of Oxford 1 Not knowing everything Absolute ignorance Limits & bounds Relative ignorance Significance-like

More information

Breaking Degeneracies in the MSSM: Does the ILC Solve the LHC Inverse Problem?

Breaking Degeneracies in the MSSM: Does the ILC Solve the LHC Inverse Problem? Breaking Degeneracies in the MSSM: Does the ILC Solve the LHC Inverse Problem? C. Berger, J. Gainer, JLH, B. Lillie, T. Rizzo arxiv:0711.1374 (short version) arxiv:0711.xxxx (long version) CERN07 J. Hewett

More information

Complementary M H Measurements at ILC

Complementary M H Measurements at ILC Complementary M H Measurements at ILC (i) Threshold cross-section, ii) Direct reconstruction Graham W. Wilson October 26, 217 Graham W. Wilson Complementary M H Measurements at ILC October 26, 217 1 /

More information

Cristiano Alpigiani Shanghai Jiao Tong University Shanghai, 18 May 2017

Cristiano Alpigiani Shanghai Jiao Tong University Shanghai, 18 May 2017 Searches for dark matter in ATLAS Shanghai Jiao Tong University Shanghai, 18 May 2017 Dark Matter and Particle Physics Astrophysical evidence for the existence of dark matter! First observed by Fritz Zwicky

More information