y new = M x old Feature Selection: Linear Transformations Constraint Optimization (insertion)

Size: px
Start display at page:

Download "y new = M x old Feature Selection: Linear Transformations Constraint Optimization (insertion)"

Transcription

1 Feature Selecton: Lnear ransforatons new = M x old Constrant Optzaton (nserton) 3 Proble: Gven an objectve functon f(x) to be optzed and let constrants be gven b h k (x)=c k, ovng constants to the left, ==> h k (x) - c k =g k (x). f(x) and g k (x) ust have contnuous frst partal dervatves A Soluton: Lagrangan Multplers or startng wth the Lagrangan : 0 = x f(x) + Σ x λ k g k (x) L (x,λ) = f(x) + Σ λ k g k (x). wth x L (x,λ) = 0.

2 he Covarance Matrx (nserton) 4 Defnton Let x = {x,..., x N } N be a real valued rando varable (data vectors), wth the expectaton value of the ean E[x] = μ. We defne the covarance atrx Σ x of a rando varable x as Σ x := E[ (x- μ) (x- μ) ] wth atrx eleents Σ j = E[ (x - μ ) (x j - μ j ) ]. Applcaton: Estatng E[x] and E[ (x - E[x] ) (x - E[x] ) ] fro data. We assue saples of the rando varable x = {x,..., x N } N that s we have a set of vectors { x,..., x } N or when put nto a data atrx X N x Maxu Lkelhood estators for μ and Σ x are: x k k ML ( x )( x ) ML k k k M L M L XX KL/PCA Motvaton 5 Fnd eanngful drectons n correlated data Lnear densonalt reducton Vsualzaton of hgher densonal data Copresson / Nose reducton PDF-Estate

3 7 Karhunen-Loève ransfor: st Dervaton Proble Let x = {x,..., x N } N be a feature vector of zero ean, real valued rando varables. We seek the drecton a of axu varance: == > = a x for whch a s such as E[ ] s axu wth the constrant that a a = hs s a constraned optzaton use of the Lagrangan: L(a, λ ) = E[a x x a ] λ ( a a ) = a Σ x a λ ( a a ) Lagrange ultpler Karhunen-Loève ransfor 8 L(a, λ ) = a Σ x a λ ( a a ) L( a, ) for E[ ] to be axu : a 0 => Σ x a λ a = 0 => a ust be egenvector of Σ x wth egenvalue λ. E[ ] = a Σ x a = λ => for E[ ] to be axu, λ ust be the largest egenvalue. 3

4 Karhunen-Loève ransfor 9 Now let s search for a second drecton, a, such that: = a x such as E[ ] s axu, and a a = 0 and a a = Slar dervaton: L(a, λ ) = a Σ x a λ ( a a ) wth a a = 0 => a ust be the egenvector of Σ x assocated wth the second largest egenvalue λ. We can derve N orthonoral drectons that axze the varance: A = [a, a,, a N ] and = A x he resultng atrx A s known as Prncpal Coponent Analss (PCA) or Kharunen-Loève transfor (KL) = A x x a N 0 Karhunen-Loève ransfor: nd Dervaton Proble Let x = {x,..., x N } N be a feature vector of zero ean, real valued rando varables. We seek a transforaton A of x that results n a new set of varables = A x (feature vectors) whch are uncorrelated (.e. E[, j ]= 0 for j ). Let = A x, then b defnton of the correlaton atrx: R E [ ] E [ A xx A] A R A x R x s setrc ts egenvectors are utuall orthogonal 4

5 Karhunen-Loève ransfor.e. f we choose A such that ts coluns a are orthonoral egenvectors of R x, we get: R A R A x N If we further assue R x to be postve defnte, ---- > the egenvalues wll be postve. he resultng atrx A s known as Karhunen-Loève transfor (KL) = A x x N a Karhunen-Loève ransfor he Karhunen-Loève transfor (KL) A x x N a For ean-free vectors ( e.g. replace x b x E[ x ] ) ths process dagonalzes the covarance atrx Σ 5

6 KL Propertes: MSE-Approxaton 3 We defne a new vector n -densonal subspace ( < N ), ˆx usng onl bass vectors: xˆ a Projecton of x nto the subspace spanned b the used (orthonoral) egenvectors. Now, what s the expected ean square error between x and ts projecton ˆx : E x xˆ N E a E ( a )( a ) j j j KL Propertes: MSE-Approxaton 4 E x xˆ... E ( )( ) j a a j j N E N he error s nzed f we choose as bass those egenvectors correspondng to the largest egenvalues of the correlaton atrx. Aongst all other possble orthogonal transfors KL s the one leadng to nu MSE hs for of KL ( appled to ean free data) s also referred to as Prncpal Coponent Analss (PCA). he prncpal coponents are the egenvectors ordered (desc.) b ther respectve egenvalue agntudes 6

7 KL Propertes 5 otal varance Let w.l.o.g. E[x]=0 and = A x the KL (PCA) of x. Fro the prevous defntons we get: E.e. the egenvalues of the nput covarance atrx are equal to the varances of the transfored coordnates. Selectng those features correspondng to largest egenvalues retans the axal possble total varance (su of coponent varances) assocated wth the orgnal rando varables x. KL Propertes: Entrop 6 For a rando vector the entrop H E[ln p ( )] s a easure for the randoness of the underlng process. Exaple: for a zero-ean (=0) -d. Gaussan E [ ln( ( ) exp( ) ) ] H H E ln( ) ln [ ] ln( ) ln E trace E[ ] [ ] E[ trace ] E[ trace I ] Selectng those features correspondng to largest egenvalues axzes the entrop n the reanng features. No wonder: varance and randoness are drectl related! 7

8 Coputng a PCA: 7 Proble: Gven ean free data X, a set on n feature vectors x R. Copute the orthonoral egenvectors a of the correlaton atrx R x. here are an algorths that can copute ver effcentl egenvectors of a atrx. However, ost of these ethods can be ver unstable n certan specal cases. Here we present SVD, a ethod that s n general not the ost effcent one. However, the ethod can be ade nuercall stable ver easl! Coputng a PCA: 8 Sngular Value Decoposton: an Excursus to Lnear Algebra ( wthout Proofs ) 8

9 Sngular Value Decoposton : 9 SVD (reduced Verson): For atrces A R n wth n, there exst atrces U R n wth orthonoral coluns ( U U = I ), V R nn orthogonal ( V V = I ), R nn dagonal, wth n A=U V = A U V he dagonal values of (,,., n ) are called the sngular values. It s accustoed to sort the:. n SVD Applcatons: 0 SVD s an all-rounder! Once ou have U,, V, ou can use t to: - Solve Lnear Sstes: A x = b -. a) If A - exsts Copute atrx nverse b) for fewer equatons than unknowns c) for ore equatons than unknowns d) f there s no soluton: copute x that A x - b = n e) copute rank (nuercal rank) of a atrx - Copute PCA / KL 9

10 SVD : Matrx nverse A - A x = b : A=U V U,, V, exst for all A If A s square nxn and not sngular, then A - exsts. A U V V U V U n Coputng A - for a sngular A!? Snce U,, V all exst, the onl proble can orgnate f one σ = 0 or nuercall close to zero. --> sngular values ndcate f A s sngular or not!! SVD : Rank of a Matrx - he rank of A s the nuber of non-zero sngular values. - If there are ver sall sngular values, then A s close of beng sngular. We can set a threshold t, and set = 0 f t then the nuerc_rank ( A ) = # { > t } n = n A U V 0

11 SVD : Rank of a Matrx () 3 - nuerc_rank( A ) = # { > t }, the rank of A s equal the d( Ig( A ) ) n = s 0 0 A U V n = d( Ig(A) ) + d( Ker(A) ) - the coluns of U correspondng to the 0, span the range of A - the coluns of V correspondng to the = 0, span the nullspace of A reeber lnear appngs A x = b 4 ) case A - exsts R n A R A x = b ) A s sngular: d( Ker(A) ) 0 b

12 SVD : solvng A x = b 5 ) A s sngular: d( Ker(A) ) 0 x b here are an nfnte nuber of dfferent x that solve Ax=b!!?? Whch one should we choose?? e.g. we can choose the x wth x = n then we have to search n the space orthogonal to the nullspace SVD : Solvng A x - c = n 3) c s not n the range of A 6 c x c* ) Projectng c nto the range of A results n c* ) Fro all the solutons of A x = c* we choose the x wth x = n

13 SVD : Solvng A x - c = n 7 A x = c U V x = c x U V c V U c for an A exst U,, V, wth A= U V wth. n Coputng A - for a sngular A!? --> What to do n - wth /0 =???? V U c n Soe = 0 f t Reeber what we need ---- > SVD : Solvng: A x - c = n 8 We need to: ) Project c nto the range of A to obtan a c* ) Fro all the solutons of A x = c* we choose the x = n that s the x n the space orthogonal to the nullspace x = 0 0 c V U - the coluns of U correspondng to the 0, span the range of A - the coluns of V correspondng to the = 0, span the nullspace of A Bascall all rows or coluns ultpled b /0 are rrelevant!! --> so even settng /0 = 0, wll lead to the correct result. 3

14 SVD at Work: 9 For Lnear Sstes A x = b : Case fewer equatons than unknowns: fll rows of A wth zeros so that n = Perfor SVD on A wth (n ): Copute U,, V, wth A=U V Copute threshold t and n set = 0 for all t n - set / = 0 for all t For Lnear Sstes: copute Pseudonverse A + = V - U and copute x = A + b Applcaton: Copute PCA va SVD 30 Proble: Gven ean free data X, a set on n feature vectors x R copute the orthonoral egenvectors a of the correlaton atrx R x. Now we use SVD. Move center of ass to orgn: x =x -. Buld data atrx, fro ean free data X=U V 3. he prncpal axes are egenvector of the covarance atrx C = /n XX XX U U d 4

15 3 Applcaton: Copute PCA va SVD () wth SVD XX = U V (U V ) = U V (V U ) = U U = U U Snce C = /n XX the egenvalues copute to λ = /n σ wth λ = σ σ fro SVD σ varance of E[ ] Exaple: PCA on Iages 3 Assue we have a set of k ages (of sze NN) Each age can be seen as N -densonal pont p (lexcographcall ordered); the whole set can be stored as atrx: X p p p k Coputng PCA the naïve wa Buld correlaton atrx XX (N 4 eleents) Copute egenvectors fro ths atrx: O((N ) 3 ) Alread for sall ages (e.g. N=00) ths s far too expensve 5

16 PCA on Iages 33 Now we use SVD. Move center of ass to orgn: p =p -. Buld data atrx, fro ean free data X p p p n 3. he prncpal axes are egenvector of XX U U d PCA on Iages 34 ean face Faces Egenfaces Prncpal Coponents can be vsualzed b addng to the ean vector an egenvector ultpled b a factor (e.g. λ ) 6

17 PCA appled to face ages 35 Here the faces where noralzed n ee dstance and ee poston. ean face Choosng subspace denson r: Look at deca of the egenvalues as a functon of r Larger r eans lower expected error n the subspace data approxaton Egenfaces r Egenvalue spectru k Egenfaces for Face Recognton 36 In the 90 s the best perforng Face Recognton Sste! urk, M. and Pentland, A. (99). Face recognton usng egenfaces. In Proceedngs of Coputer Vson and Pattern Recognton, pages IEEE. 7

18 PCA for Face Recognton 37 PCA & Dscrnaton 38 PCA/KL do not use an class labels n the constructon of the transfor. he resultng features a obscure the exstence of separate groups. 8

19 PCA Suar 39 Unsupervsed: no assupton about the exstence or nature of groupngs wthn the data. PCA s slar to learnng a Gaussan dstrbuton for the data. Optal bass for copresson (f easured va MSE). As far as densonalt reducton s concerned ths process s dstrbuton-free,.e. t s a atheatcal ethod wthout underlng statstcal odel. Extracted features (PCs) often lack ntuton. PCA an Neural Networks 40 A three-laer NN wth lnear hdden unts, traned as auto-encoder, develops an nternal representaton that corresponds to the prncpal coponents of the full data set. he transforaton F s a lnear projecton onto a k-densonal (Duda, Hart and Stork: chapter 0.3.). 9

LECTURE :FACTOR ANALYSIS

LECTURE :FACTOR ANALYSIS LCUR :FACOR ANALYSIS Rta Osadchy Based on Lecture Notes by A. Ng Motvaton Dstrbuton coes fro MoG Have suffcent aount of data: >>n denson Use M to ft Mture of Gaussans nu. of tranng ponts If

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2015. All Rghts Reserved. Created: July 15, 1999 Last Modfed: January 5, 2015 Contents 1 Lnear Fttng

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2014. All Rghts Reserved. Created: July 15, 1999 Last Modfed: February 9, 2008 Contents 1 Lnear Fttng

More information

Finite Vector Space Representations Ross Bannister Data Assimilation Research Centre, Reading, UK Last updated: 2nd August 2003

Finite Vector Space Representations Ross Bannister Data Assimilation Research Centre, Reading, UK Last updated: 2nd August 2003 Fnte Vector Space epresentatons oss Bannster Data Asslaton esearch Centre, eadng, UK ast updated: 2nd August 2003 Contents What s a lnear vector space?......... 1 About ths docuent............ 2 1. Orthogonal

More information

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner.

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner. (C) 998 Gerald B Sheblé, all rghts reserved Lnear Prograng Introducton Contents I. What s LP? II. LP Theor III. The Splex Method IV. Refneents to the Splex Method What s LP? LP s an optzaton technque that

More information

Xiangwen Li. March 8th and March 13th, 2001

Xiangwen Li. March 8th and March 13th, 2001 CS49I Approxaton Algorths The Vertex-Cover Proble Lecture Notes Xangwen L March 8th and March 3th, 00 Absolute Approxaton Gven an optzaton proble P, an algorth A s an approxaton algorth for P f, for an

More information

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor Prncpal Component Transform Multvarate Random Sgnals A real tme sgnal x(t can be consdered as a random process and ts samples x m (m =0; ;N, 1 a random vector: The mean vector of X s X =[x0; ;x N,1] T

More information

XII.3 The EM (Expectation-Maximization) Algorithm

XII.3 The EM (Expectation-Maximization) Algorithm XII.3 The EM (Expectaton-Maxzaton) Algorth Toshnor Munaata 3/7/06 The EM algorth s a technque to deal wth varous types of ncoplete data or hdden varables. It can be appled to a wde range of learnng probles

More information

On the Eigenspectrum of the Gram Matrix and the Generalisation Error of Kernel PCA (Shawe-Taylor, et al. 2005) Ameet Talwalkar 02/13/07

On the Eigenspectrum of the Gram Matrix and the Generalisation Error of Kernel PCA (Shawe-Taylor, et al. 2005) Ameet Talwalkar 02/13/07 On the Egenspectru of the Gra Matr and the Generalsaton Error of Kernel PCA Shawe-aylor, et al. 005 Aeet alwalar 0/3/07 Outlne Bacground Motvaton PCA, MDS Isoap Kernel PCA Generalsaton Error of Kernel

More information

Slobodan Lakić. Communicated by R. Van Keer

Slobodan Lakić. Communicated by R. Van Keer Serdca Math. J. 21 (1995), 335-344 AN ITERATIVE METHOD FOR THE MATRIX PRINCIPAL n-th ROOT Slobodan Lakć Councated by R. Van Keer In ths paper we gve an teratve ethod to copute the prncpal n-th root and

More information

Excess Error, Approximation Error, and Estimation Error

Excess Error, Approximation Error, and Estimation Error E0 370 Statstcal Learnng Theory Lecture 10 Sep 15, 011 Excess Error, Approxaton Error, and Estaton Error Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton So far, we have consdered the fnte saple

More information

1 Definition of Rademacher Complexity

1 Definition of Rademacher Complexity COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #9 Scrbe: Josh Chen March 5, 2013 We ve spent the past few classes provng bounds on the generalzaton error of PAClearnng algorths for the

More information

Applied Mathematics Letters

Applied Mathematics Letters Appled Matheatcs Letters 2 (2) 46 5 Contents lsts avalable at ScenceDrect Appled Matheatcs Letters journal hoepage: wwwelseverco/locate/al Calculaton of coeffcents of a cardnal B-splne Gradr V Mlovanovć

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Machine Learning. Support Vector Machines. Eric Xing. Lecture 4, August 12, Reading: Eric CMU,

Machine Learning. Support Vector Machines. Eric Xing. Lecture 4, August 12, Reading: Eric CMU, Machne Learnng Support Vector Machnes Erc Xng Lecture 4 August 2 200 Readng: Erc Xng @ CMU 2006-200 Erc Xng @ CMU 2006-200 2 What s a good Decson Boundar? Wh e a have such boundares? Irregular dstrbuton

More information

System in Weibull Distribution

System in Weibull Distribution Internatonal Matheatcal Foru 4 9 no. 9 94-95 Relablty Equvalence Factors of a Seres-Parallel Syste n Webull Dstrbuton M. A. El-Dacese Matheatcs Departent Faculty of Scence Tanta Unversty Tanta Egypt eldacese@yahoo.co

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Computational and Statistical Learning theory Assignment 4

Computational and Statistical Learning theory Assignment 4 Coputatonal and Statstcal Learnng theory Assgnent 4 Due: March 2nd Eal solutons to : karthk at ttc dot edu Notatons/Defntons Recall the defnton of saple based Radeacher coplexty : [ ] R S F) := E ɛ {±}

More information

Machine Learning. What is a good Decision Boundary? Support Vector Machines

Machine Learning. What is a good Decision Boundary? Support Vector Machines Machne Learnng 0-70/5 70/5-78 78 Sprng 200 Support Vector Machnes Erc Xng Lecture 7 March 5 200 Readng: Chap. 6&7 C.B book and lsted papers Erc Xng @ CMU 2006-200 What s a good Decson Boundar? Consder

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. ) with a symmetric Pcovariance matrix of the y( x ) measurements V

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. ) with a symmetric Pcovariance matrix of the y( x ) measurements V Fall Analyss o Experental Measureents B Esensten/rev S Errede General Least Squares wth General Constrants: Suppose we have easureents y( x ( y( x, y( x,, y( x wth a syetrc covarance atrx o the y( x easureents

More information

Solving Fuzzy Linear Programming Problem With Fuzzy Relational Equation Constraint

Solving Fuzzy Linear Programming Problem With Fuzzy Relational Equation Constraint Intern. J. Fuzz Maeatcal Archve Vol., 0, -0 ISSN: 0 (P, 0 0 (onlne Publshed on 0 Septeber 0 www.researchasc.org Internatonal Journal of Solvng Fuzz Lnear Prograng Proble W Fuzz Relatonal Equaton Constrant

More information

CHAPTER 6 CONSTRAINED OPTIMIZATION 1: K-T CONDITIONS

CHAPTER 6 CONSTRAINED OPTIMIZATION 1: K-T CONDITIONS Chapter 6: Constraned Optzaton CHAPER 6 CONSRAINED OPIMIZAION : K- CONDIIONS Introducton We now begn our dscusson of gradent-based constraned optzaton. Recall that n Chapter 3 we looked at gradent-based

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

CHAPTER 7 CONSTRAINED OPTIMIZATION 1: THE KARUSH-KUHN-TUCKER CONDITIONS

CHAPTER 7 CONSTRAINED OPTIMIZATION 1: THE KARUSH-KUHN-TUCKER CONDITIONS CHAPER 7 CONSRAINED OPIMIZAION : HE KARUSH-KUHN-UCKER CONDIIONS 7. Introducton We now begn our dscusson of gradent-based constraned optzaton. Recall that n Chapter 3 we looked at gradent-based unconstraned

More information

Non-linear Canonical Correlation Analysis Using a RBF Network

Non-linear Canonical Correlation Analysis Using a RBF Network ESANN' proceedngs - European Smposum on Artfcal Neural Networks Bruges (Belgum), 4-6 Aprl, d-sde publ., ISBN -97--, pp. 57-5 Non-lnear Canoncal Correlaton Analss Usng a RBF Network Sukhbnder Kumar, Elane

More information

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t Indeternate Analyss Force Method The force (flexblty) ethod expresses the relatonshps between dsplaceents and forces that exst n a structure. Prary objectve of the force ethod s to deterne the chosen set

More information

Recap: the SVM problem

Recap: the SVM problem Machne Learnng 0-70/5-78 78 Fall 0 Advanced topcs n Ma-Margn Margn Learnng Erc Xng Lecture 0 Noveber 0 Erc Xng @ CMU 006-00 Recap: the SVM proble We solve the follong constraned opt proble: a s.t. J 0

More information

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS COURSE CODES: FFR 35, FIM 72 GU, PhD Tme: Place: Teachers: Allowed materal: Not allowed: January 2, 28, at 8 3 2 3 SB

More information

BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS. Dariusz Biskup

BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS. Dariusz Biskup BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS Darusz Bskup 1. Introducton The paper presents a nonparaetrc procedure for estaton of an unknown functon f n the regresson odel y = f x + ε = N. (1) (

More information

Geometric Camera Calibration

Geometric Camera Calibration Geoetrc Caera Calbraton EECS 598-8 Fall 24! Foundatons of Coputer Vson!! Instructor: Jason Corso (jjcorso)! web.eecs.uch.edu/~jjcorso/t/598f4!! Readngs: F.; SZ 6. (FL 4.6; extra notes)! Date: 9/7/4!! Materals

More information

Lecture 3. Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab. 13- Jan- 15.

Lecture 3. Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab. 13- Jan- 15. Lecture Caera Models Caera Calbraton rofessor Slvo Savarese Coputatonal Vson and Geoetry Lab Slvo Savarese Lecture - - Jan- 5 Lecture Caera Models Caera Calbraton Recap of caera odels Caera calbraton proble

More information

Perceptual Organization (IV)

Perceptual Organization (IV) Perceptual Organzaton IV Introducton to Coputatonal and Bologcal Vson CS 0--56 Coputer Scence Departent BGU Ohad Ben-Shahar Segentaton Segentaton as parttonng Gven: I - a set of age pxels H a regon hoogenety

More information

Statistical pattern recognition

Statistical pattern recognition Statstcal pattern recognton Bayes theorem Problem: decdng f a patent has a partcular condton based on a partcular test However, the test s mperfect Someone wth the condton may go undetected (false negatve

More information

PROBABILITY AND STATISTICS Vol. III - Analysis of Variance and Analysis of Covariance - V. Nollau ANALYSIS OF VARIANCE AND ANALYSIS OF COVARIANCE

PROBABILITY AND STATISTICS Vol. III - Analysis of Variance and Analysis of Covariance - V. Nollau ANALYSIS OF VARIANCE AND ANALYSIS OF COVARIANCE ANALYSIS OF VARIANCE AND ANALYSIS OF COVARIANCE V. Nollau Insttute of Matheatcal Stochastcs, Techncal Unversty of Dresden, Gerany Keywords: Analyss of varance, least squares ethod, odels wth fxed effects,

More information

Gradient Descent Learning and Backpropagation

Gradient Descent Learning and Backpropagation Artfcal Neural Networks (art 2) Chrstan Jacob Gradent Descent Learnng and Backpropagaton CSC 533 Wnter 200 Learnng by Gradent Descent Defnton of the Learnng roble Let us start wth the sple case of lnear

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

Differentiating Gaussian Processes

Differentiating Gaussian Processes Dfferentatng Gaussan Processes Andrew McHutchon Aprl 17, 013 1 Frst Order Dervatve of the Posteror Mean The posteror mean of a GP s gven by, f = x, X KX, X 1 y x, X α 1 Only the x, X term depends on the

More information

FINDING RELATIONS BETWEEN VARIABLES

FINDING RELATIONS BETWEEN VARIABLES Per Lug Martell - Syste and In Slco Bology. AA 05-06- Unversty of Bologna FINDING RELATIONS BETWEEN VARIABLES Pearson s Correlaton Relaton between coupled varables What couples of varables are n relaton?

More information

A KERNEL FUZZY DISCRIMINANT ANALYSIS MINIMUM DISTANCE-BASED APPROACH FOR THE CLASSIFICATION OF FACE IMAGES

A KERNEL FUZZY DISCRIMINANT ANALYSIS MINIMUM DISTANCE-BASED APPROACH FOR THE CLASSIFICATION OF FACE IMAGES Journal of Matheatcal Scences: Advances and Applcatons Volue 29, 204, Pages 75-97 A KERNEL FUZZY DISCRIMINAN ANALYSIS MINIMUM DISANCE-BASED APPROACH FOR HE CLASSIFICAION OF FACE IMAGES College of Coputer

More information

Rectilinear motion. Lecture 2: Kinematics of Particles. External motion is known, find force. External forces are known, find motion

Rectilinear motion. Lecture 2: Kinematics of Particles. External motion is known, find force. External forces are known, find motion Lecture : Kneatcs of Partcles Rectlnear oton Straght-Lne oton [.1] Analtcal solutons for poston/veloct [.1] Solvng equatons of oton Analtcal solutons (1 D revew) [.1] Nuercal solutons [.1] Nuercal ntegraton

More information

Preference and Demand Examples

Preference and Demand Examples Dvson of the Huantes and Socal Scences Preference and Deand Exaples KC Border October, 2002 Revsed Noveber 206 These notes show how to use the Lagrange Karush Kuhn Tucker ultpler theores to solve the proble

More information

CSE 252C: Computer Vision III

CSE 252C: Computer Vision III CSE 252C: Computer Vson III Lecturer: Serge Belonge Scrbe: Catherne Wah LECTURE 15 Kernel Machnes 15.1. Kernels We wll study two methods based on a specal knd of functon k(x, y) called a kernel: Kernel

More information

13 Principal Components Analysis

13 Principal Components Analysis Prncpal Components Analyss 13 Prncpal Components Analyss We now dscuss an unsupervsed learnng algorthm, called Prncpal Components Analyss, or PCA. The method s unsupervsed because we are learnng a mappng

More information

Elastic Collisions. Definition: two point masses on which no external forces act collide without losing any energy.

Elastic Collisions. Definition: two point masses on which no external forces act collide without losing any energy. Elastc Collsons Defnton: to pont asses on hch no external forces act collde thout losng any energy v Prerequstes: θ θ collsons n one denson conservaton of oentu and energy occurs frequently n everyday

More information

Machine Learning. Support Vector Machines. Eric Xing , Fall Lecture 9, October 8, 2015

Machine Learning. Support Vector Machines. Eric Xing , Fall Lecture 9, October 8, 2015 Machne Learnng 0-70 Fall 205 Support Vector Machnes Erc Xng Lecture 9 Octoer 8 205 Readng: Chap. 6&7 C.B ook and lsted papers Erc Xng @ CMU 2006-205 What s a good Decson Boundar? Consder a nar classfcaton

More information

Quantum Mechanics for Scientists and Engineers

Quantum Mechanics for Scientists and Engineers Quantu Mechancs or Scentsts and Engneers Sangn K Advanced Coputatonal Electroagnetcs Lab redkd@yonse.ac.kr Nov. 4 th, 26 Outlne Quantu Mechancs or Scentsts and Engneers Blnear expanson o lnear operators

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

Machine Learning. Support Vector Machines. Eric Xing , Fall Lecture 9, October 6, 2015

Machine Learning. Support Vector Machines. Eric Xing , Fall Lecture 9, October 6, 2015 Machne Learnng 0-70 Fall 205 Support Vector Machnes Erc Xng Lecture 9 Octoer 6 205 Readng: Chap. 6&7 C.B ook and lsted papers Erc Xng @ CMU 2006-205 What s a good Decson Boundar? Consder a nar classfcaton

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

General Averaged Divergence Analysis

General Averaged Divergence Analysis General Averaged Dvergence Analyss Dacheng ao, Xuelong 2, Xndong u 3,, and Stephen J Maybank 2 Departent of Coputng, Hong Kong Polytechnc Unversty, Hong Kong 2 Sch Coputer Scence & Inforaton Systes, Brkbeck,

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values Fall 007 Soluton to Mdterm Examnaton STAT 7 Dr. Goel. [0 ponts] For the general lnear model = X + ε, wth uncorrelated errors havng mean zero and varance σ, suppose that the desgn matrx X s not necessarly

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

{ In general, we are presented with a quadratic function of a random vector X

{ In general, we are presented with a quadratic function of a random vector X Quadratc VAR odel Mchael Carter à Prelnares Introducton Suppose we wsh to quantfy the value-at-rsk of a Japanese etals tradng fr that has exposure to forward and opton postons n platnu. Soe of the postons

More information

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e.

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e. SSTEM MODELLIN In order to solve a control syste proble, the descrptons of the syste and ts coponents ust be put nto a for sutable for analyss and evaluaton. The followng ethods can be used to odel physcal

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

COS 511: Theoretical Machine Learning

COS 511: Theoretical Machine Learning COS 5: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #0 Scrbe: José Sões Ferrera March 06, 203 In the last lecture the concept of Radeacher coplexty was ntroduced, wth the goal of showng that

More information

PHYS 1443 Section 002 Lecture #20

PHYS 1443 Section 002 Lecture #20 PHYS 1443 Secton 002 Lecture #20 Dr. Jae Condtons for Equlbru & Mechancal Equlbru How to Solve Equlbru Probles? A ew Exaples of Mechancal Equlbru Elastc Propertes of Solds Densty and Specfc Gravty lud

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

Linear Momentum. Center of Mass.

Linear Momentum. Center of Mass. Lecture 16 Chapter 9 Physcs I 11.06.2013 Lnear oentu. Center of ass. Course webste: http://faculty.ul.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.ul.edu/danylov2013/physcs1fall.htl

More information

14 Lagrange Multipliers

14 Lagrange Multipliers Lagrange Multplers 14 Lagrange Multplers The Method of Lagrange Multplers s a powerful technque for constraned optmzaton. Whle t has applcatons far beyond machne learnng t was orgnally developed to solve

More information

On the Construction of Polar Codes

On the Construction of Polar Codes On the Constructon of Polar Codes Ratn Pedarsan School of Coputer and Councaton Systes, Lausanne, Swtzerland. ratn.pedarsan@epfl.ch S. Haed Hassan School of Coputer and Councaton Systes, Lausanne, Swtzerland.

More information

1 Review From Last Time

1 Review From Last Time COS 5: Foundatons of Machne Learnng Rob Schapre Lecture #8 Scrbe: Monrul I Sharf Aprl 0, 2003 Revew Fro Last Te Last te, we were talkng about how to odel dstrbutons, and we had ths setup: Gven - exaples

More information

Minimization of l 2 -Norm of the KSOR Operator

Minimization of l 2 -Norm of the KSOR Operator ournal of Matheatcs and Statstcs 8 (): 6-70, 0 ISSN 59-36 0 Scence Publcatons do:0.38/jssp.0.6.70 Publshed Onlne 8 () 0 (http://www.thescpub.co/jss.toc) Mnzaton of l -Nor of the KSOR Operator Youssef,

More information

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14 APPROXIMAE PRICES OF BASKE AND ASIAN OPIONS DUPON OLIVIER Prema 14 Contents Introducton 1 1. Framewor 1 1.1. Baset optons 1.. Asan optons. Computng the prce 3. Lower bound 3.1. Closed formula for the prce

More information

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD Matrx Approxmaton va Samplng, Subspace Embeddng Lecturer: Anup Rao Scrbe: Rashth Sharma, Peng Zhang 0/01/016 1 Solvng Lnear Systems Usng SVD Two applcatons of SVD have been covered so far. Today we loo

More information

AUTO-CALIBRATION. FACTORIZATION. STRUCTURE FROM MOTION.

AUTO-CALIBRATION. FACTORIZATION. STRUCTURE FROM MOTION. AUO-CALIBRAION. FACORIZAION. SRUCURE FRO OION. hank you for the sldes. hey coe ostly fro the followng sources. arc ollefeys U. of North Carolna artal Hebert CU Slvo Savarese U. of chgan Dan Huttenlocher

More information

On the Construction of Polar Codes

On the Construction of Polar Codes On the Constructon of Polar Codes Ratn Pedarsan School of Coputer and Councaton Systes, Lausanne, Swtzerland. ratn.pedarsan@epfl.ch S. Haed Hassan School of Coputer and Councaton Systes, Lausanne, Swtzerland.

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Chapter 12 Lyes KADEM [Thermodynamics II] 2007

Chapter 12 Lyes KADEM [Thermodynamics II] 2007 Chapter 2 Lyes KDEM [Therodynacs II] 2007 Gas Mxtures In ths chapter we wll develop ethods for deternng therodynac propertes of a xture n order to apply the frst law to systes nvolvng xtures. Ths wll be

More information

Denote the function derivatives f(x) in given points. x a b. Using relationships (1.2), polynomials (1.1) are written in the form

Denote the function derivatives f(x) in given points. x a b. Using relationships (1.2), polynomials (1.1) are written in the form SET OF METHODS FO SOUTION THE AUHY POBEM FO STIFF SYSTEMS OF ODINAY DIFFEENTIA EUATIONS AF atypov and YuV Nulchev Insttute of Theoretcal and Appled Mechancs SB AS 639 Novosbrs ussa Introducton A constructon

More information

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

Hidden Markov Models & The Multivariate Gaussian (10/26/04) CS281A/Stat241A: Statstcal Learnng Theory Hdden Markov Models & The Multvarate Gaussan (10/26/04) Lecturer: Mchael I. Jordan Scrbes: Jonathan W. Hu 1 Hdden Markov Models As a bref revew, hdden Markov models

More information

Converted Measurement Kalman Filter with Nonlinear Equality Constrains

Converted Measurement Kalman Filter with Nonlinear Equality Constrains Converted Measureent Kalan Flter wth Nonlnear Equalt Constrans Xaoxue Feng, Yan Lang, Laneng Jao College of Autoaton Northwestern Poltechncal Unverst X an, Chna fengxaoxue@al.nwpu.edu.cn Abstract For nonlnear

More information

COMP th April, 2007 Clement Pang

COMP th April, 2007 Clement Pang COMP 540 12 th Aprl, 2007 Cleent Pang Boostng Cobnng weak classers Fts an Addtve Model Is essentally Forward Stagewse Addtve Modelng wth Exponental Loss Loss Functons Classcaton: Msclasscaton, Exponental,

More information

ρ some λ THE INVERSE POWER METHOD (or INVERSE ITERATION) , for , or (more usually) to

ρ some λ THE INVERSE POWER METHOD (or INVERSE ITERATION) , for , or (more usually) to THE INVERSE POWER METHOD (or INVERSE ITERATION) -- applcaton of the Power method to A some fxed constant ρ (whch s called a shft), x λ ρ If the egenpars of A are { ( λ, x ) } ( ), or (more usually) to,

More information

Fixed-Point Iterations, Krylov Spaces, and Krylov Methods

Fixed-Point Iterations, Krylov Spaces, and Krylov Methods Fxed-Pont Iteratons, Krylov Spaces, and Krylov Methods Fxed-Pont Iteratons Solve nonsngular lnear syste: Ax = b (soluton ˆx = A b) Solve an approxate, but spler syste: Mx = b x = M b Iprove the soluton

More information

Quantum Particle Motion in Physical Space

Quantum Particle Motion in Physical Space Adv. Studes Theor. Phys., Vol. 8, 014, no. 1, 7-34 HIKARI Ltd, www.-hkar.co http://dx.do.org/10.1988/astp.014.311136 Quantu Partcle Moton n Physcal Space A. Yu. Saarn Dept. of Physcs, Saara State Techncal

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm The Expectaton-Maxmaton Algorthm Charles Elan elan@cs.ucsd.edu November 16, 2007 Ths chapter explans the EM algorthm at multple levels of generalty. Secton 1 gves the standard hgh-level verson of the algorthm.

More information

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations Numercal Methods (CENG 00) CHAPTER-VI Numercal Soluton of Ordnar Dfferental Equatons 6 Introducton Dfferental equatons are equatons composed of an unknown functon and ts dervatves The followng are examples

More information

Army Ants Tunneling for Classical Simulations

Army Ants Tunneling for Classical Simulations Electronc Supplementary Materal (ESI) for Chemcal Scence. Ths journal s The Royal Socety of Chemstry 2014 electronc supplementary nformaton (ESI) for Chemcal Scence Army Ants Tunnelng for Classcal Smulatons

More information

Optimal Marketing Strategies for a Customer Data Intermediary. Technical Appendix

Optimal Marketing Strategies for a Customer Data Intermediary. Technical Appendix Optal Marketng Strateges for a Custoer Data Interedary Techncal Appendx oseph Pancras Unversty of Connectcut School of Busness Marketng Departent 00 Hllsde Road, Unt 04 Storrs, CT 0669-04 oseph.pancras@busness.uconn.edu

More information

Unified Subspace Analysis for Face Recognition

Unified Subspace Analysis for Face Recognition Unfed Subspace Analyss for Face Recognton Xaogang Wang and Xaoou Tang Department of Informaton Engneerng The Chnese Unversty of Hong Kong Shatn, Hong Kong {xgwang, xtang}@e.cuhk.edu.hk Abstract PCA, LDA

More information

Introducing Entropy Distributions

Introducing Entropy Distributions Graubner, Schdt & Proske: Proceedngs of the 6 th Internatonal Probablstc Workshop, Darstadt 8 Introducng Entropy Dstrbutons Noel van Erp & Peter van Gelder Structural Hydraulc Engneerng and Probablstc

More information

arxiv:cond-mat/ v3 22 May 2003

arxiv:cond-mat/ v3 22 May 2003 The Fokker-Planck operator at a contnuous phase transton Moshe Schwartz Rayond and Beverly Sackler Faculty of Exact Scences School of Physcs and Astronoy, Tel Avv Unversty, arxv:cond-at/315 v3 May 3 Raat

More information

15 Lagrange Multipliers

15 Lagrange Multipliers 15 The Method of s a powerful technque for constraned optmzaton. Whle t has applcatons far beyond machne learnng t was orgnally developed to solve physcs equatons), t s used for several ey dervatons n

More information

The Parity of the Number of Irreducible Factors for Some Pentanomials

The Parity of the Number of Irreducible Factors for Some Pentanomials The Party of the Nuber of Irreducble Factors for Soe Pentanoals Wolfra Koepf 1, Ryul K 1 Departent of Matheatcs Unversty of Kassel, Kassel, F. R. Gerany Faculty of Matheatcs and Mechancs K Il Sung Unversty,

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

1. Statement of the problem

1. Statement of the problem Volue 14, 010 15 ON THE ITERATIVE SOUTION OF A SYSTEM OF DISCRETE TIMOSHENKO EQUATIONS Peradze J. and Tsklaur Z. I. Javakhshvl Tbls State Uversty,, Uversty St., Tbls 0186, Georga Georgan Techcal Uversty,

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

A Tutorial on Data Reduction. Linear Discriminant Analysis (LDA) Shireen Elhabian and Aly A. Farag. University of Louisville, CVIP Lab September 2009

A Tutorial on Data Reduction. Linear Discriminant Analysis (LDA) Shireen Elhabian and Aly A. Farag. University of Louisville, CVIP Lab September 2009 A utoral on Data Reducton Lnear Dscrmnant Analss (LDA) hreen Elhaban and Al A Farag Unverst of Lousvlle, CVIP Lab eptember 009 Outlne LDA objectve Recall PCA No LDA LDA o Classes Counter eample LDA C Classes

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 31 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 6. Rdge regresson The OLSE s the best lnear unbased

More information

On Pfaff s solution of the Pfaff problem

On Pfaff s solution of the Pfaff problem Zur Pfaff scen Lösung des Pfaff scen Probles Mat. Ann. 7 (880) 53-530. On Pfaff s soluton of te Pfaff proble By A. MAYER n Lepzg Translated by D. H. Delpenc Te way tat Pfaff adopted for te ntegraton of

More information

Spectral Recomposition in Stratigraphic Interpretation*

Spectral Recomposition in Stratigraphic Interpretation* Spectral Recoposton n Stratgraphc Interpretaton* Yhua Ca 1, Sergey Foel 2, and Honglu Zeng 2 Search and Dscovery Artcle #41376 (2014)** Posted June 30, 2014 *Adapted fro oral presentaton gven at Geoscence

More information

Solutions for Homework #9

Solutions for Homework #9 Solutons for Hoewor #9 PROBEM. (P. 3 on page 379 n the note) Consder a sprng ounted rgd bar of total ass and length, to whch an addtonal ass s luped at the rghtost end. he syste has no dapng. Fnd the natural

More information