One-Shot Quantum Information Theory I: Entropic Quantities. Nilanjana Datta University of Cambridge,U.K.

Size: px
Start display at page:

Download "One-Shot Quantum Information Theory I: Entropic Quantities. Nilanjana Datta University of Cambridge,U.K."

Transcription

1 One-Shot Quantu Inforaton Theory I: Entropc Quanttes Nlanjana Datta Unversty of Cabrdge,U.K.

2 In Quantu nforaton theory, ntally one evaluated: optal rates of nfo-processng tasks, e.g., data copresson, transsson of nforaton through a channel, etc. under the assupton of an asyptotc, eoryless settng Assue: nforaton sources & channels are eoryless They are avalable for asyptotcally any uses

3 E.g. Transsson of classcal nforaton classcal nfo N Nosy quantu channel Optal rate (of classcal nforaton transsson): classcal capacty C( N) axu nuber of bts transtted per use of N eoryless: there s no correlaton n the nose actng on successve nputs n N : n successve uses of the channel; ndependent

4 To evaluate C( N): asyptotc, eoryless settng classcal nfo n n N uses x E n encodng ( n ) x nput N n N n ( n) x ( ) channel output D n decodng POVM x ' p ( n ) e One requres : prob. of error 0 as n C( N): Optal rate of relable nforaton transsson

5 Entropc Quanttes Optal rates of nforaton-processng tasks n the asyptotc, eoryless settng Copresson of Inforaton: Meoryless quantu nfo. source Data copresson lt: S( ), H von Neuann entropy [Schuacher] Info Transsson thro' a eoryless quantu channel C( N) Classcal capacty --gven n ters of the Holevo capacty ; Quantu capacty Q( N) N [Holevo, Schuacher, Westoreland] [Lloyd, Shor, Devetak] --gven n ters of the coherent nforaton ;

6 These entropc quanttes are all obtanable fro a sngle parent quantty; Quantu relatve entropy: For, 0; Tr 1 D( ) : Tr log Tr lg o supp supp e.g. Data copresson lt: S( ) : Tr lo D( I) g ( I)

7 In real-world applcatons asyptotc eoryless settng not necessarly vald In practce: nforaton sources & channels are used a fnte nuber of tes; there are unavodable correlatons between successve uses (eory effects) Hence t s portant to evaluate optal rates for a fnte nuber of uses (or even a sngle use) of an arbtrary source or channel Evaluaton of correspondng optal rates: One-shot nforaton theory

8 One-shot nforaton theory classcal nfo N sngle use x E encodng x nput N N( x ) channel output D decodng POVM x ' One-shot classcal capacty error : C (1) ( N) Prob. of p e error: ax. nuber of bts that can be transtted on a sngle use of for soe N 0,

9 In the one-shot settng too Capactes, data copresson lt etc. are -- gven n ters of entropc quanttes Mn-/ax-/0- entropes (R.Renner) Obtanable fro certan (generalzed) relatve entropes Parent quanttes for optal rates n the one-shot settng D ( ) D ( ) D ( ) ax 0 n Max-relatve entropy 0-relatve Reny entropy Mn-relatve entropy super-parent : D ( ) Quantu Reny Dvergence (sandwched Reny relatve entropy) [Wlde et al; Muller-Lennert et al]

10 In the one-shot settng too Capactes, data copresson lt etc. are -- gven n ters of entropc quanttes Mn-/ax- entropes (R.Renner) Obtanable fro certan (generalzed) relatve entropes D ( ) D ( ) D ( ) ax 0 n 1 D( )? [ND, F.Ledtzky] D ( ) Quantu Reny Dvergence (sandwched Reny entropy) [Wlde et al; Muller-Lennert et al] 1 2 relatve Reny entropy D ( ) f [, ] 0

11 Outlne Matheatcal Tool: Sedefnte prograng Defntons of generalzed relatve entropes: D ( ), D ( ), D ( ) ax 0 n Propertes & operatonal sgnfcances of the Ther soothed versons Ther chldren: the n-, ax- and 0-entropes The super-parent : Quantu Reny Dvergence Relatonshp between D ( ) & D0 ( ) D ( )

12 Notatons & Defntons A H A quantu syste Hlbert space B ( H ): algebra of lnear operators actng on H P ( H ):set of postve operators D ( H ) P( H ): Lnear aps: If ts adjont ap: defned through set of densty atrces (states) : B ( H ) B( H ) A * : B A Tr ( ) Tr * ( ) B A B A Quantu operatons (quantu channels) : lnear CPTP ap B : A B

13 Matheatcal Tool Se-defnte prograng (SDP) A well-establshed for of convex optzaton The objectve functon s lnear n an nput constraned to a se-defnte cone Effcent algorths have been devsed for ts soluton

14 Matheatcal Tool (2) Se-defnte prograng (SDP) (, A, B); : P ( H ) P( H ) postvty-preservng ap Pral proble nze subject to AB, P ( H ), A B (forulaton:watrous) Dual proble AX axze Tr( BY ) Tr( ) ( X) B; subject to * ( Y) A; X 0; Y 0; Optal solutons: IF Slater s dualty condton holds.

15 Outlne Matheatcal Toolkt: Sedefnte prograng Defntons of generalzed relatve entropes: D ( ), D ( ), D ( ) ax 0 n

16 D ( H ), Defntons of generalzed relatve entropes P ( H ); supp supp ; Max-relatve entropy [ND] D ax ( ): nf : 2 ax 1/2 1/2 1/2 1/2 log ( ) 2 I Mn-relatve entropy [Dupus et al] D ( ): 2log n 1 2log F(, ) fdelty

17 D 0 Defntons of generalzed relatve entropes D ( H ), P ( H ); supp supp ; 0-relatve Reny entropy ( ): log Tr ( ) where denotes the projector onto supp contd. -relatve Reny entropy ( 1) 1 D 1 1 ( ): log Tr ( ) l D ( ) 0 = D ( ) 0

18 Propertes of generalzed relatve entropes Postvty: If, D ( H ), for * ax, 0, n D ( ) 0 * Data-processng nequalty: just as D( ) D ( ( ) ( )) D ( ) for any CPTP ap * * Invarance under jont untares: D ( UU UU ) D ( ) * * for any untary operator U Interestngly, D ( ) D ( ) D( ) D ( ) 0 n ax

19 Operatonal nterpretaton of the ax-relatve entropy Multple state dscrnaton proble: ts state Bob He does easureents to nfer the state: POVM Hs optal average success probablty: p a quantu syste & told 1 * 1 succ E1,.., E 1 : ax Tr 2 E 1,.., E : 0 E I; E I 1 E wth prob. 1 1

20 Theore 3 [M.Mosony & ND]: The optal average success probablty n ths ultple state dscrnaton proble s gven by: * p succ 1 n ax 1 D ax ( ) 2

21 Sketch of proof: Let 1 : bass n C Let 1 1 : 1,.., 1 * 1 : ax Tr E E succ E p 1 : 1 ax Tr ( )] [ POVM E E ( ); Tr ax Tr I Y Y Y C C H P H 1 ( ); E Y C P H Tr ; E I Y C H ( ) C P H

22 Sketch of proof: Let 1 : bass n C Let 1 1 : 1,.., 1 * 1 : ax Tr E E succ E p 1 : 1 ax Tr ( )] [ POVM E E ( ); Tr ax Tr I Y Y Y C C H P H 1 ( ); E Y C P H Tr ; E I Y C H ( ) C P H

23 Let 1 : p * 1 succ E1,.., E 1 Sketch of proof: bass n C Let : ax Tr E E 1 : POVM 1 : ax Tr [ ( E )] 1 1 P ( C H ) ax Tr YP ( C H ); Tr Y I C H Y Y 1 E Tr Y E I ; C P ( C H ); H SDP dualty condton holds [Koeng, Renner, Schaffner]

24 Pral proble Dual proble nze subject to AX axze Tr( BY ) Tr( ) ( X) B; subject to * ( Y) A; X 0; Y 0; nze subject to Tr( AX ) * =Tr : P ( C H ) P( H ) C Tr X I X C X 0; Tr( I X) Tr X H B : P ( H ) P( C H ); ax Tr YP ( C H ); Tr Y I C ; A H I H ; ( X) I X C Y * =TrC

25 * succ Sketch of proof contd: p n Tr X : X 0, I X ; C : n Tr X : X 0, X 1,2,.., 1 I X C 1 n Tr X : X 0, X 1,2,.., X X X; TrX TrX TrX 1 n X : 0, 1, 2,.., D ( H ) 1 n ax 1 M D TrX X =Tr X ; ; X TrX nf : 2 ax ( ) 2 Dax ( )

26 Operatonal nterpretaton of 0 Quantu bnary Bob receves a state hypothess testng: He does a easureent to nfer whch state t s POVM A Possble errors Type I Type II Error probabltes [ ] Tr(( I A) ) Tr( A ) ( I A) or & [ ] nference D (null hypothess) ( ): log Tr ( ) actual state Type I Type II (alternatve hypothess)

27 Suppose (POVM eleent) A Prob(Type I error) Prob(Type II error) Tr(( I A) ) Tr( A ) 0 Tr( ) Bob never nfers the state to be when t s BUT D 0 ( ) : log Tr 0 ( ) 2 D Hence 0 = Prob(Type II error Type I error = zero)

28 Suppose (POVM eleent) A Prob(Type I error) Prob(Type II error) Tr(( I A) ) Tr( A ) 0 Tr( ) Bob never nfers the state to be when t s BUT D 0 ( ) : log Tr In fact, n Prob(Type II error Type I error = zero) * D ( )

29 0.e., let 0A Ifor soe 0. Tr ( A ) 1 ( ) log * log Tr D 0 0 log *? 0AI Tr ( A ) 1 Tr(( I A) ); 0 Tr ( A) Tr ( ) 1 For choose A such that Tr ( A) 1 D ( ) 0 Soothed relatve entropes What f Bob has a sngle copy of the state but one allows non-zero but sall value of the Prob(Type I error)? * n Tr ( A ) * n Tr ( A ) log * ax log(tr ( A)) Hypothess testng relatve entropy [Wang & Renner] 0AI Tr ( A ) 1 D ( ) H

30 Copare operatonal sgnfcances of D & D( ) D( ) arses n asyptotc bnary hypothess testng Suppose Bob s gven any dentcal copes of the state He receves *( n) ( n) [0,1) : : 1 n ( n) n n H ( ) Bob s POVM A I A n,( ) Mnu type II error when type I error *( n) l log ( n) D( ) n [Quantu Sten s Lea] n

31 Operatonal nterpretatons n bnary hypothess testng D ( ) H One-shot settng; Sngle copy of the state: log * D( ) Asyptotc eoryless settng; Multple copes of the state: 1 n *( n) l log ( n) n [0,1) : n n (Bob receves dentcal copes of the state: or )

32 0. Sooth ax-relatve entropy D ( ) ax B ( ) : n D ( ) ax B ( ) : 0,Tr 1: F(, ) 1 fdelty 2 D ax ( ) & D ( ) 2 H can both be forulated as SDPs

33 Outlne Matheatcal Toolkt: Sedefnte prograng Defntons of generalzed relatve entropes: D ( ), D ( ), D ( ) ax 0 n Propertes & operatonal sgnfcances of the Ther chldren: the n-, ax- and 0-entropes

34 Just as: D ( ), D ( ) & D ( ) ax 0 n von Neuann entropy as parent quanttes for other entropes S D I ( ) ( ) ( I) H n ( ): D ax ( I) log ax H 0 ( ): ( ) D I 0 log rank( ) H ax ( ): D ( I) n [Renner] 2log Tr

35 Other n- & ax- entropes For a bpartte state AB : A B Condtonal entropy S( A B) S( ) S( ) Condtonal n-entropy H n ax D( I ) ( A B) : ax D ( I ) Max-condtonal entropy H H ax 0 AB B ax n B AB A B ( A B) : ax D ( I ) 0-condtonal entropy B 0 AB A B ( A B) : ax D ( I ) B B AB A B AB A B

36 They have nterestng atheatcal propertes: e.g. Dualty relaton: [Koeng, Renner, Schaffner]: For any purfcaton ax : ABC of a bpartte state H ( A B) H ( A C) n AB (just as for the von Neuann entropy): H ( A B) H( A C) -- and -- nterestng operatonal nterpretatons:

37 Condtonal n-entropy Operatonal nterpretatons axu achevable snglet fracton Condtonal ax-entropy [Koeng, Renner, Schaffner] decouplng accuracy Condtonal 0-entropy one-shot entangleent cost under LOCC [F.Busce, ND]

38 Operatonal nterpretatons contd. Condtonal n-entropy Max. achevable snglet fracton d 1 H H H AB A B A B d 1 AB AB AB 2 n ( AB ) 2 d ax F (d ), B : CPTP : ( ) A B AB AB fdelty Gven the bpartte state t s the axu overlap wth the snglet state quantu operatons AB, AB, that can be acheved by local on the subsyste B. B ax. entangled state [Koeng, Renner, Schaffner]

39 Operatonal nterpretatons contd. Condtonal ax-entropy Decouplng accuracy Dstance of AB, fro a product state H 2 ax ( AB ) 2 d ax F, A A AB A B B fdelty How rando appears fro the pont of vew of an adversary who has access to B. no correlatons; I A copletely xed state on HA d A Fro the cryptographc pont of vew: A B decoupled [Koeng, Renner, Schaffner]

40 Operatonal nterpretatons contd. Condtonal 0-entropy one-shot entangleent cost One-shot Entangleent Dluton Bell states Bell : LOCC Alce AB Bob One-shot entangleent cost E (1) ( ): C AB n = nu nuber of Bell states needed to prepare a sngle copy of AB va LOCC

41 Pure-state ensebles: and E E Operatonal nterpretatons contd. Theore [F.Busce & ND]: One-shot perfect entangleent cost of a bpartte state AB under LOCC: E (1) ( ) n H ( A R) C AB 0 p, ; AB p E p RAB R R AB AB E E Tr, RA B RAB AB AB AB classcal-quantu state E condtonal 0-entropy

42 Outlne Matheatcal Toolkt: Sedefnte prograng Defntons of generalzed relatve entropes: D ( ), D ( ), D ( ) ax 0 n Propertes & operatonal sgnfcances of the and ther chldren: the n-, ax- and 0-entropes Ther soothed versons The super-parent : Quantu Reny Dvergence D ( )

43 D ( ) D ( ) D ( ) ax 0 n Max-relatve entropy O-relatve Reny entropy Mn-relatve entropy super-parent : D ( ) Quantu Reny Dvergence (sandwched Reny entropy) [Wlde et al; Muller-Lennert et al]

44 super-parent : Quantu Reny Dvergence (sandwched Reny entropy) [Wlde et al; Muller-Lennert et al] D ( ) D ( ) D ( ) ax 0 n 1 2 D( ) 1 D ( ) D ( ) f [, ] 0

45 D ( H ), For (0,1) (1, ) : D Quantu Reny Dvergence 1 ( : Tr ) log ( ) ; 1 where Note: If [, ] 0 Tr ( Tr ( ) P ( H ); supp supp ; ) Tr 1 Tr D ( ) 1 log Tr ( 1 ) 1 D ( ) -relatve Reny entropy

46 D ( H ), For D Quantu Reny Dvergence 1 ( : Tr ) log ( ) ; 1 where Note: If [, ] 0 (0,1) (1, ) : Tr ( ) P ( H ); supp supp ; Non-coutatve generalzaton of D ( ) Tr ( 2 ) 2 Tr 1 Tr D ( ) 1 log Tr ( 1 ) 1 D ( ) -relatve Reny entropy

47 Two propertes of Quantu Reny Dvergence (1) Data-processng nequalty; For [Frank & Leb; Beg 2013] holds also for D ( ( ) ( ) ) D ( ) : D ( ), D( ), D ( ) n , 2 CPTP ap ax

48 Two propertes of Quantu Reny Dvergence 1 (1) Monotoncty under CPTP aps : For, 2 [Frank & Leb; Beg 2013] holds also for D ( ( ) ( ) ) D ( ) D ( ), D( ), D ( ) n (2) Jont convexty: D For 1 1, 2 ( p p ) p D ( ) holds also for D n ( ), D ( ) Note: D ( ) ax s quas-convex: [ND] ax ax [Frank & Leb] D ( p p ) ax D ( ) ax 1 n

49 What about D ( )? 0

50 Outlne Matheatcal Toolkt: Sedefnte prograng Defntons of generalzed relatve entropes: D ( ), D ( ), D ( ) ax 0 n Propertes & operatonal sgnfcances of the Ther chldren: the n-, ax- and 0-entropes Ther soothed versons The super-parent : Quantu Reny Dvergence D ( ) Relatonshp between D ( ) & D0 ( ) & ts plcaton

51 Theore: [ND, F.Ledtzky] If For, 0,Tr 1; f then supp supp, l D ( ) = D ( ) 0...(1) 0 0 supp supp ; then (1) does not necessarly hold D ( ): Quantu Reny Dvergence D ( ): 0 0-relatve Reny entropy D ( ) D ( ) D ( ) ax 0 n D( ) D ( ) D ( ) f [, ] 0

52 Theore: [ND, F.Ledtzky] If For, 0,Tr 1; f then supp supp, Proof (key steps): (1) (2) If l D ( ) = D ( ) 0...(1) 0 supp supp : 0 supp supp ; then (1) does not necessarly hold D l D ( ) l D ( ) 0 0 (Arak-Leb-Thrrng nequalty) supp supp : ( ) D ( ) If l D ( ) D ( )...( b) ( a)&( b) (1) supp supp ; (a varant of the Pnchng lea) f D ( )...( a ) 0

53 Proof of the fact: If l D ( ) = D ( ) 0 A sple counterexaple: 0 supp supp, then does not necessarly hold 1 0 ; c c 1 c (0,1)., 0,, 0. D ( ) 0 0 l D ( ) = - log(1 c) 0 0;

54 Suary Generalzed relatve entropes: D ( ), D ( ), D ( ) ax 0 n Propertes & soe operatonal sgnfcances D ( ): ax n ultple state dscrnaton, D 0 ( ): n bnary hypothess testng D0 D H Ther soothed versons; Ther chldren: the n-, ax- and 0-entropes The super-parent : Quantu Reny Dvergence D ( ) & D ( ) Relatonshp between 0 ( ) ( ) Operatonal sgnfcances of condtonal entropes D ( )

55 Thank you! Thanks also to: F.Busce, F.Brandao, M-H.Hseh, F.Ledtzky, M.Mosony, R.Renner, T.Rudolph,

How many singlets are needed to create a bipartite state via LOCC?

How many singlets are needed to create a bipartite state via LOCC? How many snglets are needed to create a bpartte state va LOCC? Nlanjana Datta Unversty of Cambrdge,U.K. jontly wth: Francesco Buscem Unversty of Nagoya, Japan [PRL 106, 130503 (2011)] ntanglement cannot

More information

Xiangwen Li. March 8th and March 13th, 2001

Xiangwen Li. March 8th and March 13th, 2001 CS49I Approxaton Algorths The Vertex-Cover Proble Lecture Notes Xangwen L March 8th and March 3th, 00 Absolute Approxaton Gven an optzaton proble P, an algorth A s an approxaton algorth for P f, for an

More information

Computational and Statistical Learning theory Assignment 4

Computational and Statistical Learning theory Assignment 4 Coputatonal and Statstcal Learnng theory Assgnent 4 Due: March 2nd Eal solutons to : karthk at ttc dot edu Notatons/Defntons Recall the defnton of saple based Radeacher coplexty : [ ] R S F) := E ɛ {±}

More information

Excess Error, Approximation Error, and Estimation Error

Excess Error, Approximation Error, and Estimation Error E0 370 Statstcal Learnng Theory Lecture 10 Sep 15, 011 Excess Error, Approxaton Error, and Estaton Error Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton So far, we have consdered the fnte saple

More information

Two Conjectures About Recency Rank Encoding

Two Conjectures About Recency Rank Encoding Internatonal Journal of Matheatcs and Coputer Scence, 0(205, no. 2, 75 84 M CS Two Conjectures About Recency Rank Encodng Chrs Buhse, Peter Johnson, Wlla Lnz 2, Matthew Spson 3 Departent of Matheatcs and

More information

A Radon-Nikodym Theorem for Completely Positive Maps

A Radon-Nikodym Theorem for Completely Positive Maps A Radon-Nody Theore for Copletely Postve Maps V P Belavn School of Matheatcal Scences, Unversty of Nottngha, Nottngha NG7 RD E-al: vpb@aths.nott.ac.u and P Staszews Insttute of Physcs, Ncholas Coperncus

More information

Entanglement vs Discord: Who Wins?

Entanglement vs Discord: Who Wins? Entanglement vs Dscord: Who Wns? Vlad Gheorghu Department of Physcs Carnege Mellon Unversty Pttsburgh, PA 15213, U.S.A. Januray 20, 2011 Vlad Gheorghu (CMU) Entanglement vs Dscord: Who Wns? Januray 20,

More information

y new = M x old Feature Selection: Linear Transformations Constraint Optimization (insertion)

y new = M x old Feature Selection: Linear Transformations Constraint Optimization (insertion) Feature Selecton: Lnear ransforatons new = M x old Constrant Optzaton (nserton) 3 Proble: Gven an objectve functon f(x) to be optzed and let constrants be gven b h k (x)=c k, ovng constants to the left,

More information

Applied Mathematics Letters

Applied Mathematics Letters Appled Matheatcs Letters 2 (2) 46 5 Contents lsts avalable at ScenceDrect Appled Matheatcs Letters journal hoepage: wwwelseverco/locate/al Calculaton of coeffcents of a cardnal B-splne Gradr V Mlovanovć

More information

Generalized measurements to distinguish classical and quantum correlations

Generalized measurements to distinguish classical and quantum correlations Generalzed measurements to dstngush classcal and quantum correlatons. R. Usha Dev Department of physcs, angalore Unversty, angalore-560 056, Inda and. K. Rajagopal, Department of omputer Scence and enter

More information

arxiv:quant-ph/ Feb 2000

arxiv:quant-ph/ Feb 2000 Entanglement measures and the Hlbert-Schmdt dstance Masanao Ozawa School of Informatcs and Scences, Nagoya Unversty, Chkusa-ku, Nagoya 464-86, Japan Abstract arxv:quant-ph/236 3 Feb 2 In order to construct

More information

Ph 219a/CS 219a. Exercises Due: Wednesday 12 November 2008

Ph 219a/CS 219a. Exercises Due: Wednesday 12 November 2008 1 Ph 19a/CS 19a Exercses Due: Wednesday 1 November 008.1 Whch state dd Alce make? Consder a game n whch Alce prepares one of two possble states: ether ρ 1 wth a pror probablty p 1, or ρ wth a pror probablty

More information

1 Review From Last Time

1 Review From Last Time COS 5: Foundatons of Machne Learnng Rob Schapre Lecture #8 Scrbe: Monrul I Sharf Aprl 0, 2003 Revew Fro Last Te Last te, we were talkng about how to odel dstrbutons, and we had ths setup: Gven - exaples

More information

XII.3 The EM (Expectation-Maximization) Algorithm

XII.3 The EM (Expectation-Maximization) Algorithm XII.3 The EM (Expectaton-Maxzaton) Algorth Toshnor Munaata 3/7/06 The EM algorth s a technque to deal wth varous types of ncoplete data or hdden varables. It can be appled to a wde range of learnng probles

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

On the Construction of Polar Codes

On the Construction of Polar Codes On the Constructon of Polar Codes Ratn Pedarsan School of Coputer and Councaton Systes, Lausanne, Swtzerland. ratn.pedarsan@epfl.ch S. Haed Hassan School of Coputer and Councaton Systes, Lausanne, Swtzerland.

More information

On the Construction of Polar Codes

On the Construction of Polar Codes On the Constructon of Polar Codes Ratn Pedarsan School of Coputer and Councaton Systes, Lausanne, Swtzerland. ratn.pedarsan@epfl.ch S. Haed Hassan School of Coputer and Councaton Systes, Lausanne, Swtzerland.

More information

Recap: the SVM problem

Recap: the SVM problem Machne Learnng 0-70/5-78 78 Fall 0 Advanced topcs n Ma-Margn Margn Learnng Erc Xng Lecture 0 Noveber 0 Erc Xng @ CMU 006-00 Recap: the SVM proble We solve the follong constraned opt proble: a s.t. J 0

More information

On the Finite-Length Performance of Universal Coding for k-ary Memoryless Sources

On the Finite-Length Performance of Universal Coding for k-ary Memoryless Sources Forty-ghth Annual Allerton Conference Allerton House, UIUC, Illnos, USA Septeber 9 - October, 00 On the Fnte-Length Perforance of Unversal Codng for -ary Meoryless Sources Ahad Bera and Faraarz Fer School

More information

LECTURE :FACTOR ANALYSIS

LECTURE :FACTOR ANALYSIS LCUR :FACOR ANALYSIS Rta Osadchy Based on Lecture Notes by A. Ng Motvaton Dstrbuton coes fro MoG Have suffcent aount of data: >>n denson Use M to ft Mture of Gaussans nu. of tranng ponts If

More information

Fermi-Dirac statistics

Fermi-Dirac statistics UCC/Physcs/MK/EM/October 8, 205 Fer-Drac statstcs Fer-Drac dstrbuton Matter partcles that are eleentary ostly have a type of angular oentu called spn. hese partcles are known to have a agnetc oent whch

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Designing Fuzzy Time Series Model Using Generalized Wang s Method and Its application to Forecasting Interest Rate of Bank Indonesia Certificate

Designing Fuzzy Time Series Model Using Generalized Wang s Method and Its application to Forecasting Interest Rate of Bank Indonesia Certificate The Frst Internatonal Senar on Scence and Technology, Islac Unversty of Indonesa, 4-5 January 009. Desgnng Fuzzy Te Seres odel Usng Generalzed Wang s ethod and Its applcaton to Forecastng Interest Rate

More information

Slobodan Lakić. Communicated by R. Van Keer

Slobodan Lakić. Communicated by R. Van Keer Serdca Math. J. 21 (1995), 335-344 AN ITERATIVE METHOD FOR THE MATRIX PRINCIPAL n-th ROOT Slobodan Lakć Councated by R. Van Keer In ths paper we gve an teratve ethod to copute the prncpal n-th root and

More information

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003 Tornado and Luby Transform Codes Ashsh Khst 6.454 Presentaton October 22, 2003 Background: Erasure Channel Elas[956] studed the Erasure Channel β x x β β x 2 m x 2 k? Capacty of Noseless Erasure Channel

More information

Lecture 19 of 42. MAP and MLE continued, Minimum Description Length (MDL)

Lecture 19 of 42. MAP and MLE continued, Minimum Description Length (MDL) Lecture 19 of 4 MA and MLE contnued, Mnu Descrpton Length (MDL) Wednesday, 8 February 007 Wlla H. Hsu, KSU http://www.kddresearch.org Readngs for next class: Chapter 5, Mtchell Lecture Outlne Read Sectons

More information

COS 511: Theoretical Machine Learning

COS 511: Theoretical Machine Learning COS 5: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #0 Scrbe: José Sões Ferrera March 06, 203 In the last lecture the concept of Radeacher coplexty was ntroduced, wth the goal of showng that

More information

Outline. Prior Information and Subjective Probability. Subjective Probability. The Histogram Approach. Subjective Determination of the Prior Density

Outline. Prior Information and Subjective Probability. Subjective Probability. The Histogram Approach. Subjective Determination of the Prior Density Outlne Pror Inforaton and Subjectve Probablty u89603 1 Subjectve Probablty Subjectve Deternaton of the Pror Densty Nonnforatve Prors Maxu Entropy Prors Usng the Margnal Dstrbuton to Deterne the Pror Herarchcal

More information

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner.

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner. (C) 998 Gerald B Sheblé, all rghts reserved Lnear Prograng Introducton Contents I. What s LP? II. LP Theor III. The Splex Method IV. Refneents to the Splex Method What s LP? LP s an optzaton technque that

More information

Column Generation. Teo Chung-Piaw (NUS) 25 th February 2003, Singapore

Column Generation. Teo Chung-Piaw (NUS) 25 th February 2003, Singapore Colun Generaton Teo Chung-Paw (NUS) 25 th February 2003, Sngapore 1 Lecture 1.1 Outlne Cuttng Stoc Proble Slde 1 Classcal Integer Prograng Forulaton Set Coverng Forulaton Colun Generaton Approach Connecton

More information

CHAPTER 6 CONSTRAINED OPTIMIZATION 1: K-T CONDITIONS

CHAPTER 6 CONSTRAINED OPTIMIZATION 1: K-T CONDITIONS Chapter 6: Constraned Optzaton CHAPER 6 CONSRAINED OPIMIZAION : K- CONDIIONS Introducton We now begn our dscusson of gradent-based constraned optzaton. Recall that n Chapter 3 we looked at gradent-based

More information

System in Weibull Distribution

System in Weibull Distribution Internatonal Matheatcal Foru 4 9 no. 9 94-95 Relablty Equvalence Factors of a Seres-Parallel Syste n Webull Dstrbuton M. A. El-Dacese Matheatcs Departent Faculty of Scence Tanta Unversty Tanta Egypt eldacese@yahoo.co

More information

1 Definition of Rademacher Complexity

1 Definition of Rademacher Complexity COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #9 Scrbe: Josh Chen March 5, 2013 We ve spent the past few classes provng bounds on the generalzaton error of PAClearnng algorths for the

More information

Universal communication part II: channels with memory

Universal communication part II: channels with memory Unversal councaton part II: channels wth eory Yuval Lontz, Mer Feder Tel Avv Unversty, Dept. of EE-Systes Eal: {yuvall,er@eng.tau.ac.l arxv:202.047v2 [cs.it] 20 Mar 203 Abstract Consder councaton over

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2015. All Rghts Reserved. Created: July 15, 1999 Last Modfed: January 5, 2015 Contents 1 Lnear Fttng

More information

für Mathematik in den Naturwissenschaften Leipzig

für Mathematik in den Naturwissenschaften Leipzig ŠܹÈÐ Ò ¹ÁÒ Ø ØÙØ für Mathematk n den Naturwssenschaften Lepzg Asymptotcally optmal dscrmnaton between multple pure quantum states by Mchael Nussbaum, and Arleta Szkola Preprnt no.: 1 2010 Asymptotcally

More information

Chapter One Mixture of Ideal Gases

Chapter One Mixture of Ideal Gases herodynacs II AA Chapter One Mxture of Ideal Gases. Coposton of a Gas Mxture: Mass and Mole Fractons o deterne the propertes of a xture, we need to now the coposton of the xture as well as the propertes

More information

Quantum Mechanics for Scientists and Engineers

Quantum Mechanics for Scientists and Engineers Quantu Mechancs or Scentsts and Engneers Sangn K Advanced Coputatonal Electroagnetcs Lab redkd@yonse.ac.kr Nov. 4 th, 26 Outlne Quantu Mechancs or Scentsts and Engneers Blnear expanson o lnear operators

More information

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013 1 Ph 219a/CS 219a Exercses Due: Wednesday 23 October 2013 1.1 How far apart are two quantum states? Consder two quantum states descrbed by densty operators ρ and ρ n an N-dmensonal Hlbert space, and consder

More information

Minimization of l 2 -Norm of the KSOR Operator

Minimization of l 2 -Norm of the KSOR Operator ournal of Matheatcs and Statstcs 8 (): 6-70, 0 ISSN 59-36 0 Scence Publcatons do:0.38/jssp.0.6.70 Publshed Onlne 8 () 0 (http://www.thescpub.co/jss.toc) Mnzaton of l -Nor of the KSOR Operator Youssef,

More information

The Parity of the Number of Irreducible Factors for Some Pentanomials

The Parity of the Number of Irreducible Factors for Some Pentanomials The Party of the Nuber of Irreducble Factors for Soe Pentanoals Wolfra Koepf 1, Ryul K 1 Departent of Matheatcs Unversty of Kassel, Kassel, F. R. Gerany Faculty of Matheatcs and Mechancs K Il Sung Unversty,

More information

Denote the function derivatives f(x) in given points. x a b. Using relationships (1.2), polynomials (1.1) are written in the form

Denote the function derivatives f(x) in given points. x a b. Using relationships (1.2), polynomials (1.1) are written in the form SET OF METHODS FO SOUTION THE AUHY POBEM FO STIFF SYSTEMS OF ODINAY DIFFEENTIA EUATIONS AF atypov and YuV Nulchev Insttute of Theoretcal and Appled Mechancs SB AS 639 Novosbrs ussa Introducton A constructon

More information

Asymptotically Optimal Discrimination between Pure Quantum States

Asymptotically Optimal Discrimination between Pure Quantum States Asymptotcally Optmal Dscrmnaton between Pure Quantum States Mchael Nussbaum 1, and Arleta Szko la 2 1 Department of Mathematcs, Cornell Unversty, Ithaca NY, USA 2 Max Planck Insttute for Mathematcs n the

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

CHAPTER 7 CONSTRAINED OPTIMIZATION 1: THE KARUSH-KUHN-TUCKER CONDITIONS

CHAPTER 7 CONSTRAINED OPTIMIZATION 1: THE KARUSH-KUHN-TUCKER CONDITIONS CHAPER 7 CONSRAINED OPIMIZAION : HE KARUSH-KUHN-UCKER CONDIIONS 7. Introducton We now begn our dscusson of gradent-based constraned optzaton. Recall that n Chapter 3 we looked at gradent-based unconstraned

More information

04 - Treaps. Dr. Alexander Souza

04 - Treaps. Dr. Alexander Souza Algorths Theory 04 - Treaps Dr. Alexander Souza The dctonary proble Gven: Unverse (U,

More information

On Syndrome Decoding of Punctured Reed-Solomon and Gabidulin Codes 1

On Syndrome Decoding of Punctured Reed-Solomon and Gabidulin Codes 1 Ffteenth Internatonal Workshop on Algebrac and Cobnatoral Codng Theory June 18-24, 2016, Albena, Bulgara pp. 35 40 On Syndroe Decodng of Punctured Reed-Soloon and Gabduln Codes 1 Hannes Bartz hannes.bartz@tu.de

More information

Polynomial Barrier Method for Solving Linear Programming Problems

Polynomial Barrier Method for Solving Linear Programming Problems Internatonal Journal o Engneerng & echnology IJE-IJENS Vol: No: 45 Polynoal Barrer Method or Solvng Lnear Prograng Probles Parwad Moengn, Meber, IAENG Abstract In ths wor, we study a class o polynoal ordereven

More information

Finite Fields and Their Applications

Finite Fields and Their Applications Fnte Felds and Ther Applcatons 5 009 796 807 Contents lsts avalable at ScenceDrect Fnte Felds and Ther Applcatons www.elsever.co/locate/ffa Typcal prtve polynoals over nteger resdue rngs Tan Tan a, Wen-Feng

More information

Machine Learning. Support Vector Machines. Eric Xing. Lecture 4, August 12, Reading: Eric CMU,

Machine Learning. Support Vector Machines. Eric Xing. Lecture 4, August 12, Reading: Eric CMU, Machne Learnng Support Vector Machnes Erc Xng Lecture 4 August 2 200 Readng: Erc Xng @ CMU 2006-200 Erc Xng @ CMU 2006-200 2 What s a good Decson Boundar? Wh e a have such boundares? Irregular dstrbuton

More information

BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS. Dariusz Biskup

BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS. Dariusz Biskup BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS Darusz Bskup 1. Introducton The paper presents a nonparaetrc procedure for estaton of an unknown functon f n the regresson odel y = f x + ε = N. (1) (

More information

ON THE NUMBER OF PRIMITIVE PYTHAGOREAN QUINTUPLES

ON THE NUMBER OF PRIMITIVE PYTHAGOREAN QUINTUPLES Journal of Algebra, Nuber Theory: Advances and Applcatons Volue 3, Nuber, 05, Pages 3-8 ON THE NUMBER OF PRIMITIVE PYTHAGOREAN QUINTUPLES Feldstrasse 45 CH-8004, Zürch Swtzerland e-al: whurlann@bluewn.ch

More information

On Pfaff s solution of the Pfaff problem

On Pfaff s solution of the Pfaff problem Zur Pfaff scen Lösung des Pfaff scen Probles Mat. Ann. 7 (880) 53-530. On Pfaff s soluton of te Pfaff proble By A. MAYER n Lepzg Translated by D. H. Delpenc Te way tat Pfaff adopted for te ntegraton of

More information

halftoning Journal of Electronic Imaging, vol. 11, no. 4, Oct Je-Ho Lee and Jan P. Allebach

halftoning Journal of Electronic Imaging, vol. 11, no. 4, Oct Je-Ho Lee and Jan P. Allebach olorant-based drect bnary search» halftonng Journal of Electronc Iagng, vol., no. 4, Oct. 22 Je-Ho Lee and Jan P. Allebach School of Electrcal Engneerng & oputer Scence Kyungpook Natonal Unversty Abstract

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

The entanglement of purification

The entanglement of purification JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 9 SEPTEMBER 2002 The entanglement of purfcaton Barbara M. Terhal a) Insttute for Quantum Informaton, Calforna Insttute of Technology, Pasadena, Calforna

More information

Quantum and Classical Information Theory with Disentropy

Quantum and Classical Information Theory with Disentropy Quantum and Classcal Informaton Theory wth Dsentropy R V Ramos rubensramos@ufcbr Lab of Quantum Informaton Technology, Department of Telenformatc Engneerng Federal Unversty of Ceara - DETI/UFC, CP 6007

More information

Study of the possibility of eliminating the Gibbs paradox within the framework of classical thermodynamics *

Study of the possibility of eliminating the Gibbs paradox within the framework of classical thermodynamics * tudy of the possblty of elnatng the Gbbs paradox wthn the fraework of classcal therodynacs * V. Ihnatovych Departent of Phlosophy, Natonal echncal Unversty of Ukrane Kyv Polytechnc Insttute, Kyv, Ukrane

More information

Chapter 12 Lyes KADEM [Thermodynamics II] 2007

Chapter 12 Lyes KADEM [Thermodynamics II] 2007 Chapter 2 Lyes KDEM [Therodynacs II] 2007 Gas Mxtures In ths chapter we wll develop ethods for deternng therodynac propertes of a xture n order to apply the frst law to systes nvolvng xtures. Ths wll be

More information

!! Let x n = x 1,x 2,,x n with x j! X!! We say that x n is "-typical with respect to p(x) if

!! Let x n = x 1,x 2,,x n with x j! X!! We say that x n is -typical with respect to p(x) if Quantu Inforation Theory and Measure Concentration Patrick Hayden (McGill) Overview!! What is inforation theory?!! Entropy, copression, noisy coding and beyond!! What does it have to do with quantu echanics?!!

More information

Preference and Demand Examples

Preference and Demand Examples Dvson of the Huantes and Socal Scences Preference and Deand Exaples KC Border October, 2002 Revsed Noveber 206 These notes show how to use the Lagrange Karush Kuhn Tucker ultpler theores to solve the proble

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

Tests of Exclusion Restrictions on Regression Coefficients: Formulation and Interpretation

Tests of Exclusion Restrictions on Regression Coefficients: Formulation and Interpretation ECONOMICS 5* -- NOTE 6 ECON 5* -- NOTE 6 Tests of Excluson Restrctons on Regresson Coeffcents: Formulaton and Interpretaton The populaton regresson equaton (PRE) for the general multple lnear regresson

More information

On the Eigenspectrum of the Gram Matrix and the Generalisation Error of Kernel PCA (Shawe-Taylor, et al. 2005) Ameet Talwalkar 02/13/07

On the Eigenspectrum of the Gram Matrix and the Generalisation Error of Kernel PCA (Shawe-Taylor, et al. 2005) Ameet Talwalkar 02/13/07 On the Egenspectru of the Gra Matr and the Generalsaton Error of Kernel PCA Shawe-aylor, et al. 005 Aeet alwalar 0/3/07 Outlne Bacground Motvaton PCA, MDS Isoap Kernel PCA Generalsaton Error of Kernel

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

Norm Bounds for a Transformed Activity Level. Vector in Sraffian Systems: A Dual Exercise

Norm Bounds for a Transformed Activity Level. Vector in Sraffian Systems: A Dual Exercise ppled Mathematcal Scences, Vol. 4, 200, no. 60, 2955-296 Norm Bounds for a ransformed ctvty Level Vector n Sraffan Systems: Dual Exercse Nkolaos Rodousaks Department of Publc dmnstraton, Panteon Unversty

More information

Block-error performance of root-ldpc codes. Author(s): Andriyanova, Iryna; Boutros, Joseph J.; Biglieri, Ezio; Declercq, David

Block-error performance of root-ldpc codes. Author(s): Andriyanova, Iryna; Boutros, Joseph J.; Biglieri, Ezio; Declercq, David Research Collecton Conference Paper Bloc-error perforance of root-ldpc codes Authors: Andryanova, Iryna; Boutros, Joseph J.; Bgler, Ezo; Declercq, Davd Publcaton Date: 00 Peranent Ln: https://do.org/0.399/ethz-a-00600396

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

Entropies & Information Theory

Entropies & Information Theory Etropes & Iformato Theory LECTURE II Nlajaa Datta Uversty of Cambrdge,U.K. See lecture otes o: http://www.q.damtp.cam.ac.uk/ode/223 quatum system States (of a physcal system): Hlbert space (fte-dmesoal)

More information

DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR. Introductory Econometrics 1 hour 30 minutes

DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR. Introductory Econometrics 1 hour 30 minutes 25/6 Canddates Only January Examnatons 26 Student Number: Desk Number:...... DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR Department Module Code Module Ttle Exam Duraton

More information

An Optimal Bound for Sum of Square Roots of Special Type of Integers

An Optimal Bound for Sum of Square Roots of Special Type of Integers The Sxth Internatonal Syposu on Operatons Research and Its Applcatons ISORA 06 Xnang, Chna, August 8 12, 2006 Copyrght 2006 ORSC & APORC pp. 206 211 An Optal Bound for Su of Square Roots of Specal Type

More information

von Neumann capacity of noisy quantum channels

von Neumann capacity of noisy quantum channels PHYSICAL REVIEW A VOLUME 56, NUMBER 5 NOVEMBER 1997 von Neumann capacty of nosy quantum channels C. Adam 1,2,3 and N. J. Cerf 1,3 1 W. K. Kellogg Radaton Laboratory, Calforna Insttute of Technology, Pasadena,

More information

Near Optimal Online Algorithms and Fast Approximation Algorithms for Resource Allocation Problems

Near Optimal Online Algorithms and Fast Approximation Algorithms for Resource Allocation Problems Near Optal Onlne Algorths and Fast Approxaton Algorths for Resource Allocaton Probles Nkhl R Devanur Kaal Jan Balasubraanan Svan Chrstopher A Wlkens Abstract We present algorths for a class of resource

More information

Lecture 3: Shannon s Theorem

Lecture 3: Shannon s Theorem CSE 533: Error-Correctng Codes (Autumn 006 Lecture 3: Shannon s Theorem October 9, 006 Lecturer: Venkatesan Guruswam Scrbe: Wdad Machmouch 1 Communcaton Model The communcaton model we are usng conssts

More information

Computing Correlated Equilibria in Multi-Player Games

Computing Correlated Equilibria in Multi-Player Games Computng Correlated Equlbra n Mult-Player Games Chrstos H. Papadmtrou Presented by Zhanxang Huang December 7th, 2005 1 The Author Dr. Chrstos H. Papadmtrou CS professor at UC Berkley (taught at Harvard,

More information

Power law and dimension of the maximum value for belief distribution with the max Deng entropy

Power law and dimension of the maximum value for belief distribution with the max Deng entropy Power law and dmenson of the maxmum value for belef dstrbuton wth the max Deng entropy Bngy Kang a, a College of Informaton Engneerng, Northwest A&F Unversty, Yanglng, Shaanx, 712100, Chna. Abstract Deng

More information

Collaborative Filtering Recommendation Algorithm

Collaborative Filtering Recommendation Algorithm Vol.141 (GST 2016), pp.199-203 http://dx.do.org/10.14257/astl.2016.141.43 Collaboratve Flterng Recoendaton Algorth Dong Lang Qongta Teachers College, Haou 570100, Chna, 18689851015@163.co Abstract. Ths

More information

Machine Learning. What is a good Decision Boundary? Support Vector Machines

Machine Learning. What is a good Decision Boundary? Support Vector Machines Machne Learnng 0-70/5 70/5-78 78 Sprng 200 Support Vector Machnes Erc Xng Lecture 7 March 5 200 Readng: Chap. 6&7 C.B book and lsted papers Erc Xng @ CMU 2006-200 What s a good Decson Boundar? Consder

More information

Solution 1 for USTC class Physics of Quantum Information

Solution 1 for USTC class Physics of Quantum Information Soluton 1 for 017 018 USTC class Physcs of Quantum Informaton Shua Zhao, Xn-Yu Xu and Ka Chen Natonal Laboratory for Physcal Scences at Mcroscale and Department of Modern Physcs, Unversty of Scence and

More information

Quality of Routing Congestion Games in Wireless Sensor Networks

Quality of Routing Congestion Games in Wireless Sensor Networks Qualty of Routng ongeston Gaes n Wreless Sensor Networs ostas Busch Lousana State Unversty Rajgoal Kannan Lousana State Unversty Athanasos Vaslaos Unv. of Western Macedona 1 Outlne of Tal Introducton Prce

More information

Statistical analysis of Accelerated life testing under Weibull distribution based on fuzzy theory

Statistical analysis of Accelerated life testing under Weibull distribution based on fuzzy theory Statstcal analyss of Accelerated lfe testng under Webull dstrbuton based on fuzzy theory Han Xu, Scence & Technology on Relablty & Envronental Engneerng Laboratory, School of Relablty and Syste Engneerng,

More information

The Nature and Realization of Quantum Entanglement

The Nature and Realization of Quantum Entanglement Appled Physcs Research; Vol. 8, No. 6; 06 ISSN 96-9639 E-ISSN 96-9647 Publshed by Canadan Center of Scence and Educaton The Nature and Realzaton of Quantu Entangleent Bn Lang College of Scence, Chongqng

More information

Supplementary Information

Supplementary Information Supplementary Informaton Quantum correlatons wth no causal order Ognyan Oreshkov 2 Fabo Costa Časlav Brukner 3 Faculty of Physcs Unversty of Venna Boltzmanngasse 5 A-090 Venna Austra. 2 QuIC Ecole Polytechnque

More information

3.1 ML and Empirical Distribution

3.1 ML and Empirical Distribution 67577 Intro. to Machne Learnng Fall semester, 2008/9 Lecture 3: Maxmum Lkelhood/ Maxmum Entropy Dualty Lecturer: Amnon Shashua Scrbe: Amnon Shashua 1 In the prevous lecture we defned the prncple of Maxmum

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

10) Activity analysis

10) Activity analysis 3C3 Mathematcal Methods for Economsts (6 cr) 1) Actvty analyss Abolfazl Keshvar Ph.D. Aalto Unversty School of Busness Sldes orgnally by: Tmo Kuosmanen Updated by: Abolfazl Keshvar 1 Outlne Hstorcal development

More information

AN ANALYSIS OF A FRACTAL KINETICS CURVE OF SAVAGEAU

AN ANALYSIS OF A FRACTAL KINETICS CURVE OF SAVAGEAU AN ANALYI OF A FRACTAL KINETIC CURE OF AAGEAU by John Maloney and Jack Hedel Departent of Matheatcs Unversty of Nebraska at Oaha Oaha, Nebraska 688 Eal addresses: aloney@unoaha.edu, jhedel@unoaha.edu Runnng

More information

Gadjah Mada University, Indonesia. Yogyakarta State University, Indonesia Karangmalang Yogyakarta 55281

Gadjah Mada University, Indonesia. Yogyakarta State University, Indonesia Karangmalang Yogyakarta 55281 Reducng Fuzzy Relatons of Fuzzy Te Seres odel Usng QR Factorzaton ethod and Its Applcaton to Forecastng Interest Rate of Bank Indonesa Certfcate Agus aan Abad Subanar Wdodo 3 Sasubar Saleh 4 Ph.D Student

More information

PROBABILITY AND STATISTICS Vol. III - Analysis of Variance and Analysis of Covariance - V. Nollau ANALYSIS OF VARIANCE AND ANALYSIS OF COVARIANCE

PROBABILITY AND STATISTICS Vol. III - Analysis of Variance and Analysis of Covariance - V. Nollau ANALYSIS OF VARIANCE AND ANALYSIS OF COVARIANCE ANALYSIS OF VARIANCE AND ANALYSIS OF COVARIANCE V. Nollau Insttute of Matheatcal Stochastcs, Techncal Unversty of Dresden, Gerany Keywords: Analyss of varance, least squares ethod, odels wth fxed effects,

More information

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e.

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e. SSTEM MODELLIN In order to solve a control syste proble, the descrptons of the syste and ts coponents ust be put nto a for sutable for analyss and evaluaton. The followng ethods can be used to odel physcal

More information

Decoupling Theorems MASTER THESIS: Oleg Szehr. arxiv: v1 [quant-ph] 17 Jul Marco Tomamichel, Frédéric Dupuis and Renato Renner

Decoupling Theorems MASTER THESIS: Oleg Szehr. arxiv: v1 [quant-ph] 17 Jul Marco Tomamichel, Frédéric Dupuis and Renato Renner arxv:07.397v [quant-ph] 7 Jul 0 MASTER THESIS: Decouplng Theorems Oleg Szehr Supervsors: Marco Tomamchel, Frédérc Dupus and Renato Renner Insttut für Theoretsche Physk ETH Zürch, January 0 Acknowledgements

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mt.edu 6.854J / 18.415J Advanced Algorthms Fall 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocw.mt.edu/terms. 18.415/6.854 Advanced Algorthms

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

Finite Vector Space Representations Ross Bannister Data Assimilation Research Centre, Reading, UK Last updated: 2nd August 2003

Finite Vector Space Representations Ross Bannister Data Assimilation Research Centre, Reading, UK Last updated: 2nd August 2003 Fnte Vector Space epresentatons oss Bannster Data Asslaton esearch Centre, eadng, UK ast updated: 2nd August 2003 Contents What s a lnear vector space?......... 1 About ths docuent............ 2 1. Orthogonal

More information

arxiv: v3 [quant-ph] 14 Feb 2013

arxiv: v3 [quant-ph] 14 Feb 2013 Quantum correlatons wth no causal order Ognyan Oreshkov,, Fabo Costa, Časlav Brukner,3 Faculty of Physcs, Unversty of Venna, Boltzmanngasse 5, A-090 Venna, Austra. QuIC, Ecole Polytechnque, CP 65, Unversté

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

arxiv:quant-ph/ v1 16 Mar 2000

arxiv:quant-ph/ v1 16 Mar 2000 Partal Teleportaton of Entanglement n the Nosy Envronment Jnhyoung Lee, 1,2 M. S. Km, 1 Y. J. Park, 2 and S. Lee 1 School of Mathematcs and Physcs, The Queen s Unversty of Belfast, BT7 1NN, Unted Kngdom

More information

PARTITIONS WITH PARTS IN A FINITE SET

PARTITIONS WITH PARTS IN A FINITE SET PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volue 28, Nuber 5, Pages 269 273 S 0002-9939(0005606-9 Artcle electroncally publshe on February 7, 2000 PARTITIONS WITH PARTS IN A FINITE SET MELVYN B.

More information

Phys304 Quantum Physics II (2005) Quantum Mechanics Summary. 2. This kind of behaviour can be described in the mathematical language of vectors:

Phys304 Quantum Physics II (2005) Quantum Mechanics Summary. 2. This kind of behaviour can be described in the mathematical language of vectors: MACQUARIE UNIVERSITY Department of Physcs Dvson of ICS Phys304 Quantum Physcs II (2005) Quantum Mechancs Summary The followng defntons and concepts set up the basc mathematcal language used n quantum mechancs,

More information