Searches for Natural SUSY with RPV. Andrey Katz. C. Brust, AK, R. Sundrum, Z. Han, AK, M. Son, B. Tweedie, 1210.XXXX. Harvard University

Size: px
Start display at page:

Download "Searches for Natural SUSY with RPV. Andrey Katz. C. Brust, AK, R. Sundrum, Z. Han, AK, M. Son, B. Tweedie, 1210.XXXX. Harvard University"

Transcription

1 Searches for C. Brust, AK, R. Sundrum, Z. Han, AK, M. Son, B. Tweedie, 121.XXXX Harvard University Frontiers Beyond the Standard Model III, Minneapolis, October 13, 212 (Harvard) October, 13 1 / 25

2 Outline (Harvard) October, 13 2 / 25

3 Why? SUSY was a good and motivated new physics candidate (hierarchy problem, unification). Now we know that there is no SUSY (in its simple version) beneath the TeV scale. How can we hide SUSY? Effective SUSY - light 3rd generation superpartners, heavy 1st and 2nd generation scalars. This scenario addresses the hierarchy problem of the SM and hides from the LHC. SM effective SUSY solves the little hierarchy up to 1 TeV 1 TeV EW scale solution of the large hierarchy problem (full SUSY, strong coupling...??) Adopt bottom-up approach to. We do not specify a particular mediation pattern and use a Natural SUSY as an effective theory with a cutoff 1 TeV (Harvard) October, 13 3 / 25

4 More on spectrum of Stops should not be too heavy to cancel the top-divergence in the Higgs mass. Perfect naturalness the average mass is 4 GeV. There is at least one sbottom (part of the LH multiplet) which is light m bl m tl Wino and Bino should not be too heavy m W 1 TeV, m B 3 TeV RH sbottom should be in the spectrum to cancel U(1) Y D-term divergence (1-3 TeV) Higgsinos should not be too heavy (tree-level fine tuning) Gluinos should cancel the leading divergence in the stop-sbottom mass. If gluinos are Majorana m g 2m t, but it can be heavier by factor of 2 or 3 if the gluinos are Dirac. All other particles can be of order 1 TeV, and we effectively integrate them out of the theory (Harvard) October, 13 4 / 25

5 1 1 1 theory Bounds on RPC [GeV] m χ ~ ~ b 1 -b 1 ~, b 1 b+ χ CDF 2.65 fb D 5.2 fb 1 ~ b b χ 1 forbidden ATLAS s = 7 TeV m~ [GeV] b CL s CL s CL s ± Observed Limit (95% C.L.) Expected Limit (95% C.L.) Expected Limit ±1 σ 1 σ NLO scale unc. L dt = 2.5 fb Reference point, Bounds on gluino are much stronger (multi-jets + /E T, SS dileptons, multi b-tag) [GeV] m χ ~ g- ~ g, ~ g tt χ 1 CL S ATLAS 95% C.L. limits. σ SUSY -lepton, 6-9 jets ATLAS-CONF SS-leptons, 4 jets ATLAS-CONF b-jets arxiv: g ~ ttχ forbidden 1 Preliminary [L int [L int [L int not included. = 5.8 fb, 8 TeV] = 5.8 fb, 8 TeV] = 4.7 fb, 7 TeV] Expected Observed Expected Observed Expected Observed m~ [GeV] g Do these searches cover the entire parameter space of? (Harvard) October, 13 5 / 25

6 R parity: conserving or violating? We assumed that the cutoff of the theory is 1 TeV. Even if the R-parity is conserved, operators like QQQL will cause rapid proton decay. Therefore we should either consider UV completions which are supersymmetric with R-parity or assume that the proton is protected by some other symmetry (lepton or baryon number). In this talk we will consider RPV scenario. Gluinos As we will see gluinos are relatively easy to find, one can extend bounds on gluino up to O(TeV) even in RPV case. Focus first on heavy gluinos, beyond the reach of 8 TeV LHC. (Harvard) October, 13 6 / 25

7 Constraints on RPV SUSY RPV superpotential W RPV = µ H u L+λLLe c +λ LQd c +λ u c d c d c Proton decay problem either lepton or baryon number conservation. If lepton number is violated, SUSY typically leads to multi-lepton signatures and it is already constrained by the LHC searches. BNV W κ t R d c i dc j. Constraints n n, stringent constraints, but proportional to Majorana mass of gluino and very sensitive to tanβ and other parameters K K, forces κ (Harvard) October, 13 7 / 25

8 Spectrum and decay modes The LSP always decays either into jets or into a top and jets. Neutralino is not necessarily an LSP, stop can easily be an LSP. Assume: A stop is LSP (mostly RH, w/ mixing), RPV is so small, that the resonant is tiny, decays proceed through RPV only if it is the only available decay. What decays should we look for? mass gluino > 1 TeV the heavy stop Z emission the lightest sbottom W emission the lightest stop Lacking part - Higgsinos. Decays of sbottom into Higgsino and stop are suppressed either by Y b or by phase space, therefore b W ( ) t 1 is not affected. BR( t 2 Z(h) t 1 ) can be reduced if Higgsino is lighter that t 2. j j (Harvard) October, 13 8 / 25

9 Light stop: search for dijet resonances Signature: two equal mass resonances decaying into two jets. Should look for 4-jets events reconstructing two equal-mass resonances (similar to existing coloron search). The existing bound on a BNV stop decaying into 2 jets is 82 GeV (LEP) Very light stops very hard for the LHC. For m t = 1 GeV we will never trigger on vast majority of signal events. σ( t t ) m=15 GeV 6 pb, σ( t t ) m=3 GeV 1 pb No exclusions yet after full 7 TeV run, becomes even harder since all the trigger thresholds went up at 8 TeV run. (Harvard) October, 13 9 / 25

10 b tw ( ) transitions Assume: the LH doublet soft mass is larger than m tr. The splitting inside the LH doublet mostly comes from F tr (SUSY top contribution). Spectrum t 2 b t 1. If m t1 < m H < m b, the transition Γ( b Hb) y b 2. b Ht transition is likely phase space suppressed, unless the mass splittings are not too large. We neglect all b decays through Higgsinos. Needed search: 2 relatively soft leptons with 4 or more jets which reconstruct 2 resonance with the same mass. Naturalness prefers modest mass splittings between the stop and the sbottom. (Harvard) October, 13 1 / 25

11 Search strategies and cuts Dominant background: dileptonic t t with two additional hard jets Cluster the event with anti-k T, clustering R =.7. Demand two isolated leptons, at least 4 jets with p T > 3 GeV. Try all possible pairings between the 4 leading jets and pick up the combination which minimizes the invariant mass difference between the pairs. Discard the event if the minimal mass difference exceeds 1 GeV. /E T > 35 GeV, S T > 4 GeV. What else distinguishes signal from background? P T of the leading lepton in signal and background samples miss E T distribution in signal and background Normalized rate Normalized rate t p (l ) miss E T (Harvard) October, / 25

12 Search strategy - 2 p T (l) and /E T distributions look so different for reason. The W in the signal events is either off shell or just marginally on shell. We can use a cut on dimensionless variables r /ET = / E T S T, r l = p T(l 1 ) S T Ratio of the leading lepton to S T Ratio of missing E T to S T Normalized rate Normalized rate T 1 T p (l )/S miss E /S T T We use the cuts r /ET <.15 and r l <.15. (Harvard) October, / 25

13 Results How does stop decay? Stop decays into two jets, coming from two different down-type quarks. Possible combinations are ds, db, sb. We do not know the flavor structure of the RPV operator. It might have the dominant coupling to the b-quark b-jets both in our signal and in our background. If it couples to ds, we can perform b-veto to reduce the background. Reference point: m b = 3 GeV, m t = 217 GeV Without b-veto: With b-veto: Dijet invariant mass Dijet invariant mass Events/1 GeV Events/1 GeV jj M jj M (Harvard) October, / 25

14 Could this be discovered by cut-and-count? Here we used kinematics of the signal event to see it on top of t t background. Can we give up on this and simply use all our cuts for cut-and count search? Apply the same cuts, do not reconstruct two same-mass resonances and do not discard events with large minimal mass difference. Events/1 GeV distribution S T S T Invariant mass of two leading jets in the event Events/1 GeV Maybe the invariant mass of two leading jets can help? M jj (Harvard) October, / 25

15 t 2 t 1 : strength and weakness of multileptons t 2 t 1 Z(h) ideal for multilepton searches, do not need to reconstruct the full resonance: Why it is not generic? ~ t This mode Y ~ + t and it is not phase space H suppressed. Unlike b W ( ) t 1 this mode is very sensitive to Higgsinos and we can b be left without multileptons. Analysis of Higgsino mode is challenging. (Harvard) October, / 25

16 How does gluino event look like? Decay into the lightest stop: Naively looks like a t t event with four (or more) extra jets. Can we see these events in simple cut-and-count experiments? Can we we use more elaborate kinematic handles? The most straightforward cut-and-count technique one can suggest: SS tops in the same event SS dileptons in the same event. (Harvard) October, / 25

17 Same-sign dileptons Gripaios and Allanach, 212 Big advantage of this approach: very distinctive, low-background signature. Since the backgrounds are small we can safely decrease the cut on /E T, the backgrounds are still under control. Why would we like to have other tools: This is a really powerful tool in RPC case, where we have 4 tops in the event, but in the RPV case there are only 2 tops, BR 2.5% This rate is not model independent, it can we further diminished if gluino masses are mostly Dirac Can we do even better? Can we use more abundant channels (e.g. semi-leptonic) and base our cut-and-count techniques on the number of jets and the kinematic of the events? (Harvard) October, / 25

18 Cut-and-count in semileptonic channel Originally suggested by Lisanti, Shuster, Strassler, Toro, 211 What are the differences between a signal event and t t event: Expect more jets in average (naively 4 extra-jets) Expect much higher H T m g = 6 GeV, m t = 1/4 GeV m g = 8 GeV, m t = 1/6 GeV m g = 6/8 GeV, m t = 14/2 GeV m gluino = 6 GeV > 6 n jets normalized rate normalized rate normalized rate N j N j H T (Harvard) October, / 25

19 Cut and count experiment Distribution of H T in events with 7 or more jets: Stop masses 1 GeV and 4 GeV: Events, 2 fb m gluino = 6 GeV, n jets > 6 Events, 2 fb Stop masses 1 GeV and 6 GeV: m gluino = 8 GeV, n jets 6 5 > H T H T Gluinos up to 8 GeV are accessible with simple cut-and-count techniques, but we should try different cuts windows of H T. (Harvard) October, / 25

20 Reconstruction of resonances: 2 regimes If m g m t we can easily reconstruct the entire event, because stops and tops in the event are boosted, significantly reducing combinatorial uncertainties. Realistic choice of parameters for the boosted case: m g = 6 GeV, m t = 1 GeV; m g = 8 GeV, m t = 2 GeV These mass splittings are big enough to remove combinatorial uncertainties, but still too small to merge jets and leptons still can apply the cut on more than 6 jets. If the mass difference is not so big, we cannot use boosted techniques, but there are still two equal-mass jet resonances that we can try to reconstruct. (Harvard) October, 13 2 / 25

21 Reconstruction of boosted events Use events which passed cut on H T, N 7 narrow jets and an isolated lepton; recluster with R = 1.5, C/A algorithm Run top-tagger on the fat jets, if a jet is identified as a top candidate (very loose internal cuts) do not consider it for the next step. If more than one candidate have been identified, choose the candidate with the closest mass to 173 GeV. Pick up the highest p T fat jet (which is not top candidate) and decluster it using BDRS procedure. Plot the invariant mass of the subjets inside this jet. m BDRS jj (ht > 11 && nj > 6) m BDRS jj (ht > 11 && nj > 6) ) # events (2 fb 1 8 ) # events (2 fb BDRS mjj BDRS mjj (Harvard) October, / 25

22 Not boosted regime Basic observation. Assume that the stop is much heavier than the top. In this case it is likely that all four leading jets in the event are coming from the stops. We can start from the 4 jets with the highest p T and reconstruct two same-mass resonances. ) # events (2 fb mjj (ht > 11 && nj > 5) ) # events (2 fb mjj (ht > 11 && nj > 5) mjj mjj This technique works well for m t = 6 GeV, but for 4 GeV the peak is less sharp. For m t = 25 GeV, the peak is completely erased. Should include lower p T jet if we are looking for lighter stops. (Harvard) October, / 25

23 ) ) ) ) Not boosted regime - modification Include more jets in the search for the same mass resonances. Try all possible pairing between 5 or 6 leading jets in the even, choose the pair with the minimal invariant mass difference: Leading 4j, m t = 4 GeV # events (2 fb mjj (ht > 11 && nj > 5) Leading 5j, m t = 4 GeV # events (2 fb mjj (ht > 11 && nj > 5) mjj mjj mjj (ht > 13 && nj > 6) mjj (ht > 13 && nj > 6) Leading 4j, m t = 25 GeV # events (2 fb Leading 6j, m t = 25 GeV # events (2 fb mjj mjj (Harvard) October, / 25

24 Estimated reach and comparison with other techniques Current bounds Current bounds from SS dileptons are m g 5 GeV for sufficiently light stops (estimate of Gripaios and Allanach). In fact bounds from OS dileptons are slightly lower m g 5 GeV. The strongest bound comes from ATLAS BH searches, which almost excludes 6 GeV gluino. SS dileptons after 8 TeV run should have sensitivity up to 8 GeV (if the gluino mass is Majorana) OS dileptons should have slightly lower sensitivity BH - the best reach among the existing searches Our techniques - estimated reach up to m g 1.1TeV (Harvard) October, / 25

25 1. RPV with natural SUSY is a well motivated scenario 2. Propose new search which should be sensitive to certain RPV spectra, including those with very heavy gluinos. The cut-and-count search is unlikely to be conclusive in this case, but bump reconstruction should be unambiguous. 3. If gluinos are below TeV, even cut-and-count experiment in monoleptonic channel should have a good sensitivity for gluinos in RPV scenario. This search should not necessarily have a cut on /E T. 4. Cut and count combined with peak reconstruction should tell us whether there are gluinos below 1.1 TeV scale even in RPV case. (Harvard) October, / 25

Andrey Katz C. Brust, AK, S. Lawrence, and R. Sundrum; arxiv:

Andrey Katz C. Brust, AK, S. Lawrence, and R. Sundrum; arxiv: SUSY, the Third Generation and the LHC Andrey Katz C. Brust, AK, S. Lawrence, and R. Sundrum; arxiv:1011.6670 Harvard University January 9, 2012 Andrey Katz (Harvard) SUSY petite January 9, 2012 1 / 27

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March EW Naturalness in Light of the LHC Data Maxim Perelstein, Cornell U. ACP Winter Conference, March 3 SM Higgs: Lagrangian and Physical Parameters The SM Higgs potential has two terms two parameters: Higgs

More information

Probing SUSY Dark Matter at the LHC

Probing SUSY Dark Matter at the LHC Probing SUSY Dark Matter at the LHC Kechen Wang Mitchell Institute for Fundamental Physics and Astronomy Texas A&M University Preliminary Examination, Feb, 24 OUTLINE Supersymmetry dark matter (DM) Relic

More information

Recent searches for new particles using 13 TeV data with ATLAS at the LHC

Recent searches for new particles using 13 TeV data with ATLAS at the LHC Recent searches for new particles using 13 TeV data with ATLAS at the LHC Vivek Jain (on behalf of the ATLAS Collaboration) State University of New York, Albany MIAMI2015 Dec 19, 2015 Beyond the Standard

More information

Stop NLSPs. David Shih Rutgers University. Based on: Kats & DS ( ) Kats, Meade, Reece & DS ( )

Stop NLSPs. David Shih Rutgers University. Based on: Kats & DS ( ) Kats, Meade, Reece & DS ( ) Stop NLSPs David Shih Rutgers University Based on: Kats & DS (06.0030) Kats, Meade, Reece & DS (0.6444) This year, the LHC has performed extremely well. ATLAS and CMS have collected over 5/fb of data each!!

More information

Search for squarks and gluinos with the ATLAS detector. Jeanette Lorenz (LMU München)

Search for squarks and gluinos with the ATLAS detector. Jeanette Lorenz (LMU München) Search for squarks and gluinos with the ATLAS detector Jeanette Lorenz (LMU München) Research Area B Science Day, Supersymmetry Symmetry between fermions and bosons Only possible extension of Poincare

More information

Searches for Supersymmetry at ATLAS

Searches for Supersymmetry at ATLAS Searches for Supersymmetry at ATLAS Renaud Brunelière Uni. Freiburg On behalf of the ATLAS Collaboration pp b b X candidate 2 b-tagged jets pt 52 GeV and 96 GeV E T 205 GeV, M CT (bb) 20 GeV Searches for

More information

Discovery potential for SUGRA/SUSY at CMS

Discovery potential for SUGRA/SUSY at CMS Discovery potential for SUGRA/SUSY at CMS Stefano Villa, Université de Lausanne, April 14, 2003 (Based on talk given at SUGRA20, Boston, March 17-21, 2003) Many thanks to: Massimiliano Chiorboli, Filip

More information

Status of Supersymmetric Models

Status of Supersymmetric Models Status of Supersymmetric Models Sudhir K Vempati CHEP, IISc Bangalore Institute of Physics, Bhubhaneswar Feb, 203 Outline Why Supersymmetry? Structure of MSSM Experimental Status New models of SUSY S/(S+B)

More information

SUSY searches with ATLAS

SUSY searches with ATLAS SUSY searches with ATLAS on behalf of the ATLAS Collaboration University of Victoria / TRIUMF, Canada June 29 2015 QFTHEP - Samara 1/23 Outline: From Mysterious to Science ATLAS and the LHC are zooming

More information

Early SUSY Searches in Events with Leptons with the ATLAS-Detector

Early SUSY Searches in Events with Leptons with the ATLAS-Detector Early SUSY Searches in Events with Leptons with the ATLAS-Detector Timo Müller Johannes Gutenberg-Universität Mainz 2010-29-09 EMG Annual Retreat 2010 Timo Müller (Universität Mainz) Early SUSY Searches

More information

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Peter Krieger Carleton University Physics Motivations Experimental Theoretical New particles searches Standard Model Higgs

More information

Probing Dark Matter at the LHC

Probing Dark Matter at the LHC July 15, 2016 PPC2016 1 Probing Dark Matter at the LHC SM SM DM DM Search for production of DM particles from interacting SM particles Models tested at ATLAS assume DM WIMP Infer DM production through

More information

Nonthermal Dark Matter & Top polarization at Collider

Nonthermal Dark Matter & Top polarization at Collider Nonthermal Dark Matter & Top polarization at Collider Yu Gao Texas A&M University R.Allahverdi, M. Dalchenko, B.Dutta, YG, T. Kamon, in progress B. Dutta, YG, T. Kamon, arxiv: PRD 89 (2014) 9, 096009 R.

More information

Natural SUSY and the LHC

Natural SUSY and the LHC Natural SUSY and the LHC Clifford Cheung University of California, Berkeley Lawrence Berkeley National Lab N = 4 SYM @ 35 yrs I will address two questions in this talk. What is the LHC telling us about

More information

Desperately Seeking SUSY

Desperately Seeking SUSY Desperately Seeking SUSY Ben Allanach a (University of Cambridge) Please ask questions while I m talking a BCA, Gripaios, 1202.6616; BCA, Sridhar 1205.5170 Supersymmetric Copies H Supersymmetric Copies

More information

Search for top squark pair production and decay in four bodies, with two leptons in the final state, at the ATLAS Experiment with LHC Run2 data

Search for top squark pair production and decay in four bodies, with two leptons in the final state, at the ATLAS Experiment with LHC Run2 data Search for top squark pair production and decay in four bodies, with two leptons in the final state, at the ATLAS Experiment with LHC Run data Marilea Reale INFN Lecce and Università del Salento (IT) E-mail:

More information

Searching for Supersymmetry at the LHC David Stuart, University of California, Santa Barbara. CMS SUSY Search, D. Stuart, June 2011, Lisbon!

Searching for Supersymmetry at the LHC David Stuart, University of California, Santa Barbara. CMS SUSY Search, D. Stuart, June 2011, Lisbon! Searching for Supersymmetry at the LHC David Stuart, University of California, Santa Barbara CMS SUSY Search, D. Stuart, June 2011, Lisbon! 1! Searching for Supersymmetry at the LHC David Stuart, University

More information

SUSY searches at LHC and HL-LHC perspectives

SUSY searches at LHC and HL-LHC perspectives SUSY searches at LHC and HL-LHC perspectives Maximilian Goblirsch-Kolb, on behalf of the ATLAS and CMS collaborations 26.10.2017, LCWS 2017, Strasbourg SUSY particle production in p-p collisions Two main

More information

SUSY Phenomenology & Experimental searches

SUSY Phenomenology & Experimental searches SUSY Phenomenology & Experimental searches Alex Tapper Slides available at: http://www.hep.ph.ic.ac.uk/tapper/lecture.html Reminder Supersymmetry is a theory which postulates a new symmetry between fermions

More information

Searches for SUSY & Exotics with ATLAS

Searches for SUSY & Exotics with ATLAS Searches for SUSY & Exotics with ATLAS Evelyn Thomson University of Pennsylvania May 17 2017 BLV 2017 Cleveland, Ohio 1 Outline Introduction Supersymmetry searches Gluinos Scalar top Electroweakinos Exotic

More information

Carlos Sandoval Universidad Antonio Nariño On behalf of the ATLAS collaboration DIS Kobe, Japan

Carlos Sandoval Universidad Antonio Nariño On behalf of the ATLAS collaboration DIS Kobe, Japan Carlos Sandoval Universidad Antonio Nariño On behalf of the ATLAS collaboration DIS 2018 - Kobe, Japan 1 Search for long-lived massive particles (LLP) in events with displaced vertices (DV): arxiv:1710.04901v1

More information

Discovery Physics at the Large Hadron Collider

Discovery Physics at the Large Hadron Collider + / 2 GeV N evt 4 10 3 10 2 10 CMS 2010 Preliminary s=7 TeV -1 L dt = 35 pb R > 0.15 R > 0.20 R > 0.25 R > 0.30 R > 0.35 R > 0.40 R > 0.45 R > 0.50 10 1 100 150 200 250 300 350 400 [GeV] M R Discovery

More information

CMS Search for Supersymmetry at the LHC

CMS Search for Supersymmetry at the LHC CMS Search for Supersymmetry at the LHC [Credits] Images of Baryon Acoustic Bscillations with Cosmic Microwave Background by E.M. Huff, the SDSS-III team, and the South Pole Telescope team. Graphic by

More information

14th Lomonosov Conference on Elementary Particle Physics Moscow, 24 August 2009

14th Lomonosov Conference on Elementary Particle Physics Moscow, 24 August 2009 M. Biglietti University of Rome Sapienza & INFN On behalf of the ATLAS Collaboration 1 14th Lomonosov Conference on Elementary Particle Physics Moscow, 24 August 2009 Theoretically favored candidates for

More information

Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University

Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University Probing Light Nonthermal Dark Matter @ LHC Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University Outline Minimal extension to SM for baryogenesis & dark matter Current constraints

More information

CMS Searches for SUSY in Final States with Taus. Alfredo Gurrola (Vanderbilt) on behalf of the CMS Collaboration

CMS Searches for SUSY in Final States with Taus. Alfredo Gurrola (Vanderbilt) on behalf of the CMS Collaboration CMS Searches for SUSY in Final States with Taus Alfredo Gurrola (Vanderbilt) on behalf of the CMS Collaboration Why SUSY with Taus? 2 Theoretical motivation ( Naturalness ) SUSY can cancel top loop corrections

More information

Non-Standard Higgs Decays

Non-Standard Higgs Decays Non-Standard Higgs Decays David Kaplan Johns Hopkins University in collaboration with M McEvoy, K Rehermann, and M Schwartz Standard Higgs Decays Standard Higgs Decays 1 _ bb 140 GeV WW BR for SM Higgs

More information

Lessons From the First Round of SUSY Searches on the Way to 1 fb -1 at the LHC

Lessons From the First Round of SUSY Searches on the Way to 1 fb -1 at the LHC Lessons From the First Round of SUSY Searches on the Way to 1 fb -1 at the LHC Philip Schuster Perimeter Institute for Theoretical Physics/ Institute for Advanced Studies WCLHC Meeting, UCSB April 15,

More information

Status of ATLAS+CMS SUSY searches

Status of ATLAS+CMS SUSY searches Status of ATLAS+CMS SUSY searches Renaud Brunelière Uni. Freiburg ~ ~ pp b b1 X candidate 2 b-tagged jets pt ~ 152 GeV and 96 GeV E miss T ~ 205 GeV, M CT (bb) ~ 201 GeV Status of ATLAS+CMS SUSY searches

More information

On behalf of the ATLAS and CMS Collaborations

On behalf of the ATLAS and CMS Collaborations On behalf of the ATLAS and CMS Collaborations Reza Goldouzian Université libre de Bruxelles 1 Ø There are several models of physics beyond the standard model require new particles that couple to quarks

More information

arxiv: v1 [hep-ph] 29 Dec 2017 SUSY (ATLAS) André Sopczak on behalf of the ATLAS Collaboration

arxiv: v1 [hep-ph] 29 Dec 2017 SUSY (ATLAS) André Sopczak on behalf of the ATLAS Collaboration arxiv:1712.10165v1 [hep-ph] 29 Dec 2017 SUSY (ATLAS) André Sopczak on behalf of the ATLAS Collaboration Institute of Experimental and Applied Physics, Czech Technical University in Prague, Czech Republic

More information

Search for SUperSYmmetry SUSY

Search for SUperSYmmetry SUSY PART 3 Search for SUperSYmmetry SUSY SUPERSYMMETRY Symmetry between fermions (matter) and bosons (forces) for each particle p with spin s, there exists a SUSY partner p~ with spin s-1/2. q ~ g (s=1)

More information

SUSY Searches : lessons from the first LHC Run

SUSY Searches : lessons from the first LHC Run SUSY Searches : lessons from the first LHC Run P. Pralavorio, On behalf of the ATLAS and CMS Collaborations. CPPM, Aix-Marseille Univ. and CNRS/INP3, 63 avenue de Luminy, case 9, 388 Marseille cedex 9,

More information

Slepton, Charginos and Neutralinos at the LHC

Slepton, Charginos and Neutralinos at the LHC Slepton, Charginos and Neutralinos at the LHC Shufang Su U. of Arizona, UC Irvine S. Su In collaboration with J. Eckel, W. Shepherd, arxiv:.xxxx; T. Han, S. Padhi, arxiv:.xxxx; Outline Limitation of current

More information

Composite gluino at the LHC

Composite gluino at the LHC Composite gluino at the LHC Thomas Grégoire University of Edinburgh work in progress with Ami Katz What will we see at the LHC? Natural theory of EWSB? Supersymmetry? Higgs as PGSB (LH, RS-like)? Extra-

More information

Florencia Canelli On behalf of the ATLAS and CMS collaborations. University of Zürich TOP2014 Cannes, France

Florencia Canelli On behalf of the ATLAS and CMS collaborations. University of Zürich TOP2014 Cannes, France Florencia Canelli On behalf of the ATLAS and CMS collaborations University of Zürich TOP2014 Cannes, France Prepared with help from James Ferrando from ATLAS F. Canelli, University of Zürich TOP24 2 Largest

More information

Searches for SUSY in Final States with Photons

Searches for SUSY in Final States with Photons SUSY4: The nd International Conference on Supersymmetry and Unification of Fundamental Interactions" -6 July 4, Manchester, England" Searches for SUSY in Final States with Photons On Behalf of the CMS

More information

CMS Searches for SUSY in Hadronic Final States

CMS Searches for SUSY in Hadronic Final States CMS Searches for SUSY in Hadronic Final States Teruki Kamon on behalf of the CMS Collaboration Mitchell Institute for Fundamental Physics and Astronomy Texas A&M University JnHF 2018: Santa Fe Jets and

More information

arxiv: v1 [hep-ph] 31 Oct 2011

arxiv: v1 [hep-ph] 31 Oct 2011 Natural SUSY Endures DESY 11-193 CERN-PH-TH/265 Michele Papucci, 1, 2 Joshua T. Ruderman, 1, 2 and Andreas Weiler 3, 4 1 Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

More information

Higgs Searches at CMS

Higgs Searches at CMS Higgs Searches at CMS Ashok Kumar Department of Physics and Astrophysics University of Delhi 110007 Delhi, India 1 Introduction A search for the Higgs boson in the Standard Model (SM) and the Beyond Standard

More information

Probing SUSY Contributions to Muon g-2 at LHC and ILC

Probing SUSY Contributions to Muon g-2 at LHC and ILC Probing SUSY Contributions to Muon g-2 at LHC and ILC Motoi Endo (Tokyo) Based on papers in collaborations with ME, Hamaguchi, Iwamoto, Yoshinaga ME, Hamaguchi, Kitahara, Yoshinaga ME, Hamaguchi, Iwamoto,

More information

Search for Supersymmetry at CMS in all-hadronic final states

Search for Supersymmetry at CMS in all-hadronic final states Search for Supersymmetry at CMS in all-hadronic final states The 9th Particles and Nuclei International Conference, MIT Matthias Schröder (Universität Hamburg) on behalf of the CMS Collaboration 5 July

More information

BSM physics at the LHC. Akimasa Ishikawa (Kobe University)

BSM physics at the LHC. Akimasa Ishikawa (Kobe University) BSM physics at the LHC Akimasa Ishikawa (Kobe University) 7 Jan. 2011 If SM Higgs exists Why BSM? To solve the hierarchy and naturalness problems O(1 TeV) Quadratic divergence of Higgs mass If SM Higgs

More information

Searches for BSM Physics in Events with Top Quarks (CMS)

Searches for BSM Physics in Events with Top Quarks (CMS) Searches for BSM Physics in Events with Top Quarks (CMS) On behalf of the CMS collaboration SUSY 2014 Manchester, July 22nd 2014 The Top Quark Top quark special due to its high mass main responsible for

More information

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis David McKeen and AEN, arxiv:1512.05359 Akshay Ghalsasi, David McKeen, AEN., arxiv:1508.05392 (Thursday: Kyle Aitken, David

More information

LHC Results in Majid Hashemi IPM, Tehran Wednesday, 11 th May 2011

LHC Results in Majid Hashemi IPM, Tehran Wednesday, 11 th May 2011 LHC Results in 2010-11 Majid Hashemi IPM, Tehran Wednesday, 11 th May 2011 1 LHC results after a year of successful data taking Majid Hashemi IPM, 18th May 2011 http://cms.web.cern.ch/cms/timeline/index.html

More information

Overall CMS SUSY search strategy

Overall CMS SUSY search strategy GGI workshop Overall CMS SUSY search strategy Filip Moortgat (ETH Zurich) Florence, October 22, 2012 GGI workshop 2012 Filip Moortgat (ETH Zurich) 1 Outline Strategy for the first data Assume pair production

More information

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G and Signatures of D-Type Gauge Mediation Ken Hsieh Michigan State Univeristy KH, Ph. D. Thesis (2007) ArXiv:0708.3970 [hep-ph] Other works with M. Luty and Y. Cai (to appear) MSU HEP Seminar November 6,

More information

Outline: Introduction Search for new Physics Model driven Signature based General searches. Search for new Physics at CDF

Outline: Introduction Search for new Physics Model driven Signature based General searches. Search for new Physics at CDF PE SU Outline: Introduction Search for new Physics Model driven Signature based General searches R Search for new Physics at CDF SUperSYmmetry Standard Model is theoretically incomplete SUSY: spin-based

More information

Search for physics beyond the Standard Model at LEP 2

Search for physics beyond the Standard Model at LEP 2 Search for physics beyond the Standard Model at LEP 2 Theodora D. Papadopoulou NTU Athens DESY Seminar 28/10/03 1 Outline Introduction about LEP Alternatives to the Higgs mechanism Technicolor Contact

More information

Top Quark Physics at the LHC

Top Quark Physics at the LHC Top Quark Physics at the LHC Ayana Arce HEP 0 Lectures #7 March 4, 203 Outline Introduction 2 Why are top quarks interesting? 3 Creating Top Quarks 4 Identifying Top Quarks 5 Some LHC results 6 Beyond

More information

SUSY-Yukawa Sum Rule at the LHC

SUSY-Yukawa Sum Rule at the LHC SUSY-Yukawa Sum Rule at the LHC David Curtin bla arxiv:1004.5350, arxiv:xxxx.xxxx In Collaboration with Maxim Perelstein, Monika Blanke bla Cornell Institute for High Energy Phenomenology SUSY 2010 Parallel

More information

Probing SUSY Dark Matter with Vector Boson Fusion at the LHC

Probing SUSY Dark Matter with Vector Boson Fusion at the LHC Probing SUSY Dark Matter with Vector Boson Fusion at the LHC Alfredo Gurrola (Vanderbilt University) 1 Snowmass Meeting Particle Physics & Cosmology The identity of dark matter is one of the most profound

More information

BEYOND THE SM (II) Kaustubh Agashe (University of Maryland)

BEYOND THE SM (II) Kaustubh Agashe (University of Maryland) BEYOND THE SM (II) Kaustubh Agashe (University of Maryland) ierarchy problems (from lecture 1) Planck-weak hierarchy problem Flavor (hierarchy) puzzle...extra dimensions can address both... Extra dimensions:

More information

sin(2θ ) t 1 χ o o o

sin(2θ ) t 1 χ o o o Production of Supersymmetric Particles at High-Energy Colliders Tilman Plehn { Search for the MSSM { Production of Neutralinos/Charginos { Stop Mixing { Production of Stops { R Parity violating Squarks

More information

BSM Higgs Searches at ATLAS

BSM Higgs Searches at ATLAS BSM Higgs Searches at ATLAS Martin zur Nedden Humboldt-Universität zu Berlin for the ATLAS Collaboration SUSY Conference 2014 Manchester July 20 th July 25 th, 2014 Introduction Discovery of a scalar Boson

More information

Beyond the SM: SUSY. Marina Cobal University of Udine

Beyond the SM: SUSY. Marina Cobal University of Udine Beyond the SM: SUSY Marina Cobal University of Udine Why the SM is not enough The gauge hierarchy problem Characteristic energy of the SM: M W ~100 GeV Characteristic energy scale of gravity: M P ~ 10

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

Review of ATLAS experimental results (II)

Review of ATLAS experimental results (II) Review of ATLAS experimental results (II) Rachid Mazini Academia Sinica Taiwan CTEQ 2012 summer school Lima, Peru 30 July -8 August Rachid Mazini, Academia Sinica 1 Outline part II Higgs searches H, H

More information

Phenomenology of a light singlet-like scalar in NMSSM

Phenomenology of a light singlet-like scalar in NMSSM Phenomenology of a light singlet-like scalar in NMSSM Institute of Theoretical Physics, University of Warsaw Corfu Summer Institute, 12 September 2014 based on: MB, M. Olechowski and S. Pokorski, JHEP

More information

SUSY searches with ATLAS What did we learn with few fb -1?

SUSY searches with ATLAS What did we learn with few fb -1? SUSY searches with ATLAS What did we learn with few fb -? Iacopo Vivarelli Universität Freiburg I. Vivarelli - Marseille - 09 Feb 0 Wednesday, February 8, 0 Is the Standard Model enough? The Standard Model

More information

The search for missing energy events at the LHC and implications for dark matter search (ATLAS and CMS)

The search for missing energy events at the LHC and implications for dark matter search (ATLAS and CMS) The search for missing energy events at the LHC and implications for dark matter search (ATLAS and CMS) Valery P. Andreev UCLA representing the CMS collaboration th UCLA Symposium on Sources and Detection

More information

Searching for Non-Colored SUSY at CMS. Alfredo Gurrola Vanderbilt University Dark Matter Workshop at Mitchell Institute TAMU, May 25, 2016

Searching for Non-Colored SUSY at CMS. Alfredo Gurrola Vanderbilt University Dark Matter Workshop at Mitchell Institute TAMU, May 25, 2016 Searching for Non-Colored SUSY at CMS Alfredo Gurrola Vanderbilt University Dark Matter Workshop at Mitchell Institute TAMU, May 25, 2016 1 30,000,000,000,000,000,000,000 stars in 350 billion large galaxies

More information

Searches for Beyond SM Physics with ATLAS and CMS

Searches for Beyond SM Physics with ATLAS and CMS Searches for Beyond SM Physics with ATLAS and CMS (University of Liverpool) on behalf of the ATLAS and CMS collaborations 1 Why beyond SM? In 2012 the Standard Model of Particle Physics (SM) particle content

More information

Overview of LHC Searches in Colorless SUSY Sectors

Overview of LHC Searches in Colorless SUSY Sectors Overview of LHC Searches in Colorless SUSY Sectors Teruki Kamon Texas A&M University & Kyungpook National University WCU High Energy Collider Physics Seminar Kyungpook National University Daegu, Korea

More information

Searches for Exotica with CMS

Searches for Exotica with CMS Searches for Exotica with CMS Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA NTU, Singapore 17 th May 2017 Introduction to Searches Searches for Outline New

More information

Search for Pair Production of Stop Quarks Mimicking Top Event Signatures

Search for Pair Production of Stop Quarks Mimicking Top Event Signatures CDF/PUB/TOP/PUBLIC/9343 Search for Pair Production of Stop Quarks Mimicking Top Event Signatures The CDF Collaboration URL http://www-cdf.fnal.gov May 29, 2008 Abstract We present the search for the pair-produced

More information

arxiv:hep-ex/ v1 30 Sep 1997

arxiv:hep-ex/ v1 30 Sep 1997 CMS CR 997/0 SEARCHES FOR SUSY AT LHC arxiv:hep-ex/970903v 30 Sep 997 For the CMS Collaboration Avtandyl Kharchilava Institute of Physics, Georgian Academy of Sciences, Tbilisi ABSTRACT One of the main

More information

Search for Supersymmetry at CMS

Search for Supersymmetry at CMS Search for Supersymmetry at CMS Teruki Kamon on behalf of the CMS Collaboration Mitchell Institute for Fundamental Physics and Astronomy Texas A&M University Mitchell Conference on Collider Physics, Dark

More information

Dark matter searches and prospects at the ATLAS experiment

Dark matter searches and prospects at the ATLAS experiment Dark matter searches and prospects at the ATLAS experiment Wendy Taylor (York University) for the ATLAS Collaboration TeVPA 2017 Columbus, Ohio, USA August 7-11, 2017 Dark Matter at ATLAS Use 13 TeV proton-proton

More information

arxiv:hep-ph/ v1 17 Apr 2000

arxiv:hep-ph/ v1 17 Apr 2000 SEARCH FOR NEW PHYSICS WITH ATLAS AT THE LHC arxiv:hep-ph/0004161v1 17 Apr 2000 V.A. MITSOU CERN, EP Division, CH-1211 Geneva 23, Switzerland and University of Athens, Physics Department, Nuclear and Particle

More information

Final states with third generation quarks at 13 TeV. Pieter Everaerts. On Behalf of the ATLAS and CMS collaborations.

Final states with third generation quarks at 13 TeV. Pieter Everaerts. On Behalf of the ATLAS and CMS collaborations. Final states with third generation quarks at 13 TeV Pieter Everaerts University of California, Los Angeles On Behalf of the ATLAS and CMS collaborations March 17, 2013 Pieter Everaerts Searches with 3rd

More information

New physics in top pair production

New physics in top pair production New physics in top pair production Roman Lysák on behalf of the ATLAS and CMS Collaborations Institute of physics of the AS CR, Na Slovance 999/2, 82 2 Praha 8, Czech Republic DOI: http://dx.doi.org/.324/desy-proc-24-2/32

More information

Search for H ± and H ±± to other states than τ had ν in ATLAS

Search for H ± and H ±± to other states than τ had ν in ATLAS Search for H ± and H to other states than τ had ν in On behalf of the collaboration Louisiana Tech University E-mail: Catrin.Bernius@cern.ch esults of searches for charged Higgs bosons based on data from

More information

Boosted Top Resonance Searches at CMS

Boosted Top Resonance Searches at CMS Boosted Top Resonance Searches at CMS Justin Pilot, UC Davis on behalf of the CMS Collaboration Northwest Terascale Workshop, Using Jet Substructure University of Oregon 5 April 013 Introduction Many new

More information

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1 Physics 662 Particle Physics Phenomenology February 21, 2002 Physics 662, lecture 13 1 Physics Beyond the Standard Model Supersymmetry Grand Unified Theories: the SU(5) GUT Unification energy and weak

More information

Discovery potential of toppartners in a realistic composite Higgs model with early LHC data

Discovery potential of toppartners in a realistic composite Higgs model with early LHC data Discovery potential of toppartners in a realistic composite Higgs model with early LHC data Günther Dissertori, Elisabetta Furlan, Filip Moortgat, JHEP09(20)019 Kick-off Meeting Of The LHCPhenoNet Initial

More information

Dirac gauginos, R symmetry and the 125 GeV Higgs

Dirac gauginos, R symmetry and the 125 GeV Higgs Claudia Frugiuele Dirac gauginos, R symmetry and the 125 GeV Higgs with E.Bertuzzo, T. Grègoire and E. Ponton hep ph 1402.5432 GOAL 8, 14/08/2014 OUTLINE Dirac gauginos and natural SUSY R symmetric models

More information

New Particle and Interaction Search Results from CDF: BSM Higgs, Top and SUSY David Toback

New Particle and Interaction Search Results from CDF: BSM Higgs, Top and SUSY David Toback New Particle and Interaction Search Results from CDF: BSM Higgs, Top and SUSY David Toback Texas A&M University Mitchell Institute for Fundamental Physics and Astronomy October 2011 For the CDF Collaboration

More information

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model Lecture 03 The Standard Model of Particle Physics Part III Extensions of the Standard Model Where the SM Works Excellent description of 3 of the 4 fundamental forces Explains nuclear structure, quark confinement,

More information

Radiative natural SUSY with mixed axion-higgsino CDM

Radiative natural SUSY with mixed axion-higgsino CDM Radiative natural SUSY with mixed axion-higgsino CDM Howie Baer University of Oklahoma ``The imagination of nature is far, far greater than that of man : a data-driven approach to where SUSY might be hiding

More information

Searching for sneutrinos at the bottom of the MSSM spectrum

Searching for sneutrinos at the bottom of the MSSM spectrum Searching for sneutrinos at the bottom of the MSSM spectrum Arindam Chatterjee Harish-Chandra Research Insitute, Allahabad In collaboration with Narendra Sahu; Nabarun Chakraborty, Biswarup Mukhopadhyay

More information

Searches for electroweak production of supersymmetric gauginos and sleptons with the ATLAS detector

Searches for electroweak production of supersymmetric gauginos and sleptons with the ATLAS detector Searches for electroweak production of supersymmetric gauginos and sleptons with the ATLAS detector Christopher Bock on behalf of the ATLAS Collaboration SUSY5 - August 7, 5 Introduction Outline Introduction

More information

Fourth Generation and Dark Matter

Fourth Generation and Dark Matter Fourth Generation and Dark Matter Shufang Su U. of Arizona S. Su In collaboration with J. Alwall, J.L. Feng, J. Kumar ariv:.3366; x.xxxx. Saturday, June 4, Not the usual 4th generation... t t q q S. Su

More information

SUPERSYMETRY FOR ASTROPHYSICISTS

SUPERSYMETRY FOR ASTROPHYSICISTS Dark Matter: From the Cosmos to the Laboratory SUPERSYMETRY FOR ASTROPHYSICISTS Jonathan Feng University of California, Irvine 29 Jul 1 Aug 2007 SLAC Summer Institute 30 Jul 1 Aug 07 Feng 1 Graphic: N.

More information

Lecture 4 - Beyond the Standard Model (SUSY)

Lecture 4 - Beyond the Standard Model (SUSY) Lecture 4 - Beyond the Standard Model (SUSY) Christopher S. Hill University of Bristol Warwick Flavour ++ Week April 11-15, 2008 Recall the Hierarchy Problem In order to avoid the significant finetuning

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Supersymmetry Basics. J. Hewett SSI J. Hewett

Supersymmetry Basics. J. Hewett SSI J. Hewett Supersymmetry Basics J. Hewett SSI 2012 J. Hewett Basic SUSY References A Supersymmetry Primer, Steve Martin hep-ph/9709356 Theory and Phenomenology of Sparticles, Manual Drees, Rohini Godbole, Probir

More information

Higgs boson(s) in the NMSSM

Higgs boson(s) in the NMSSM Higgs boson(s) in the NMSSM U. Ellwanger, LPT Orsay Supersymmetry had a bad press recently: No signs for squarks/gluino/charginos/neutralinos... at the LHC Conflict (?) between naturalness and the Higgs

More information

Beyond the Standard Model searches with top quarks at D0

Beyond the Standard Model searches with top quarks at D0 Beyond the Standard Model searches with top quarks at D0 University of Manchester Oxford Road Manchester, M13 9PL, UK E-mail: peters@fnal.gov Due to its high mass and short lifetime, the top quark plays

More information

Physics at the Tevatron. Lecture IV

Physics at the Tevatron. Lecture IV Physics at the Tevatron Lecture IV Beate Heinemann University of California, Berkeley Lawrence Berkeley National Laboratory CERN, Academic Training Lectures, November 2007 1 Outline Lecture I: The Tevatron,

More information

Simplified models in collider searches for dark matter. Stefan Vogl

Simplified models in collider searches for dark matter. Stefan Vogl Simplified models in collider searches for dark matter Stefan Vogl Outline Introduction/Motivation Simplified Models for the LHC A word of caution Conclusion How to look for dark matter at the LHC? experimentally

More information

VBF SM Higgs boson searches with ATLAS

VBF SM Higgs boson searches with ATLAS VBF SM Higgs boson searches with Stefania Xella (for the collaboration) Niels Bohr Institute, Copenhagen University, Denmark E-mail: xella@nbi.dk The observation of a Standard Model Higgs boson produced

More information

A very light decaying particle search at the LHC

A very light decaying particle search at the LHC A very light decaying particle search at the LHC Myeonghun Park Junior Research Group (JRG) APCTP Possible reasons that we have not been able to observe a new physics yet 1. New physics is beyond the LHC

More information

Search for R-parity violating Supersymmetry. III Phys. Inst. A, RWTH Aachen

Search for R-parity violating Supersymmetry. III Phys. Inst. A, RWTH Aachen R-parity violating Supersymmetry III Phys. Inst. A, RWTH Aachen Introduction to R-parity violating SUSY Three DØ searches via non-zero LLE (short and long lived LSP) and LQD couplings Perspectives for

More information

arxiv: v1 [hep-ex] 8 Nov 2010

arxiv: v1 [hep-ex] 8 Nov 2010 Searches for Physics Beyond the Standard Model at CMS Sung-Won Lee, on behalf of the CMS Collaboration Texas Tech University, Lubbock, TX 799, USA Recent results on searches for physics beyond the Standard

More information

Supersymmetric Origin of Matter (both the bright and the dark)

Supersymmetric Origin of Matter (both the bright and the dark) Supersymmetric Origin of Matter (both the bright and the dark) C.E.M. Wagner Argonne National Laboratory EFI, University of Chicago Based on following recent works: C. Balazs,, M. Carena and C.W.; Phys.

More information

CMS. Saeid Paktinat. On behalf of the CMS Collaborations. (IPM, Tehran)

CMS. Saeid Paktinat. On behalf of the CMS Collaborations. (IPM, Tehran) SUSY @ CMS (IPM, Tehran) On behalf of the CMS Collaborations outline SUSY Common Signatures Some Examples Conclusion 2 Why SUperSYmmetry(1) SM describes a lot of experimental results very precisely, but

More information