Stochastic Structural Dynamics

Size: px
Start display at page:

Download "Stochastic Structural Dynamics"

Transcription

1 Stochastc Structural Dynamcs Lecture-1 Defnton of probablty measure and condtonal probablty Dr C S Manohar Department of Cvl Engneerng Professor of Structural Engneerng Indan Insttute of Scence angalore Inda manohar@cvl.sc.ernet.n 1

2 Ths Lecture What s ths course about? egn revewng theory of probablty

3 Loads on engneerng structures Earthquake Wnd Waves Gudeway unevenness Traffc Dynamc Random

4 Loads on engneerng structures Earthquake

5 Loads on engneerng structures Wnd

6 Loads on engneerng structures Gudeway unevenness

7 Uncertantes n structural engneerng problems Loads (earthquakes, wnd, waves, gude way unevenness ) Structural propertes (elastc constants, mass, dampng, strength, boundary condtons, jonts ) Modelng (analytcal, computatonal and expermental) Condton assessment n exstng structures Human errors 7

8 Stochastc structural dynamcs ranch of structural dynamcs n whch the uncertantes n loads are quantfed mathematcally usng theory of probablty, random processes and statstcs. Random vbraton analyss; probablstc structural dynamcs Falure of structures under uncertan dynamc loads Desgn of structures under uncertan dynamc loads lso mportant n expermental vbraton analyss Measurement of frequency response and mpulse response functons Sesmc qualfcaton testng Condton assessment of exstng structures Pre-requstes asc background n Lnear vbraton analyss Probablty and statstcs

9 Mathematcal models for uncertanty: Probablty, random varables, random processes, statstcs. Fuzzy logc. Interval algebra. Convex models.

10 Revew of probablty and random processes Suggested books 1. Papouls and S U Plla, 2006, Probablty, random varables and stochastc processes, 4 th Edton, McGraw Hll, oston. 2. J R enjamn and C Cornell, 1970, Probablty, statstcs, and decson for cvl engneers, McGraw Hll ook Company, oston. Defntons of probablty: 1.Classcal defnton 2.Relatve frequency 3.xomatc 10

11 Classcal (mathematcal or a pror) defnton: If a random experment can result n n outcomes, such that these outcomes are equally lkely mutually exclusve collectvely exhaustve and, f out of these n outcomes, m are favourable to the occurrence of an event, then the probablty of the event s gven by P()=m/n. Example: P(gettng even number on de tossng)=3/6=1/2. Objectons What s equally lkely? What f not equally lkely? (what s the probablty that sun would rse tomorrow?) No room for expermentaton. Probablty s requred to be a ratonal number. 11

12 Relatve frequency (posteror) defnton If a random experment has been performed n number of tmes and f m outcomes are favorable to event, then the probablty of event s gven by lm. P n m n Objectons What s meant by lmt here? One cannot talk about probablty wthout conductng an experment. What s the probablty that someone meets wth an accdent tomorrow? Probablty s requred to be a ratonal number. 12

13 Example: Toss a de 1000 tmes; note down how many tmes an even number turns up (say, 548). P(even number)=548/1000. N=1000 here s deemed to be suffcently large. There s no guarantee that as the number of trals ncreases, the probablty would converge. The de need not be far. 13

14 xomatc defnton Undefned notons (prmtves) Experments Trals Outcomes n experment s a physcal phenomenon that can be observed repeatedly. sngle performance of an experment s a tral. The observaton made on a tral s ts outcome. xoms are statements that are commensurate wth our experence. No proofs exst. ll truths are relatve to the accepted axoms. 14

15 Random experment (E) s an experment such that the outcome of a specfc tral cannot be predcted, and t s possble to predct all possble outcomes of any tral. Remarks E : the frst techncal term. Example: Toss a con. We know that we wll ether get head or tal. In any gven tral however we do not know before hand what would be the outcome. What cannot be envsaged, does not enter the theory. 15

16 xomatc defnton (contnued) Sample space ( ) Set of all possble outcomes of a random experment. Examples (1) Con tossng: = h t ; Cardnalty=2; fnte sample space. (2) De tossng: = ; Cardnalty=6; fnte sample space. (3) De tossng tll head appears for the frst tme: = h th tth ttth tttth ; Cardnalty= ; countably nfnte sample space. (4) Maxmum ranfall n a year: = 0 X< ; Cardnalty= ; uncountably nfnte sample space. 16

17 Elements of Ω are called sample ponts. Ω can be thought of as outcome space. Consder a set wth n elements. n n n n n n Co C1 C2 Cn Number of subsets= (1 1) 2 17

18 xomatc defnton (contnued) Event space ( ) Ω s fnte : s the set of all subsets of Ω. h t; h t Ex : Ω Elements of are N Cardnalty of 2 ; N cardnalty of Ω. known as events In general: s the sgma algebra of subsets of Ω Defnton Let C be a class of subsets of Ω. If C (a),& (b) Ω Ω 1 1 then, we say that C s a sgma algebra of subsets of Ω. 18

19 xomatc defnton (contnued) Probablty (P) P : 0,1 Ω j P P, 1 such that xom1(axom of non - negatvty) P xom 2 (axom of normalzaton) P xom 3 (axom of addtvty) j Probablty space s the ordered trplet : Ω,, P 19

20 Note: We wsh to assgn probablty to not only to elementary events (elements of sample space) but also to compound events (subsets of sample space). When sample space s not fnte, ( as when t s the real lne) there exsts subsets of sample space whch cannot be expressed as countable unon and ntersectons of ntervals. On such events we wll not be able to assgn probabltes consstent wth the thrd axom. To overcome ths dffculty we exclude these events from the event space.

21 Remarks (3) P (4) P c 1 P (1) P (2) P P P 0 P P 21

22 Proof 1 E P E c c ; E E c c E E P E P E P PE P c E P c E 1 PE (xom 3) 1(xom 2) Proof 4 : Use proof c Note :. 1 wth E ;

23 P P P P P P P P P P c c c c c c and (2) From (1) (2) (xom 3) ; (1) (xom 3) ; 3 Proof 3. :Use proof 2 : hnt Proof

24 P Condtonal probablty and stochastc ndependence Defnton Probablty of event gven that has occurred P P ; P Example: Far De tossng 0. = The de has been tossed and an even number has been observed. P 2 Even? pproach 1: Even= P 2 Even 1/ 3 (Classcal defnton) pproach 2: P2 Even P2 Even PEven 2Even (2) 1/6 P2 Even 1/3. 1/2 Condtonal Probablty obeys all the axoms (1) P 0 (2) P 1 (3) P C P P C f C 24

25 Stochastc ndependence Events and are sad to be stochastcally ndependent f any one of the followng four statements s true: (1) The probablty of occurrence of event s not affected by the occurrence of event. (2) P PP (3) P P Notaton : and are ndependent P PP P (4) P ( ); P ( ) 0. P ( ) Remarks (1) Defnton 1 s not useful to verfy f and are ndependent. (2) If we need to verfy f and are ndependent, we need to fnd P, P ( ), P ( ),& P ( ) and use defntons 2,3, or 4. (3) Independence of more than two events can also be defned. Thus 3 =1 are sad to be ndependent f j j (1) P P P, j 1, 2,3 & j, and (2) P P P P

26 Example Toss two cons. 1 2 = hh ht th tt Let ab, 0, such that ( ab) Let Phh ( ) a Ptt b P ht Pth ab. Clearly P( )= P( hh) P tt P ht P th ( a b) 1. Defne two events head on the frst cont= head on the second cont= hh th E hh ht E Queston : verfy f E & E are ndependent ( ) PE E PE PE P E P hh ht a aba( ab) a PE ( ) Phh th a abaa ( b) a P E E P hh a E & E are ndependent

27 Example: n whch three events are parwse ndependent but are not ndependent. Consder a far tetrahedron (ths has four faces) Let the four faces be panted as Green, Yellow, lack and G+Y PY ( ) ; PG ( ) P ( ) ; PGY ( ) PGPY ( ) ( ) 4 1 PG ( ) PGP ( ) ( ) 4 1 PY ( ) PY ( ) P ( ) PGY ( ) PGPY ( ) ( ) P ( ). 4 8

28 Example Consder a random experment nvolvng tossng of C two des. Defne (even on de1) (even on de 2) (sum of Examne f numbers on de1and de 2),, and C are ndependent.

29 Total probablty theorem 1 N Let consttute a partton of. 1 N That s, ; j. 1 Let be a set. N N 1 j N N P P P 1 1 P P P( ) 29

30 ayes' theorem P P 1 P P P( ) P ( ) P ( ) N P P( ) P P( ) P ( ) a pror probablty P ( ) posteror probablty

Engineering Risk Benefit Analysis

Engineering Risk Benefit Analysis Engneerng Rsk Beneft Analyss.55, 2.943, 3.577, 6.938, 0.86, 3.62, 6.862, 22.82, ESD.72, ESD.72 RPRA 2. Elements of Probablty Theory George E. Apostolaks Massachusetts Insttute of Technology Sprng 2007

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

Statistics and Quantitative Analysis U4320. Segment 3: Probability Prof. Sharyn O Halloran

Statistics and Quantitative Analysis U4320. Segment 3: Probability Prof. Sharyn O Halloran Statstcs and Quanttatve Analyss U430 Segment 3: Probablty Prof. Sharyn O Halloran Revew: Descrptve Statstcs Code book for Measures Sample Data Relgon Employed 1. Catholc 0. Unemployed. Protestant 1. Employed

More information

An Experiment/Some Intuition (Fall 2006): Lecture 18 The EM Algorithm heads coin 1 tails coin 2 Overview Maximum Likelihood Estimation

An Experiment/Some Intuition (Fall 2006): Lecture 18 The EM Algorithm heads coin 1 tails coin 2 Overview Maximum Likelihood Estimation An Experment/Some Intuton I have three cons n my pocket, 6.864 (Fall 2006): Lecture 18 The EM Algorthm Con 0 has probablty λ of heads; Con 1 has probablty p 1 of heads; Con 2 has probablty p 2 of heads

More information

Rules of Probability

Rules of Probability ( ) ( ) = for all Corollary: Rules of robablty The probablty of the unon of any two events and B s roof: ( Φ) = 0. F. ( B) = ( ) + ( B) ( B) If B then, ( ) ( B). roof: week 2 week 2 2 Incluson / Excluson

More information

Probability Theory (revisited)

Probability Theory (revisited) Probablty Theory (revsted) Summary Probablty v.s. plausblty Random varables Smulaton of Random Experments Challenge The alarm of a shop rang. Soon afterwards, a man was seen runnng n the street, persecuted

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probablty Mcroscopc propertes of matter: quantum mechancs, atomc and molecular propertes Macroscopc propertes of matter: thermodynamcs, E, H, C V, C p, S, A, G How do we relate these two propertes?

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Probability and Random Variable Primer

Probability and Random Variable Primer B. Maddah ENMG 622 Smulaton 2/22/ Probablty and Random Varable Prmer Sample space and Events Suppose that an eperment wth an uncertan outcome s performed (e.g., rollng a de). Whle the outcome of the eperment

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ CSE 455/555 Sprng 2013 Homework 7: Parametrc Technques Jason J. Corso Computer Scence and Engneerng SUY at Buffalo jcorso@buffalo.edu Solutons by Yngbo Zhou Ths assgnment does not need to be submtted and

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

Bayesian Networks. Course: CS40022 Instructor: Dr. Pallab Dasgupta

Bayesian Networks. Course: CS40022 Instructor: Dr. Pallab Dasgupta Bayesan Networks Course: CS40022 Instructor: Dr. Pallab Dasgupta Department of Computer Scence & Engneerng Indan Insttute of Technology Kharagpur Example Burglar alarm at home Farly relable at detectng

More information

Chapter 1: Introduction to Probability

Chapter 1: Introduction to Probability Chapter : Introducton to obablty Sectons Engneerng pplcatons of obablty Random Experments and Events Defntons of obablty The Relatve Frequency pproach Elementary Set Theory The xomatc pproach Condtonal

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

Bayesian epistemology II: Arguments for Probabilism

Bayesian epistemology II: Arguments for Probabilism Bayesan epstemology II: Arguments for Probablsm Rchard Pettgrew May 9, 2012 1 The model Represent an agent s credal state at a gven tme t by a credence functon c t : F [0, 1]. where F s the algebra of

More information

A be a probability space. A random vector

A be a probability space. A random vector Statstcs 1: Probablty Theory II 8 1 JOINT AND MARGINAL DISTRIBUTIONS In Probablty Theory I we formulate the concept of a (real) random varable and descrbe the probablstc behavor of ths random varable by

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

For example, if the drawing pin was tossed 200 times and it landed point up on 140 of these trials,

For example, if the drawing pin was tossed 200 times and it landed point up on 140 of these trials, Probablty In ths actvty you wll use some real data to estmate the probablty of an event happenng. You wll also use a varety of methods to work out theoretcal probabltes. heoretcal and expermental probabltes

More information

Randomness and Computation

Randomness and Computation Randomness and Computaton or, Randomzed Algorthms Mary Cryan School of Informatcs Unversty of Ednburgh RC 208/9) Lecture 0 slde Balls n Bns m balls, n bns, and balls thrown unformly at random nto bns usually

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

U-Pb Geochronology Practical: Background

U-Pb Geochronology Practical: Background U-Pb Geochronology Practcal: Background Basc Concepts: accuracy: measure of the dfference between an expermental measurement and the true value precson: measure of the reproducblty of the expermental result

More information

A note on almost sure behavior of randomly weighted sums of φ-mixing random variables with φ-mixing weights

A note on almost sure behavior of randomly weighted sums of φ-mixing random variables with φ-mixing weights ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 7, Number 2, December 203 Avalable onlne at http://acutm.math.ut.ee A note on almost sure behavor of randomly weghted sums of φ-mxng

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

Decision-making and rationality

Decision-making and rationality Reslence Informatcs for Innovaton Classcal Decson Theory RRC/TMI Kazuo URUTA Decson-makng and ratonalty What s decson-makng? Methodology for makng a choce The qualty of decson-makng determnes success or

More information

Statistics and Probability Theory in Civil, Surveying and Environmental Engineering

Statistics and Probability Theory in Civil, Surveying and Environmental Engineering Statstcs and Probablty Theory n Cvl, Surveyng and Envronmental Engneerng Pro. Dr. Mchael Havbro Faber ETH Zurch, Swtzerland Contents o Todays Lecture Overvew o Uncertanty Modelng Random Varables - propertes

More information

Power law and dimension of the maximum value for belief distribution with the max Deng entropy

Power law and dimension of the maximum value for belief distribution with the max Deng entropy Power law and dmenson of the maxmum value for belef dstrbuton wth the max Deng entropy Bngy Kang a, a College of Informaton Engneerng, Northwest A&F Unversty, Yanglng, Shaanx, 712100, Chna. Abstract Deng

More information

Bayesian predictive Configural Frequency Analysis

Bayesian predictive Configural Frequency Analysis Psychologcal Test and Assessment Modelng, Volume 54, 2012 (3), 285-292 Bayesan predctve Confgural Frequency Analyss Eduardo Gutérrez-Peña 1 Abstract Confgural Frequency Analyss s a method for cell-wse

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

CS-433: Simulation and Modeling Modeling and Probability Review

CS-433: Simulation and Modeling Modeling and Probability Review CS-433: Smulaton and Modelng Modelng and Probablty Revew Exercse 1. (Probablty of Smple Events) Exercse 1.1 The owner of a camera shop receves a shpment of fve cameras from a camera manufacturer. Unknown

More information

} Often, when learning, we deal with uncertainty:

} Often, when learning, we deal with uncertainty: Uncertanty and Learnng } Often, when learnng, we deal wth uncertanty: } Incomplete data sets, wth mssng nformaton } Nosy data sets, wth unrelable nformaton } Stochastcty: causes and effects related non-determnstcally

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Reasoning under Uncertainty

Reasoning under Uncertainty Reasonng under Uncertanty Course: CS40022 Instructor: Dr. Pallab Dasgupta Department of Computer Scence & Engneerng Indan Insttute of Technology Kharagpur Handlng uncertan knowledge p p Symptom(p, Toothache

More information

International Journal of Mathematical Archive-3(3), 2012, Page: Available online through ISSN

International Journal of Mathematical Archive-3(3), 2012, Page: Available online through   ISSN Internatonal Journal of Mathematcal Archve-3(3), 2012, Page: 1136-1140 Avalable onlne through www.ma.nfo ISSN 2229 5046 ARITHMETIC OPERATIONS OF FOCAL ELEMENTS AND THEIR CORRESPONDING BASIC PROBABILITY

More information

Statistics Chapter 4

Statistics Chapter 4 Statstcs Chapter 4 "There are three knds of les: les, damned les, and statstcs." Benjamn Dsrael, 1895 (Brtsh statesman) Gaussan Dstrbuton, 4-1 If a measurement s repeated many tmes a statstcal treatment

More information

Lecture 16 Statistical Analysis in Biomaterials Research (Part II)

Lecture 16 Statistical Analysis in Biomaterials Research (Part II) 3.051J/0.340J 1 Lecture 16 Statstcal Analyss n Bomaterals Research (Part II) C. F Dstrbuton Allows comparson of varablty of behavor between populatons usng test of hypothess: σ x = σ x amed for Brtsh statstcan

More information

6.842 Randomness and Computation February 18, Lecture 4

6.842 Randomness and Computation February 18, Lecture 4 6.842 Randomness and Computaton February 18, 2014 Lecture 4 Lecturer: Rontt Rubnfeld Scrbe: Amartya Shankha Bswas Topcs 2-Pont Samplng Interactve Proofs Publc cons vs Prvate cons 1 Two Pont Samplng 1.1

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

Introductory Cardinality Theory Alan Kaylor Cline

Introductory Cardinality Theory Alan Kaylor Cline Introductory Cardnalty Theory lan Kaylor Clne lthough by name the theory of set cardnalty may seem to be an offshoot of combnatorcs, the central nterest s actually nfnte sets. Combnatorcs deals wth fnte

More information

FREQUENCY DISTRIBUTIONS Page 1 of The idea of a frequency distribution for sets of observations will be introduced,

FREQUENCY DISTRIBUTIONS Page 1 of The idea of a frequency distribution for sets of observations will be introduced, FREQUENCY DISTRIBUTIONS Page 1 of 6 I. Introducton 1. The dea of a frequency dstrbuton for sets of observatons wll be ntroduced, together wth some of the mechancs for constructng dstrbutons of data. Then

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore Sesson Outlne Introducton to classfcaton problems and dscrete choce models. Introducton to Logstcs Regresson. Logstc functon and Logt functon. Maxmum Lkelhood Estmator (MLE) for estmaton of LR parameters.

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

Uncertainty and auto-correlation in. Measurement

Uncertainty and auto-correlation in. Measurement Uncertanty and auto-correlaton n arxv:1707.03276v2 [physcs.data-an] 30 Dec 2017 Measurement Markus Schebl Federal Offce of Metrology and Surveyng (BEV), 1160 Venna, Austra E-mal: markus.schebl@bev.gv.at

More information

MODELING TRAFFIC LIGHTS IN INTERSECTION USING PETRI NETS

MODELING TRAFFIC LIGHTS IN INTERSECTION USING PETRI NETS The 3 rd Internatonal Conference on Mathematcs and Statstcs (ICoMS-3) Insttut Pertanan Bogor, Indonesa, 5-6 August 28 MODELING TRAFFIC LIGHTS IN INTERSECTION USING PETRI NETS 1 Deky Adzkya and 2 Subono

More information

Simulation and Probability Distribution

Simulation and Probability Distribution CHAPTER Probablty, Statstcs, and Relablty for Engneers and Scentsts Second Edton PROBABILIT DISTRIBUTION FOR CONTINUOUS RANDOM VARIABLES A. J. Clark School of Engneerng Department of Cvl and Envronmental

More information

18.1 Introduction and Recap

18.1 Introduction and Recap CS787: Advanced Algorthms Scrbe: Pryananda Shenoy and Shjn Kong Lecturer: Shuch Chawla Topc: Streamng Algorthmscontnued) Date: 0/26/2007 We contnue talng about streamng algorthms n ths lecture, ncludng

More information

Continuous Time Markov Chain

Continuous Time Markov Chain Contnuous Tme Markov Chan Hu Jn Department of Electroncs and Communcaton Engneerng Hanyang Unversty ERICA Campus Contents Contnuous tme Markov Chan (CTMC) Propertes of sojourn tme Relatons Transton probablty

More information

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering / Theory and Applcatons of Pattern Recognton 003, Rob Polkar, Rowan Unversty, Glassboro, NJ Lecture 4 Bayes Classfcaton Rule Dept. of Electrcal and Computer Engneerng 0909.40.0 / 0909.504.04 Theory & Applcatons

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VIII LECTURE - 34 ANALYSIS OF VARIANCE IN RANDOM-EFFECTS MODEL AND MIXED-EFFECTS EFFECTS MODEL Dr Shalabh Department of Mathematcs and Statstcs Indan

More information

6. Stochastic processes (2)

6. Stochastic processes (2) 6. Stochastc processes () Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 6. Stochastc processes () Contents Markov processes Brth-death processes 6. Stochastc processes () Markov process

More information

Probability review. Adopted from notes of Andrew W. Moore and Eric Xing from CMU. Copyright Andrew W. Moore Slide 1

Probability review. Adopted from notes of Andrew W. Moore and Eric Xing from CMU. Copyright Andrew W. Moore Slide 1 robablty reew dopted from notes of ndrew W. Moore and Erc Xng from CMU Copyrght ndrew W. Moore Slde So far our classfers are determnstc! For a gen X, the classfers we learned so far ge a sngle predcted

More information

6. Stochastic processes (2)

6. Stochastic processes (2) Contents Markov processes Brth-death processes Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 Markov process Consder a contnuous-tme and dscrete-state stochastc process X(t) wth state space

More information

REAL ANALYSIS I HOMEWORK 1

REAL ANALYSIS I HOMEWORK 1 REAL ANALYSIS I HOMEWORK CİHAN BAHRAN The questons are from Tao s text. Exercse 0.0.. If (x α ) α A s a collecton of numbers x α [0, + ] such that x α

More information

Lecture Randomized Load Balancing strategies and their analysis. Probability concepts include, counting, the union bound, and Chernoff bounds.

Lecture Randomized Load Balancing strategies and their analysis. Probability concepts include, counting, the union bound, and Chernoff bounds. U.C. Berkeley CS273: Parallel and Dstrbuted Theory Lecture 1 Professor Satsh Rao August 26, 2010 Lecturer: Satsh Rao Last revsed September 2, 2010 Lecture 1 1 Course Outlne We wll cover a samplng of the

More information

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions Exercses from Ross, 3, : Math 26: Probablty MWF pm, Gasson 30 Homework Selected Solutons 3, p. 05 Problems 76, 86 3, p. 06 Theoretcal exercses 3, 6, p. 63 Problems 5, 0, 20, p. 69 Theoretcal exercses 2,

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Excess Error, Approximation Error, and Estimation Error

Excess Error, Approximation Error, and Estimation Error E0 370 Statstcal Learnng Theory Lecture 10 Sep 15, 011 Excess Error, Approxaton Error, and Estaton Error Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton So far, we have consdered the fnte saple

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

9.2 Seismic Loads Using ASCE Standard 7-93

9.2 Seismic Loads Using ASCE Standard 7-93 CHAPER 9: Wnd and Sesmc Loads on Buldngs 9.2 Sesmc Loads Usng ASCE Standard 7-93 Descrpton A major porton of the Unted States s beleved to be subject to sesmc actvty suffcent to cause sgnfcant structural

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

Motion Perception Under Uncertainty. Hongjing Lu Department of Psychology University of Hong Kong

Motion Perception Under Uncertainty. Hongjing Lu Department of Psychology University of Hong Kong Moton Percepton Under Uncertanty Hongjng Lu Department of Psychology Unversty of Hong Kong Outlne Uncertanty n moton stmulus Correspondence problem Qualtatve fttng usng deal observer models Based on sgnal

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 6 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutons to assst canddates preparng for the eamnatons n future years and for

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers Psychology 282 Lecture #24 Outlne Regresson Dagnostcs: Outlers In an earler lecture we studed the statstcal assumptons underlyng the regresson model, ncludng the followng ponts: Formal statement of assumptons.

More information

), it produces a response (output function g (x)

), it produces a response (output function g (x) Lnear Systems Revew Notes adapted from notes by Mchael Braun Typcally n electrcal engneerng, one s concerned wth functons of tme, such as a voltage waveform System descrpton s therefore defned n the domans

More information

Chapter 3 Describing Data Using Numerical Measures

Chapter 3 Describing Data Using Numerical Measures Chapter 3 Student Lecture Notes 3-1 Chapter 3 Descrbng Data Usng Numercal Measures Fall 2006 Fundamentals of Busness Statstcs 1 Chapter Goals To establsh the usefulness of summary measures of data. The

More information

Lecture 17 : Stochastic Processes II

Lecture 17 : Stochastic Processes II : Stochastc Processes II 1 Contnuous-tme stochastc process So far we have studed dscrete-tme stochastc processes. We studed the concept of Makov chans and martngales, tme seres analyss, and regresson analyss

More information

Chapter 15 Student Lecture Notes 15-1

Chapter 15 Student Lecture Notes 15-1 Chapter 15 Student Lecture Notes 15-1 Basc Busness Statstcs (9 th Edton) Chapter 15 Multple Regresson Model Buldng 004 Prentce-Hall, Inc. Chap 15-1 Chapter Topcs The Quadratc Regresson Model Usng Transformatons

More information

1.4. Experiments, Outcome, Sample Space, Events, and Random Variables

1.4. Experiments, Outcome, Sample Space, Events, and Random Variables 1.4. Experments, Outcome, Sample Space, Events, and Random Varables In Secton 1.2.5, we dscuss how to fnd probabltes based on countng. Whle the probablty of any complex event s bult on countng, brute force

More information

An Application of Fuzzy Hypotheses Testing in Radar Detection

An Application of Fuzzy Hypotheses Testing in Radar Detection Proceedngs of the th WSES Internatonal Conference on FUZZY SYSEMS n pplcaton of Fuy Hypotheses estng n Radar Detecton.K.ELSHERIF, F.M.BBDY, G.M.BDELHMID Department of Mathematcs Mltary echncal Collage

More information

Appendix B. Criterion of Riemann-Stieltjes Integrability

Appendix B. Criterion of Riemann-Stieltjes Integrability Appendx B. Crteron of Remann-Steltes Integrablty Ths note s complementary to [R, Ch. 6] and [T, Sec. 3.5]. The man result of ths note s Theorem B.3, whch provdes the necessary and suffcent condtons for

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2) 1/16 MATH 829: Introducton to Data Mnng and Analyss The EM algorthm (part 2) Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 20, 2016 Recall 2/16 We are gven ndependent observatons

More information

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS HCMC Unversty of Pedagogy Thong Nguyen Huu et al. A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS Thong Nguyen Huu and Hao Tran Van Department of mathematcs-nformaton,

More information

SMARANDACHE-GALOIS FIELDS

SMARANDACHE-GALOIS FIELDS SMARANDACHE-GALOIS FIELDS W. B. Vasantha Kandasamy Deartment of Mathematcs Indan Insttute of Technology, Madras Chenna - 600 036, Inda. E-mal: vasantak@md3.vsnl.net.n Abstract: In ths aer we study the

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN The MIT Press, 2014 Lecture Sldes for INTRODUCTION TO MACHINE LEARNING 3RD EDITION alpaydn@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/2ml3e CHAPTER 3: BAYESIAN DECISION THEORY Probablty

More information

Chapter 4: Probability and Probability Distributions

Chapter 4: Probability and Probability Distributions hapter 4: Proalty and Proalty Dstrutons 4.1 a Ths experment nvolves tossng a sngle de and oservng the outcome. The sample space for ths experment conssts of the followng smple events: E 1 : Oserve a 1

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

FUZZY FINITE ELEMENT METHOD

FUZZY FINITE ELEMENT METHOD FUZZY FINITE ELEMENT METHOD RELIABILITY TRUCTURE ANALYI UING PROBABILITY 3.. Maxmum Normal tress Internal force s the shear force, V has a magntude equal to the load P and bendng moment, M. Bendng moments

More information

Lecture 20: Hypothesis testing

Lecture 20: Hypothesis testing Lecture : Hpothess testng Much of statstcs nvolves hpothess testng compare a new nterestng hpothess, H (the Alternatve hpothess to the borng, old, well-known case, H (the Null Hpothess or, decde whether

More information

1/10/18. Definitions. Probabilistic models. Why probabilistic models. Example: a fair 6-sided dice. Probability

1/10/18. Definitions. Probabilistic models. Why probabilistic models. Example: a fair 6-sided dice. Probability /0/8 I529: Machne Learnng n Bonformatcs Defntons Probablstc models Probablstc models A model means a system that smulates the object under consderaton A probablstc model s one that produces dfferent outcomes

More information

Subset Topological Spaces and Kakutani s Theorem

Subset Topological Spaces and Kakutani s Theorem MOD Natural Neutrosophc Subset Topologcal Spaces and Kakutan s Theorem W. B. Vasantha Kandasamy lanthenral K Florentn Smarandache 1 Copyrght 1 by EuropaNova ASBL and the Authors Ths book can be ordered

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhscsAndMathsTutor.com phscsandmathstutor.com June 005 5. The random varable X has probablt functon k, = 1,, 3, P( X = ) = k ( + 1), = 4, 5, where k s a constant. (a) Fnd the value of k. (b) Fnd the eact

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

STAT 3008 Applied Regression Analysis

STAT 3008 Applied Regression Analysis STAT 3008 Appled Regresson Analyss Tutoral : Smple Lnear Regresson LAI Chun He Department of Statstcs, The Chnese Unversty of Hong Kong 1 Model Assumpton To quantfy the relatonshp between two factors,

More information

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU Group M D L M Chapter Bayesan Decson heory Xn-Shun Xu @ SDU School of Computer Scence and echnology, Shandong Unversty Bayesan Decson heory Bayesan decson theory s a statstcal approach to data mnng/pattern

More information

Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) Multlayer Perceptron (MLP) Seungjn Cho Department of Computer Scence and Engneerng Pohang Unversty of Scence and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjn@postech.ac.kr 1 / 20 Outlne

More information

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition) Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of non-negatve nteger values Examples: number of drver route changes per week, the number of trp departure changes

More information

Introduction to Econometrics (3 rd Updated Edition, Global Edition) Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 13

Introduction to Econometrics (3 rd Updated Edition, Global Edition) Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 13 Introducton to Econometrcs (3 rd Updated Edton, Global Edton by James H. Stock and Mark W. Watson Solutons to Odd-Numbered End-of-Chapter Exercses: Chapter 13 (Ths verson August 17, 014 Stock/Watson -

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information