Outline. Prior Information and Subjective Probability. Subjective Probability. The Histogram Approach. Subjective Determination of the Prior Density

Size: px
Start display at page:

Download "Outline. Prior Information and Subjective Probability. Subjective Probability. The Histogram Approach. Subjective Determination of the Prior Density"

Transcription

1 Outlne Pror Inforaton and Subjectve Probablty u Subjectve Probablty Subjectve Deternaton of the Pror Densty Nonnforatve Prors Maxu Entropy Prors Usng the Margnal Dstrbuton to Deterne the Pror Herarchcal Pror Crtcss Subjectve Probablty Subjectve Deternaton of the Pror Densty Pror nforaton Classcal concept of probablty: frequency vewpont Subjectve probablty: deal wth rando that frequency vewpont does not apply Ex: con tossng & uneployent rate for next year The Hstogra Approach The Relatve Lelhood Approach Matchng a Gven Functonal For CDF Deternaton 3 4 The Hstogra Approach The Relatve Lelhood Approach When s an nterval of real lne, the ost approach to use s the hstogra. Dvde nto ntervals, deterne the subjectve probablty of each nterval, and plot a probablty hstogra. Short cut: how any te nterval? what sze of ntervals? When s a subset of the real lne, copare the ntutve lelhoods of varous ponts n, and setch a pror densty. Ex: =[0,1] Deterne the ost lely paraeter pont =, whch s three tes as lely as 3 4 = 0, the least lely ones. Then deterne three other ponts copared wth = 0 and setch the result. 5 6

2 Matchng a Gven Functonal For Assue that () s of a gven functonal for, and choose the densty whch ost closely atched pror belefs After deterned the functonal for, choose paraeters for the functon fro estated pror oents. subjectvely estate several fractles of pror dstrbuton, and atchng these fractles Draw bacs: Only useful when certan specfc functonal fors of pror are assued. 7 Matchng a Gven Functonal For Exaple: =(-, ), pror s thought to be fro noral faly. Deterne the edan s 0, and the quartles are -1 and 1. Snce ean s equal to edan, =0. P(Z<-1/(.19) 1/ )=1/4 when Z s N(0,1). the densty of pror s N(0,.19) 8 CDF Deternaton Ths approach can be done by subjectvely deternng several -fractles, z(), plottng the ponts (z(), ), and setchng a sooth curve jonng the. Dscusson Multvarate pror densty can be consderable The easest way s the use of a gven functonal for, then only a few paraeters need to be deterned subjectvely. Also, ore easer s the case n whch the coordnate,, of are thought to be ndependent. The pror s then the product of the unvarate pror densty of the. Ex: ( )= ( 1, ) If not, the best way s to deterne condtonal and argnal pror denstes Ex: ( 1, ) = ( 1 ) ( 1 ) 9 10 Nonnforatve Prors Because of the copellng reasons to perfor a condtonal analyss and the attractveness of usng Bayesan achnery to do so, there have been attepts to use the Bayesan approach even when no pror nforaton s avalable. Ex: Suppose the paraeter of nterest s a noral ean, so =(-, ). Nonnforatve pror s chosen to be ()=1 (not ()=c>0) (called the unfor densty on R 1, and was ntroduce by Laplace(189)) Nonnforatve Prors Soetes, nonnforatve cannot antan consstency. The lac of nvarance of the constant pror has led to a search for nonnforatve prors whch are approprately nvarant under transforatons. 11 1

3 Nonnforatve Prors for Locaton and Scale Probles Efforts to derve nonforatve prors through consderaton of transforaton of a proble had ts begnnngs wth Jeffreys (cf. Jeffreys(1961)). It has been extensvely used n Hartgan (1964), Jaynes (1968,1983), Vllegas (1977,1981,1984), and elsewhere. Exaple: Locaton Paraeters and are subset of R p, and the densty of X s of the for f(x-), called locaton densty. s called a locaton paraeter. The N(, )( fxed), T(,, )( and fxed), (,)( fxed), and N p (,)( fxed) denstes are all exaples of locaton denstes. Also, a saple of..d rando varables s sad to be for a locaton densty f ther coon densty s a locaton densty. To derve a nonnforatve pror for ths stuaton, we observe the r.v. Y=X+c (c R p ) Defnng =+c,t s clear that Y has densty f(y-). If now ==R p, then saple space and paraeter space for the (Y,) proble are also R p. The (X,) and (Y,) are thus dentcal n strcture. Let and * denote the nonnforatve prors n the (X,) and (Y,) respectvely, the above ples P ( A)=P * ( A) for any set n R p. Snce =+c, t should also be true P * (A)=P (+c A)=P ( A-c) Then, P ( A)=P ( A-c) 15 Assung that the pror has a densty, we can wrte ( ) d ( ) ( ) A d c d Ac A If ths hold for all sets A, t can t ust be true that ()= (-c) for all. Settng =c thus gves (c)=(0) Ths should be hold for all c R p. The concluson s that ust be a constant functon. It s convenent to choose the constant to be 1, so nonnforatve pror densty for a locaton paraeter s ()= 1 16 Nonnforatve Prors n general Settngs For general proble, varous suggestons have been advanced for deternng a nonforatve pror. The ost wdely used ethod s that of Jeffreys (1961), whch s to choose ()=[I()] 1/ I() s the expected Fsher nforaton, log f( X ) I()= -E [ ] If =( 1,, p ) t s a vector, Jeffreys (1961) suggest the use of ()=[det I()] 1/ log f( X ) I j ()= -E [ ] 17 Dscusson A nuber of crtcss have rased concernng the use of nonnforatve prors. Volatng the Lelhood Prncpal. See Gesser (1984a)) Margnalzaton paradox of Dawd, Stone, and Zde (1973) 18

4 Dscusson There are two coon responses to these crtcss of nonnforatve pror Bayesan analyss. The frst response, attepted by soe nonnforatve pror Bayesans, s to argue for the correctness of ther favorte nonnforatve pror approach, together wth attepts to rebut the paradoxes and counterexaples. The second response s to argue that, operatonally, t s rare for the choce of a nonnforatve pror to aredly affect the answer, so that any reasonable nonnforatve pror can be used. Maxu Entropy Prors Frequently partal pror nforaton s avalable, outsde of whch t s desred to use a pror that s as nonnforatve as possble Defnton 1: Assue s dscrete, let be a probablty densty on. The entropy of, to be denoted ()= - ( )log( ) Entropy has a drect relatonshp to nforaton theory, and n a sense easures the aount of uncertanty nherent n the probablty dstrbuton 19 0 Assue that partal pror nforaton concernng s avalable. E [g ()]= ( )g ( )=, =1,, * It sees reasonable to see the pror dstrbuton whch axzes entropy aong all those dstrbutons whch satsfy the gven set of restrctons. The soluton s gven by exp 1g ( ) ( ##proof ) exp 1g ( ), where are constants to be deterned for the constrant n * If s contnuous, the use of axu entropy becoes ore coplcated. Jaynes (1968) aes a stronger case for defnng entropy as ()= -E ( ) ( ) [log ]= -,where 0 () 0( ) ( )log( ) 0( ) d s the natural nvarant nonnforatve pror for the proble. In the presence of partal pror nforaton of the for E [g ()]= g ( ) ( ) d =, =1,,, ** the pror densty whch axzes () s gven by 0( )exp 1g ( ) ( ) 0( ) exp 1g ( ), where are constants to be deterned for the constrant n ** 1 Exaple: Assue =R 1, s a locaton paraeter. The natural nonnforatve pror s then 0 () =1. It s beleved that The true pror ean s and varance s. These restrcton are of the for ** wth g 1 ()=, 1 =, =,and g ()= (-) The axu entropy pror, subject to these restrcton s exp 1 ( ) ( ) exp 1 ( ) d, where 1 and are to be chosen fro **. Clearly 1 + (-) = [- ] 1 1 +[ 1 - ] 4 3 Exaple (cont) Hence ( ) exp [ ( / ) 1 1 The denonator s a constant, so ( ) s noral densty wth ean - 1 / and varance -1/. Choose 1 =0 and =-1/ satsfes **. Thus ( ) s a N(, ) densty. Dffcultes arsng fro ths approach: Although the need to use a nonnforatve pror n the dervaton of s not too serous, a ore serous proble s that often won t exst. exp [ ( / ) d 4

5 Usng the Margnal Dstrbuton to Deterne the Pror If X has probablty densty f(x ), and has probablty densty (), then the jont densty of X and s h(x,)=f(x ) (). Defnton : The argnal densty of X s (x )= f( x ) df ( ) = f ( x ) ( ) d (cont case) f( x ) ( ) (dscrete case) Bayesans have long used to chec assuptons. If (for the actual observed data x) turns out to be sall, then the assuptons (the odel f and pror ) have not predcted what actually occurred and are suspect. Inforaton About Subjectve nowledge The data tself 5 6 The ML- Approach to Pror Selecton In Defnton, t was ponted out that (x ) reflects the plausblty of f and, n the lght of the data. If we treat f as defntely nown, t follows that (x ) reflects the plausblty of It s reasonable to consder (x ) as a lelhood functon for. Faced wth a lelhood functon for, a natural ethod of choosng s to use axu lelhood. 7 The ML- Approach to Pror Selecton (cont) Defnton 3: Suppose s a class of prors under consderaton, and that * satsfes (for the observed data x) (x *)= sup(x ) Then * wll be called type axu lelhood pror, or ML- pror for short. When s the class ={: ()=g( ), }, then sup (x )= sup (x g( )), so that one sply ax over the hyperparaeter. 8 Herarchcal Pror Herarchcal Pror also called a ultstage pror. The dea s that one ay have structural and subjectve pror nforaton at the sae te, and t s often convenent to odel ths n stages. For nstance, n the Bayes scenaro, structural nowledge that the were..d. led to the frst stage pror descrpton p 1 ()= 0 ( ) 1 The herarchcal approach would see to place a second stage subjectve pror on 0. The herarchcal approach s ost coonly used when the frst stage,, conssts of prors of a certan functonal for. 9 Crtcss Objectvty Classcal statstcs s objectve and hence sutable for the needs of scence, whle Bayesans s subjectve and only useful for ang personal decsons. Msuse of pror dstrbutons Robustness (n secton 4.7) Data or odel dependent prors The dealzed Bayesan vew s that s a quantty about whch separate nforaton exsts, and that ths nforaton s to be cobned wth that n the data. The approach presues the pror doesn t depend n any way on the data. 30

6 ## proof: Entropy: ()= - ( )log( ) Constrant: ( )g ( )= =1... ( )=1 Then, by Lagrange's ultpler ethod, G(( 1 ),, ( n ))= -( )log( )+ ( ( )g ( )- ) +( ( )-1) G( ( ) 0= = -log( )-1+ g ( )+ ( ) -log ( )-1+ g ( )+ =0 ( ) =exp[-1++ g ( )] Snce So ( ) =1 1 exp[-1+]= exp[ g( )] exp[ g( )] Therefore ( ) = exp[ g( )] 31 Fro Gesser 1984a It was ponted out by Barnerd, Jenns, and Wnsten (196) that f a con whose probablty of heads s cae up heads t tes and tals n-t tes n a seres of ndependent tosses, rrespectve of the stoppng rule, the lelhood would be L() t (1- ) n-t, and the lelhood prncpal would then dctate that any nference about should not depend on whch stoppng rule was actually used. Two coon stoppng rules are: (a) fx the total nuber of tosses and observe the nuber of heads (b) observe the total nuber of tosses requred to attan a fxed nuber of heads 3 Two cases In case (a), the saplng dstrbuton of T, the nuber of heads, s n Pr[ T = t n ]= t (1-) n-t, t t=0,1,,n In case (b), the saplng dstrbuton of N, the nuber of tosses requred to obtan t heads, s n 1 Pr[ N = n t ]= t (1-) n-t, t 1 n=t,t+1, 33 Two cases Now there are Bayesans who have developed rules for obtanng reference pror dstrbutons that purport to express lttle or no nforaton regardng the paraeter. All of these ethods, except Gesser s and Zellner s, yeld the sae reference prors P B () -1/ (1- )-1/ for the bnoal and P N () -1 (1- )-1/ for the negatve bnoal case. Hence the posteror denstes for these two cases are P B ( t,n) t-1/ (1- )n-1-1/ and P N ( t,n) t-1 (1- )n-t-1/ respectvely. 34 Concluson In fact for all of these ethods, the pror dstrbuton wll depend on the saplng rule, and consequently so wll the posteror dstrbuton. The lelhood prncpal says that any nference about the sae paraeter should not depend on whch saplng rule was used. So one ay volate the lelhood prncpal n usng nonnforatve prors. 35 Soe Bayesans Jeffreys (1961) nvoed nvarance, Box and Tao (1973) recoended prors such that lelhoods are data translated n soe sense. Aae (1978) and Gesser (1979) forulated procedures nvolvng the predctve dstrbuton and Kullbac-Lebler dvergence easures. Berbardo (1979) used the noton of axzng entropy n the lt. Zellner (1977) axzed the Shannon nforaton of the relatve to that of the pror. 36

BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS. Dariusz Biskup

BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS. Dariusz Biskup BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS Darusz Bskup 1. Introducton The paper presents a nonparaetrc procedure for estaton of an unknown functon f n the regresson odel y = f x + ε = N. (1) (

More information

XII.3 The EM (Expectation-Maximization) Algorithm

XII.3 The EM (Expectation-Maximization) Algorithm XII.3 The EM (Expectaton-Maxzaton) Algorth Toshnor Munaata 3/7/06 The EM algorth s a technque to deal wth varous types of ncoplete data or hdden varables. It can be appled to a wde range of learnng probles

More information

Excess Error, Approximation Error, and Estimation Error

Excess Error, Approximation Error, and Estimation Error E0 370 Statstcal Learnng Theory Lecture 10 Sep 15, 011 Excess Error, Approxaton Error, and Estaton Error Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton So far, we have consdered the fnte saple

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

System in Weibull Distribution

System in Weibull Distribution Internatonal Matheatcal Foru 4 9 no. 9 94-95 Relablty Equvalence Factors of a Seres-Parallel Syste n Webull Dstrbuton M. A. El-Dacese Matheatcs Departent Faculty of Scence Tanta Unversty Tanta Egypt eldacese@yahoo.co

More information

LECTURE :FACTOR ANALYSIS

LECTURE :FACTOR ANALYSIS LCUR :FACOR ANALYSIS Rta Osadchy Based on Lecture Notes by A. Ng Motvaton Dstrbuton coes fro MoG Have suffcent aount of data: >>n denson Use M to ft Mture of Gaussans nu. of tranng ponts If

More information

Need for Probabilistic Reasoning. Raymond J. Mooney. Conditional Probability. Axioms of Probability Theory. Classification (Categorization)

Need for Probabilistic Reasoning. Raymond J. Mooney. Conditional Probability. Axioms of Probability Theory. Classification (Categorization) Need for Probablstc Reasonng CS 343: Artfcal Intelence Probablstc Reasonng and Naïve Bayes Rayond J. Mooney Unversty of Texas at Austn Most everyday reasonng s based on uncertan evdence and nferences.

More information

Xiangwen Li. March 8th and March 13th, 2001

Xiangwen Li. March 8th and March 13th, 2001 CS49I Approxaton Algorths The Vertex-Cover Proble Lecture Notes Xangwen L March 8th and March 3th, 00 Absolute Approxaton Gven an optzaton proble P, an algorth A s an approxaton algorth for P f, for an

More information

Computational and Statistical Learning theory Assignment 4

Computational and Statistical Learning theory Assignment 4 Coputatonal and Statstcal Learnng theory Assgnent 4 Due: March 2nd Eal solutons to : karthk at ttc dot edu Notatons/Defntons Recall the defnton of saple based Radeacher coplexty : [ ] R S F) := E ɛ {±}

More information

Preference and Demand Examples

Preference and Demand Examples Dvson of the Huantes and Socal Scences Preference and Deand Exaples KC Border October, 2002 Revsed Noveber 206 These notes show how to use the Lagrange Karush Kuhn Tucker ultpler theores to solve the proble

More information

1 Definition of Rademacher Complexity

1 Definition of Rademacher Complexity COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #9 Scrbe: Josh Chen March 5, 2013 We ve spent the past few classes provng bounds on the generalzaton error of PAClearnng algorths for the

More information

Fermi-Dirac statistics

Fermi-Dirac statistics UCC/Physcs/MK/EM/October 8, 205 Fer-Drac statstcs Fer-Drac dstrbuton Matter partcles that are eleentary ostly have a type of angular oentu called spn. hese partcles are known to have a agnetc oent whch

More information

Engineering Risk Benefit Analysis

Engineering Risk Benefit Analysis Engneerng Rsk Beneft Analyss.55, 2.943, 3.577, 6.938, 0.86, 3.62, 6.862, 22.82, ESD.72, ESD.72 RPRA 2. Elements of Probablty Theory George E. Apostolaks Massachusetts Insttute of Technology Sprng 2007

More information

On Pfaff s solution of the Pfaff problem

On Pfaff s solution of the Pfaff problem Zur Pfaff scen Lösung des Pfaff scen Probles Mat. Ann. 7 (880) 53-530. On Pfaff s soluton of te Pfaff proble By A. MAYER n Lepzg Translated by D. H. Delpenc Te way tat Pfaff adopted for te ntegraton of

More information

Several generation methods of multinomial distributed random number Tian Lei 1, a,linxihe 1,b,Zhigang Zhang 1,c

Several generation methods of multinomial distributed random number Tian Lei 1, a,linxihe 1,b,Zhigang Zhang 1,c Internatonal Conference on Appled Scence and Engneerng Innovaton (ASEI 205) Several generaton ethods of ultnoal dstrbuted rando nuber Tan Le, a,lnhe,b,zhgang Zhang,c School of Matheatcs and Physcs, USTB,

More information

1 Review From Last Time

1 Review From Last Time COS 5: Foundatons of Machne Learnng Rob Schapre Lecture #8 Scrbe: Monrul I Sharf Aprl 0, 2003 Revew Fro Last Te Last te, we were talkng about how to odel dstrbutons, and we had ths setup: Gven - exaples

More information

CHAPT II : Prob-stats, estimation

CHAPT II : Prob-stats, estimation CHAPT II : Prob-stats, estaton Randoness, probablty Probablty densty functons and cuulatve densty functons. Jont, argnal and condtonal dstrbutons. The Bayes forula. Saplng and statstcs Descrptve and nferental

More information

Reliability estimation in Pareto-I distribution based on progressively type II censored sample with binomial removals

Reliability estimation in Pareto-I distribution based on progressively type II censored sample with binomial removals Journal of Scentfc esearch Developent (): 08-3 05 Avalable onlne at wwwjsradorg ISSN 5-7569 05 JSAD elablty estaton n Pareto-I dstrbuton based on progressvely type II censored saple wth bnoal reovals Ilhan

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2014. All Rghts Reserved. Created: July 15, 1999 Last Modfed: February 9, 2008 Contents 1 Lnear Fttng

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

Introducing Entropy Distributions

Introducing Entropy Distributions Graubner, Schdt & Proske: Proceedngs of the 6 th Internatonal Probablstc Workshop, Darstadt 8 Introducng Entropy Dstrbutons Noel van Erp & Peter van Gelder Structural Hydraulc Engneerng and Probablstc

More information

Stat260: Bayesian Modeling and Inference Lecture Date: February 22, Reference Priors

Stat260: Bayesian Modeling and Inference Lecture Date: February 22, Reference Priors Stat60: Bayesan Modelng and Inference Lecture Date: February, 00 Reference Prors Lecturer: Mchael I. Jordan Scrbe: Steven Troxler and Wayne Lee In ths lecture, we assume that θ R; n hgher-dmensons, reference

More information

Chapter 12 Lyes KADEM [Thermodynamics II] 2007

Chapter 12 Lyes KADEM [Thermodynamics II] 2007 Chapter 2 Lyes KDEM [Therodynacs II] 2007 Gas Mxtures In ths chapter we wll develop ethods for deternng therodynac propertes of a xture n order to apply the frst law to systes nvolvng xtures. Ths wll be

More information

PGM Learning Tasks and Metrics

PGM Learning Tasks and Metrics Probablstc Graphcal odels Learnng Overvew PG Learnng Tasks and etrcs Learnng doan epert True dstrbuton P* aybe correspondng to a PG * dataset of nstances D{d],...d]} sapled fro P* elctaton Network Learnng

More information

SEMI-EMPIRICAL LIKELIHOOD RATIO CONFIDENCE INTERVALS FOR THE DIFFERENCE OF TWO SAMPLE MEANS

SEMI-EMPIRICAL LIKELIHOOD RATIO CONFIDENCE INTERVALS FOR THE DIFFERENCE OF TWO SAMPLE MEANS Ann. Inst. Statst. Math. Vol. 46, No. 1, 117 126 (1994) SEMI-EMPIRICAL LIKELIHOOD RATIO CONFIDENCE INTERVALS FOR THE DIFFERENCE OF TWO SAMPLE MEANS JING QIN Departent of Statstcs and Actuaral Scence, Unversty

More information

Multipoint Analysis for Sibling Pairs. Biostatistics 666 Lecture 18

Multipoint Analysis for Sibling Pairs. Biostatistics 666 Lecture 18 Multpont Analyss for Sblng ars Bostatstcs 666 Lecture 8 revously Lnkage analyss wth pars of ndvduals Non-paraetrc BS Methods Maxu Lkelhood BD Based Method ossble Trangle Constrant AS Methods Covered So

More information

PARAMETER ESTIMATION IN WEIBULL DISTRIBUTION ON PROGRESSIVELY TYPE- II CENSORED SAMPLE WITH BETA-BINOMIAL REMOVALS

PARAMETER ESTIMATION IN WEIBULL DISTRIBUTION ON PROGRESSIVELY TYPE- II CENSORED SAMPLE WITH BETA-BINOMIAL REMOVALS Econoy & Busness ISSN 1314-7242, Volue 10, 2016 PARAMETER ESTIMATION IN WEIBULL DISTRIBUTION ON PROGRESSIVELY TYPE- II CENSORED SAMPLE WITH BETA-BINOMIAL REMOVALS Ilhan Usta, Hanef Gezer Departent of Statstcs,

More information

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner.

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner. (C) 998 Gerald B Sheblé, all rghts reserved Lnear Prograng Introducton Contents I. What s LP? II. LP Theor III. The Splex Method IV. Refneents to the Splex Method What s LP? LP s an optzaton technque that

More information

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements CS 750 Machne Learnng Lecture 5 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square CS 750 Machne Learnng Announcements Homework Due on Wednesday before the class Reports: hand n before

More information

e companion ONLY AVAILABLE IN ELECTRONIC FORM

e companion ONLY AVAILABLE IN ELECTRONIC FORM e copanon ONLY AVAILABLE IN ELECTRONIC FORM Electronc Copanon Decson Analyss wth Geographcally Varyng Outcoes: Preference Models Illustratve Applcatons by Jay Son, Crag W. Krkwood, L. Robn Keller, Operatons

More information

COS 511: Theoretical Machine Learning

COS 511: Theoretical Machine Learning COS 5: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #0 Scrbe: José Sões Ferrera March 06, 203 In the last lecture the concept of Radeacher coplexty was ntroduced, wth the goal of showng that

More information

Designing Fuzzy Time Series Model Using Generalized Wang s Method and Its application to Forecasting Interest Rate of Bank Indonesia Certificate

Designing Fuzzy Time Series Model Using Generalized Wang s Method and Its application to Forecasting Interest Rate of Bank Indonesia Certificate The Frst Internatonal Senar on Scence and Technology, Islac Unversty of Indonesa, 4-5 January 009. Desgnng Fuzzy Te Seres odel Usng Generalzed Wang s ethod and Its applcaton to Forecastng Interest Rate

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

Statistical analysis of Accelerated life testing under Weibull distribution based on fuzzy theory

Statistical analysis of Accelerated life testing under Weibull distribution based on fuzzy theory Statstcal analyss of Accelerated lfe testng under Webull dstrbuton based on fuzzy theory Han Xu, Scence & Technology on Relablty & Envronental Engneerng Laboratory, School of Relablty and Syste Engneerng,

More information

On the number of regions in an m-dimensional space cut by n hyperplanes

On the number of regions in an m-dimensional space cut by n hyperplanes 6 On the nuber of regons n an -densonal space cut by n hyperplanes Chungwu Ho and Seth Zeran Abstract In ths note we provde a unfor approach for the nuber of bounded regons cut by n hyperplanes n general

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2015. All Rghts Reserved. Created: July 15, 1999 Last Modfed: January 5, 2015 Contents 1 Lnear Fttng

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Chapter One Mixture of Ideal Gases

Chapter One Mixture of Ideal Gases herodynacs II AA Chapter One Mxture of Ideal Gases. Coposton of a Gas Mxture: Mass and Mole Fractons o deterne the propertes of a xture, we need to now the coposton of the xture as well as the propertes

More information

PROBABILITY AND STATISTICS Vol. III - Analysis of Variance and Analysis of Covariance - V. Nollau ANALYSIS OF VARIANCE AND ANALYSIS OF COVARIANCE

PROBABILITY AND STATISTICS Vol. III - Analysis of Variance and Analysis of Covariance - V. Nollau ANALYSIS OF VARIANCE AND ANALYSIS OF COVARIANCE ANALYSIS OF VARIANCE AND ANALYSIS OF COVARIANCE V. Nollau Insttute of Matheatcal Stochastcs, Techncal Unversty of Dresden, Gerany Keywords: Analyss of varance, least squares ethod, odels wth fxed effects,

More information

Small-Sample Equating With Prior Information

Small-Sample Equating With Prior Information Research Report Sall-Saple Equatng Wth Pror Inforaton Sauel A Lvngston Charles Lews June 009 ETS RR-09-5 Lstenng Learnng Leadng Sall-Saple Equatng Wth Pror Inforaton Sauel A Lvngston and Charles Lews ETS,

More information

A be a probability space. A random vector

A be a probability space. A random vector Statstcs 1: Probablty Theory II 8 1 JOINT AND MARGINAL DISTRIBUTIONS In Probablty Theory I we formulate the concept of a (real) random varable and descrbe the probablstc behavor of ths random varable by

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

Collaborative Filtering Recommendation Algorithm

Collaborative Filtering Recommendation Algorithm Vol.141 (GST 2016), pp.199-203 http://dx.do.org/10.14257/astl.2016.141.43 Collaboratve Flterng Recoendaton Algorth Dong Lang Qongta Teachers College, Haou 570100, Chna, 18689851015@163.co Abstract. Ths

More information

Bayesian predictive Configural Frequency Analysis

Bayesian predictive Configural Frequency Analysis Psychologcal Test and Assessment Modelng, Volume 54, 2012 (3), 285-292 Bayesan predctve Confgural Frequency Analyss Eduardo Gutérrez-Peña 1 Abstract Confgural Frequency Analyss s a method for cell-wse

More information

Estimation of Reliability in Multicomponent Stress-Strength Based on Generalized Rayleigh Distribution

Estimation of Reliability in Multicomponent Stress-Strength Based on Generalized Rayleigh Distribution Journal of Modern Appled Statstcal Methods Volue 13 Issue 1 Artcle 4 5-1-014 Estaton of Relablty n Multcoponent Stress-Strength Based on Generalzed Raylegh Dstrbuton Gadde Srnvasa Rao Unversty of Dodoa,

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU Group M D L M Chapter Bayesan Decson heory Xn-Shun Xu @ SDU School of Computer Scence and echnology, Shandong Unversty Bayesan Decson heory Bayesan decson theory s a statstcal approach to data mnng/pattern

More information

Departure Process from a M/M/m/ Queue

Departure Process from a M/M/m/ Queue Dearture rocess fro a M/M// Queue Q - (-) Q Q3 Q4 (-) Knowledge of the nature of the dearture rocess fro a queue would be useful as we can then use t to analyze sle cases of queueng networs as shown. The

More information

Study of the possibility of eliminating the Gibbs paradox within the framework of classical thermodynamics *

Study of the possibility of eliminating the Gibbs paradox within the framework of classical thermodynamics * tudy of the possblty of elnatng the Gbbs paradox wthn the fraework of classcal therodynacs * V. Ihnatovych Departent of Phlosophy, Natonal echncal Unversty of Ukrane Kyv Polytechnc Insttute, Kyv, Ukrane

More information

CHAPTER 6 CONSTRAINED OPTIMIZATION 1: K-T CONDITIONS

CHAPTER 6 CONSTRAINED OPTIMIZATION 1: K-T CONDITIONS Chapter 6: Constraned Optzaton CHAPER 6 CONSRAINED OPIMIZAION : K- CONDIIONS Introducton We now begn our dscusson of gradent-based constraned optzaton. Recall that n Chapter 3 we looked at gradent-based

More information

CHAPTER 10 ROTATIONAL MOTION

CHAPTER 10 ROTATIONAL MOTION CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n x-y plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The

More information

Denote the function derivatives f(x) in given points. x a b. Using relationships (1.2), polynomials (1.1) are written in the form

Denote the function derivatives f(x) in given points. x a b. Using relationships (1.2), polynomials (1.1) are written in the form SET OF METHODS FO SOUTION THE AUHY POBEM FO STIFF SYSTEMS OF ODINAY DIFFEENTIA EUATIONS AF atypov and YuV Nulchev Insttute of Theoretcal and Appled Mechancs SB AS 639 Novosbrs ussa Introducton A constructon

More information

PHYS 1443 Section 002 Lecture #20

PHYS 1443 Section 002 Lecture #20 PHYS 1443 Secton 002 Lecture #20 Dr. Jae Condtons for Equlbru & Mechancal Equlbru How to Solve Equlbru Probles? A ew Exaples of Mechancal Equlbru Elastc Propertes of Solds Densty and Specfc Gravty lud

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e.

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e. SSTEM MODELLIN In order to solve a control syste proble, the descrptons of the syste and ts coponents ust be put nto a for sutable for analyss and evaluaton. The followng ethods can be used to odel physcal

More information

CHAPTER 7 CONSTRAINED OPTIMIZATION 1: THE KARUSH-KUHN-TUCKER CONDITIONS

CHAPTER 7 CONSTRAINED OPTIMIZATION 1: THE KARUSH-KUHN-TUCKER CONDITIONS CHAPER 7 CONSRAINED OPIMIZAION : HE KARUSH-KUHN-UCKER CONDIIONS 7. Introducton We now begn our dscusson of gradent-based constraned optzaton. Recall that n Chapter 3 we looked at gradent-based unconstraned

More information

ACTM State Calculus Competition Saturday April 30, 2011

ACTM State Calculus Competition Saturday April 30, 2011 ACTM State Calculus Competton Saturday Aprl 30, 2011 ACTM State Calculus Competton Sprng 2011 Page 1 Instructons: For questons 1 through 25, mark the best answer choce on the answer sheet provde Afterward

More information

Machine learning: Density estimation

Machine learning: Density estimation CS 70 Foundatons of AI Lecture 3 Machne learnng: ensty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square ata: ensty estmaton {.. n} x a vector of attrbute values Objectve: estmate the model of

More information

Slobodan Lakić. Communicated by R. Van Keer

Slobodan Lakić. Communicated by R. Van Keer Serdca Math. J. 21 (1995), 335-344 AN ITERATIVE METHOD FOR THE MATRIX PRINCIPAL n-th ROOT Slobodan Lakć Councated by R. Van Keer In ths paper we gve an teratve ethod to copute the prncpal n-th root and

More information

y new = M x old Feature Selection: Linear Transformations Constraint Optimization (insertion)

y new = M x old Feature Selection: Linear Transformations Constraint Optimization (insertion) Feature Selecton: Lnear ransforatons new = M x old Constrant Optzaton (nserton) 3 Proble: Gven an objectve functon f(x) to be optzed and let constrants be gven b h k (x)=c k, ovng constants to the left,

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

, are assumed to fluctuate around zero, with E( i) 0. Now imagine that this overall random effect, , is composed of many independent factors,

, are assumed to fluctuate around zero, with E( i) 0. Now imagine that this overall random effect, , is composed of many independent factors, Part II. Contnuous Spatal Data Analyss 3. Spatally-Dependent Rando Effects Observe that all regressons n the llustratons above [startng wth expresson (..3) n the Sudan ranfall exaple] have reled on an

More information

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 6 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutons to assst canddates preparng for the eamnatons n future years and for

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

Bayesian estimation using MCMC approach based on progressive first-failure censoring from generalized Pareto distribution

Bayesian estimation using MCMC approach based on progressive first-failure censoring from generalized Pareto distribution Aercan Journal of Theoretcal and Appled Statstcs 03; (5): 8-4 Publshed onlne August 30 03 (http://www.scencepublshnggroup.co/j/ajtas) do: 0.648/j.ajtas.03005.3 Bayesan estaton usng MCMC approach based

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probablty Mcroscopc propertes of matter: quantum mechancs, atomc and molecular propertes Macroscopc propertes of matter: thermodynamcs, E, H, C V, C p, S, A, G How do we relate these two propertes?

More information

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F)

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F) EN40: Dynacs and Vbratons Hoework 4: Work, Energy and Lnear Moentu Due Frday March 6 th School of Engneerng Brown Unversty 1. The Rydberg potental s a sple odel of atoc nteractons. It specfes the potental

More information

Integral Transforms and Dual Integral Equations to Solve Heat Equation with Mixed Conditions

Integral Transforms and Dual Integral Equations to Solve Heat Equation with Mixed Conditions Int J Open Probles Copt Math, Vol 7, No 4, Deceber 214 ISSN 1998-6262; Copyrght ICSS Publcaton, 214 www-csrsorg Integral Transfors and Dual Integral Equatons to Solve Heat Equaton wth Mxed Condtons Naser

More information

Determination of the Confidence Level of PSD Estimation with Given D.O.F. Based on WELCH Algorithm

Determination of the Confidence Level of PSD Estimation with Given D.O.F. Based on WELCH Algorithm Internatonal Conference on Inforaton Technology and Manageent Innovaton (ICITMI 05) Deternaton of the Confdence Level of PSD Estaton wth Gven D.O.F. Based on WELCH Algorth Xue-wang Zhu, *, S-jan Zhang

More information

Probability and Random Variable Primer

Probability and Random Variable Primer B. Maddah ENMG 622 Smulaton 2/22/ Probablty and Random Varable Prmer Sample space and Events Suppose that an eperment wth an uncertan outcome s performed (e.g., rollng a de). Whle the outcome of the eperment

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

ASYMMETRIC TRAFFIC ASSIGNMENT WITH FLOW RESPONSIVE SIGNAL CONTROL IN AN URBAN NETWORK

ASYMMETRIC TRAFFIC ASSIGNMENT WITH FLOW RESPONSIVE SIGNAL CONTROL IN AN URBAN NETWORK AYMMETRIC TRAFFIC AIGNMENT WITH FLOW REPONIVE IGNAL CONTROL IN AN URBAN NETWORK Ken'etsu UCHIDA *, e'ch KAGAYA **, Tohru HAGIWARA *** Dept. of Engneerng - Hoado Unversty * E-al: uchda@eng.houda.ac.p **

More information

Introduction to Random Variables

Introduction to Random Variables Introducton to Random Varables Defnton of random varable Defnton of random varable Dscrete and contnuous random varable Probablty functon Dstrbuton functon Densty functon Sometmes, t s not enough to descrbe

More information

arxiv: v2 [math.co] 3 Sep 2017

arxiv: v2 [math.co] 3 Sep 2017 On the Approxate Asyptotc Statstcal Independence of the Peranents of 0- Matrces arxv:705.0868v2 ath.co 3 Sep 207 Paul Federbush Departent of Matheatcs Unversty of Mchgan Ann Arbor, MI, 4809-043 Septeber

More information

Notes prepared by Prof Mrs) M.J. Gholba Class M.Sc Part(I) Information Technology

Notes prepared by Prof Mrs) M.J. Gholba Class M.Sc Part(I) Information Technology Inverse transformatons Generaton of random observatons from gven dstrbutons Assume that random numbers,,, are readly avalable, where each tself s a random varable whch s unformly dstrbuted over the range(,).

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Analysis of Discrete Time Queues (Section 4.6)

Analysis of Discrete Time Queues (Section 4.6) Analyss of Dscrete Tme Queues (Secton 4.6) Copyrght 2002, Sanjay K. Bose Tme axs dvded nto slots slot slot boundares Arrvals can only occur at slot boundares Servce to a job can only start at a slot boundary

More information

Solving Fuzzy Linear Programming Problem With Fuzzy Relational Equation Constraint

Solving Fuzzy Linear Programming Problem With Fuzzy Relational Equation Constraint Intern. J. Fuzz Maeatcal Archve Vol., 0, -0 ISSN: 0 (P, 0 0 (onlne Publshed on 0 Septeber 0 www.researchasc.org Internatonal Journal of Solvng Fuzz Lnear Prograng Proble W Fuzz Relatonal Equaton Constrant

More information

Elastic Collisions. Definition: two point masses on which no external forces act collide without losing any energy.

Elastic Collisions. Definition: two point masses on which no external forces act collide without losing any energy. Elastc Collsons Defnton: to pont asses on hch no external forces act collde thout losng any energy v Prerequstes: θ θ collsons n one denson conservaton of oentu and energy occurs frequently n everyday

More information

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ CSE 455/555 Sprng 2013 Homework 7: Parametrc Technques Jason J. Corso Computer Scence and Engneerng SUY at Buffalo jcorso@buffalo.edu Solutons by Yngbo Zhou Ths assgnment does not need to be submtted and

More information

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t Indeternate Analyss Force Method The force (flexblty) ethod expresses the relatonshps between dsplaceents and forces that exst n a structure. Prary objectve of the force ethod s to deterne the chosen set

More information

Universal communication part II: channels with memory

Universal communication part II: channels with memory Unversal councaton part II: channels wth eory Yuval Lontz, Mer Feder Tel Avv Unversty, Dept. of EE-Systes Eal: {yuvall,er@eng.tau.ac.l arxv:202.047v2 [cs.it] 20 Mar 203 Abstract Consder councaton over

More information

Stochastic Structural Dynamics

Stochastic Structural Dynamics Stochastc Structural Dynamcs Lecture-1 Defnton of probablty measure and condtonal probablty Dr C S Manohar Department of Cvl Engneerng Professor of Structural Engneerng Indan Insttute of Scence angalore

More information

Solutions Homework 4 March 5, 2018

Solutions Homework 4 March 5, 2018 1 Solutons Homework 4 March 5, 018 Soluton to Exercse 5.1.8: Let a IR be a translaton and c > 0 be a re-scalng. ˆb1 (cx + a) cx n + a (cx 1 + a) c x n x 1 cˆb 1 (x), whch shows ˆb 1 s locaton nvarant and

More information

Maximizing the number of nonnegative subsets

Maximizing the number of nonnegative subsets Maxmzng the number of nonnegatve subsets Noga Alon Hao Huang December 1, 213 Abstract Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what s the maxmum

More information

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers Psychology 282 Lecture #24 Outlne Regresson Dagnostcs: Outlers In an earler lecture we studed the statstcal assumptons underlyng the regresson model, ncludng the followng ponts: Formal statement of assumptons.

More information

ON WEIGHTED ESTIMATION IN LINEAR REGRESSION IN THE PRESENCE OF PARAMETER UNCERTAINTY

ON WEIGHTED ESTIMATION IN LINEAR REGRESSION IN THE PRESENCE OF PARAMETER UNCERTAINTY Econoetrcs orkng Paper EP7 ISSN 485-644 Departent of Econocs ON EIGTED ESTIMATION IN LINEAR REGRESSION IN TE PRESENCE OF PARAMETER UNCERTAINTY udth A Clarke Departent of Econocs, Unversty of Vctora Vctora,

More information

Final Exam Solutions, 1998

Final Exam Solutions, 1998 58.439 Fnal Exa Solutons, 1998 roble 1 art a: Equlbru eans that the therodynac potental of a consttuent s the sae everywhere n a syste. An exaple s the Nernst potental. If the potental across a ebrane

More information

A random variable is a function which associates a real number to each element of the sample space

A random variable is a function which associates a real number to each element of the sample space Introducton to Random Varables Defnton of random varable Defnton of of random varable Dscrete and contnuous random varable Probablty blt functon Dstrbuton functon Densty functon Sometmes, t s not enough

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y)

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y) Secton 1.5 Correlaton In the prevous sectons, we looked at regresson and the value r was a measurement of how much of the varaton n y can be attrbuted to the lnear relatonshp between y and x. In ths secton,

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information

STAT 3008 Applied Regression Analysis

STAT 3008 Applied Regression Analysis STAT 3008 Appled Regresson Analyss Tutoral : Smple Lnear Regresson LAI Chun He Department of Statstcs, The Chnese Unversty of Hong Kong 1 Model Assumpton To quantfy the relatonshp between two factors,

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING MACHINE LEANING Vasant Honavar Bonformatcs and Computatonal Bology rogram Center for Computatonal Intellgence, Learnng, & Dscovery Iowa State Unversty honavar@cs.astate.edu www.cs.astate.edu/~honavar/

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information