XII.3 The EM (Expectation-Maximization) Algorithm

Size: px
Start display at page:

Download "XII.3 The EM (Expectation-Maximization) Algorithm"

Transcription

1 XII.3 The EM (Expectaton-Maxzaton) Algorth Toshnor Munaata 3/7/06 The EM algorth s a technque to deal wth varous types of ncoplete data or hdden varables. It can be appled to a wde range of learnng probles ncludng Bayesan networs. Bascs of the EM algorth Assue that we have an ncoplete data set. It s ncoplete snce data for soe or all nstances of certan attrbutes are ssng or soe characterstc values are unnown. The data and assocated paraeters n the EM algorth are classfed nto three categores: X, Z and θ. Let X = {x,, x } be a set of observed data, Z = {z,, z } be a set of unobserved (.e., hdden) data, and Y = X Z be the entre set of data. There s one-to-one correspondence between x n X and z n Z. Also let θ be a set of unnown paraeters that characterzes Y. Gven X, our proble s to deterne Z and θ. We note that the proble s doubly coplcated because we have to deterne both Z and θ. Dependng on the applcaton, X, Z and θ can tae a varety of fors. For exaple, each of x and z can be a scalar or a vector havng ts coponents as, e.g., z, z,... Each paraeter n θ can also be a scalar or a vector. The basc steps of the EM algorths can be descrbed as follows: 0. Intalzaton. Assgn values to paraeters n θ (arbtrarly, at rando, or based on soe nowledge). Repeat (terate) the followng two steps untl the soluton for Z and θ converges.. Expectaton Step (E-Step n short). Assung the current paraeter values are correct, copute expected values of Z.. Maxzaton Step (M-Step n short). Assung that Y = X Z s a truly observed data set (although the Z part s not), calculate new paraeter values of θ. The Step s called the axzaton step because we search for a axu lelhood hypothess n ters of the paraeters wth the data set of Y = X Z. As n any other so-called hll-clbng algorths, t can be stuc n a local axa, partcularly when substantal data are ssng. Prelude: Sple Illustratons As dscussed n eleentary statstcs textboos, the noral dstrbuton f(x) wth ean µ and standard devaton σ s gven by f ( x) = e σ π ( xµ ) σ () f(x) represents the probablty densty functon or the probablty dstrbuton of the noral dstrbuton. The area under the curve f(x) s wth the noralzng factor / σ π (See Fg. 6). Many types of data follow the noral dstrbuton wth approprate scalng factors.

2 Fgure 6. A noral dstrbuton wth the ean µ and standard devaton σ. Exaple. A 0-pont quz n a class of 00 students. Only gven data s X = {x }, =, 00, where x represents the score receved by the th student. For exaple, X = {x, x, x 3, x 4,, x 00 } = {0,,,,..., 0}. (Note. Usually the noral dstrbuton s used for contnuous values of x such as x = We are applyng the dstrbuton for dscrete values of x as a sple llustraton.) If we assue that x are sorted for splcty, the data ndcate that one student receved 0 ponts, two students receved pont, etc. The followng Fg. 7 shows parts of X for x, x, x 3, x 99, and x 00. Each crcle on the x-axs represents a data nstance. Fgure 7. Ponts receved by students for a 0-pont quz n a class of 00 students. Only ponts for fve out of 00 students are shown: the leftost crcle represents x = 0, the next two crcles represent x = and x 3 =, and the two rghtost crcles x 99 = 0 and x 00 = 0. In general, the data need not be sorted. For exaple, x for Adas ay be 8, x for Sth ay be 3, etc. It s a coon practce to tally the data to see the pont dstrbuton easer. The followng s such a tally for our exaple: x: f(x): Total = 00 Here x represents quz pont, and f(x) the nuber,.e., the frequency of students who receved score x. Ths s convenent to see the dstrbuton,.e., how any students receved what pont. But the orgnal nforaton of raw data, the pont receved by each student s lost. The above tally can be depcted by a graph, by addng an ordnate representng the nuber of students to Fg. 7 and droppng the crcles representng students resultng to the followng Fg. 8. We see that a graph such as Fg. 8 can be approxated by a noral dstrbuton le equaton () and Fg. 6 (wth an approprate scalng factor).

3 Fgure 8. Pont dstrbuton for a 0-pont quz n a class of 00 students. In certan cases, data ay not ft well to a noral dstrbuton. Instead, t ay be ore natural to ft the data to a xture of noral dstrbutons. Suppose the pont dstrbuton s gven as follows: x: f(x): Total = 00 Fg. 9 depcts ths dstrbuton. We see two peas at x = 3 and 8. It ay be natural to consder ths dstrbuton as a xture of two noral dstrbutons, wth dfferent eans, standard devatons, and heghts. In general, data can be a xture of two, three,..., noral dstrbutons. Ths s the type of the proble the EM algorth addresses gven data, for whch soe are observable whle soe are not, we are to deterne the underlyng xture of noral dstrbutons. Fgure 9. Data that ft a xture of two noral dstrbutons. Case Study: A Mxture of Dstnct Noral Dstrbutons The followng Fg. 0 shows an exaple of two noral dstrbutons f (x) wth µ and σ and f (x) wth µ and σ. The area for each of the two dstrbutons s. In our proble, we want to ft each data nstance x to a probablty dstrbuton f(x) that s a xture of dstnct noral dstrbutons ultpled by weghts, where s a nown postve nteger (for exaple, = n Fg. 0) as: f ( x) p f ( x ; µ, σ ) = () = 3

4 where f s the th noral dstrbuton for a data nstance x wth the ean µ and the standard devaton σ. For specfc values of x, µ and σ, the consttuent functon f (x; µ, σ ) can be evaluated by substtutng these values nto equaton (). p s the weght or the probablty of the coponent, contrbutng to the total dstrbuton f(x). p s assocated only wth and does not depend on specfc x; = p = holds. The probablty dstrbuton f(x ) for a specfc data nstance x can be represented by sply replacng x wth x n equaton (). Fgure 0. A xture of = noral dstrbutons, f (x) and f (x). Each crcle on the x-axs represents a data nstance. Exaple. Suppose that our probablty dstrbuton f(x) s a xture of = noral dstrbutons f (x) and f (x) gven n Fg. 0, wth p = 0.8 and p = 0.. We note p + p =. Then ( xµ ) ( xµ ) 0.8 σ 0. σ f(x) = 0.8 f (x; µ, σ ) + 0. f (x; µ, σ ) = e + e σ π σ π A graph for ths f(x) can be obtaned fro Fg. 0 as follows. Contract (flatten) f (x) and f (x) along the ordnate drecton by ultplyng 0.8 and 0., respectvely, then add the two graphs (Fg. ). Fgure. Graph f(x) obtaned by superposng = noral dstrbutons, 0.8f (x) and 0.f (x). 4

5 The EM algorth Let a set of observed data nstances, X = {x,, x }. Our proble s to deterne a set of unobservable data Z and a set of paraeters θ that characterzes Y = X Z. More specfcally, Z and θ are: Z = {p }, =, and =,, where p represents the probablty that x belongs to the th coponent. Here each z n Z = {z,, z } s a vector havng coponents as, z = p,..., z = p. θ ={ p,..., p, µ,..., µ, σ,..., σ }, the paraeter vector. In Fg. 0 exaple where =, {x,, x } are represented by sall crcles on the abscssa. They are the only data that are observable. Our proble s to deterne two dstrbutons le f (x) and f (x) through the paraeter vector θ, and {p }, a easure for whch each data nstance s generated by whch dstrbuton. Our EM algorth can be perfored as follows: Step 0. Intalzaton. Assgn approprate values to θ ={ p,..., p, µ,..., µ, σ,..., σ }. E-step. Assung the current value of θ, copute Z = {p }, =, and =, as follows: p P( x ) ( x ; µ, σ ) (weght) ( th dstrbuton) p f = = (3) (total dstrbuton) f Ths result can also be obtaned by eployng Bayes' rule: ( ) P x ( ) ( ) ( ) P x P p f = = P x f x ( x ; µ, σ ) ( ) ( x ) In the above, we used P( x ) = f ( x ; µ, σ ), P( ) = p, and P( x ) = f ( x ). We note that f ( x ) p = ( ;, ) p f x µ σ = =,.e., the probabltes add up to for each x, and = f ( x ) = f ( x ) p = =. f (x ; µ, σ ) can be deterned by equaton () and f (x ) can be deterned = = = by equaton (). M-step. Fro the above, we can estate new paraeters of θ as follows. p = p (4) = to average the probablty for the th coponent over data ponts. µ = p x (5) p = to average x over data ponts wth weght factors. p = ( x ) σ = p µ (6) Ths s the standard devaton verson of equaton (5) for µ. After ntalzaton, teratons are perfored for the E, M, E,, steps untl Z and θ converge. Exaple. A sple specal case. = and σ σ σ = = s nown. θ ={,,, } p p µ µ. 5

6 ( ) ( ; µ, σ) ( ;, ) f x = p f x + p f x µ σ ( ) E-step. =,. ( xµ ) σ p f( x ; µ, σ) pe p = = ( ) ( xµ ) ( x f x µ ) σ σ pe + p e M-step. Copute new p, u for =,. p = = p (4 ) µ = p x (5 ) p = To perfor teratons, ntalze θ ={,,, } the E-step. (3 ) p p µ µ. Then repeat the E and M steps startng fro In the above, each data nstance x s assued to be a sngle scalar value. As an extenson, each data nstance can be a vector x when there are ultple ndependent varables. For exaple, when there are three ndependent varables, each data nstance would be a vector x = (x, x, x 3 ). The above dscussons can be extended by replacng scalar quanttes such as x, z, and the paraeters by vector quanttes. 6

Xiangwen Li. March 8th and March 13th, 2001

Xiangwen Li. March 8th and March 13th, 2001 CS49I Approxaton Algorths The Vertex-Cover Proble Lecture Notes Xangwen L March 8th and March 3th, 00 Absolute Approxaton Gven an optzaton proble P, an algorth A s an approxaton algorth for P f, for an

More information

BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS. Dariusz Biskup

BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS. Dariusz Biskup BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS Darusz Bskup 1. Introducton The paper presents a nonparaetrc procedure for estaton of an unknown functon f n the regresson odel y = f x + ε = N. (1) (

More information

System in Weibull Distribution

System in Weibull Distribution Internatonal Matheatcal Foru 4 9 no. 9 94-95 Relablty Equvalence Factors of a Seres-Parallel Syste n Webull Dstrbuton M. A. El-Dacese Matheatcs Departent Faculty of Scence Tanta Unversty Tanta Egypt eldacese@yahoo.co

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2014. All Rghts Reserved. Created: July 15, 1999 Last Modfed: February 9, 2008 Contents 1 Lnear Fttng

More information

Excess Error, Approximation Error, and Estimation Error

Excess Error, Approximation Error, and Estimation Error E0 370 Statstcal Learnng Theory Lecture 10 Sep 15, 011 Excess Error, Approxaton Error, and Estaton Error Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton So far, we have consdered the fnte saple

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2015. All Rghts Reserved. Created: July 15, 1999 Last Modfed: January 5, 2015 Contents 1 Lnear Fttng

More information

Chapter 12 Lyes KADEM [Thermodynamics II] 2007

Chapter 12 Lyes KADEM [Thermodynamics II] 2007 Chapter 2 Lyes KDEM [Therodynacs II] 2007 Gas Mxtures In ths chapter we wll develop ethods for deternng therodynac propertes of a xture n order to apply the frst law to systes nvolvng xtures. Ths wll be

More information

COS 511: Theoretical Machine Learning

COS 511: Theoretical Machine Learning COS 5: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #0 Scrbe: José Sões Ferrera March 06, 203 In the last lecture the concept of Radeacher coplexty was ntroduced, wth the goal of showng that

More information

DETERMINATION OF UNCERTAINTY ASSOCIATED WITH QUANTIZATION ERRORS USING THE BAYESIAN APPROACH

DETERMINATION OF UNCERTAINTY ASSOCIATED WITH QUANTIZATION ERRORS USING THE BAYESIAN APPROACH Proceedngs, XVII IMEKO World Congress, June 7, 3, Dubrovn, Croata Proceedngs, XVII IMEKO World Congress, June 7, 3, Dubrovn, Croata TC XVII IMEKO World Congress Metrology n the 3rd Mllennum June 7, 3,

More information

Denote the function derivatives f(x) in given points. x a b. Using relationships (1.2), polynomials (1.1) are written in the form

Denote the function derivatives f(x) in given points. x a b. Using relationships (1.2), polynomials (1.1) are written in the form SET OF METHODS FO SOUTION THE AUHY POBEM FO STIFF SYSTEMS OF ODINAY DIFFEENTIA EUATIONS AF atypov and YuV Nulchev Insttute of Theoretcal and Appled Mechancs SB AS 639 Novosbrs ussa Introducton A constructon

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Introducing Entropy Distributions

Introducing Entropy Distributions Graubner, Schdt & Proske: Proceedngs of the 6 th Internatonal Probablstc Workshop, Darstadt 8 Introducng Entropy Dstrbutons Noel van Erp & Peter van Gelder Structural Hydraulc Engneerng and Probablstc

More information

,..., k N. , k 2. ,..., k i. The derivative with respect to temperature T is calculated by using the chain rule: & ( (5) dj j dt = "J j. k i.

,..., k N. , k 2. ,..., k i. The derivative with respect to temperature T is calculated by using the chain rule: & ( (5) dj j dt = J j. k i. Suppleentary Materal Dervaton of Eq. 1a. Assue j s a functon of the rate constants for the N coponent reactons: j j (k 1,,..., k,..., k N ( The dervatve wth respect to teperature T s calculated by usng

More information

Chapter One Mixture of Ideal Gases

Chapter One Mixture of Ideal Gases herodynacs II AA Chapter One Mxture of Ideal Gases. Coposton of a Gas Mxture: Mass and Mole Fractons o deterne the propertes of a xture, we need to now the coposton of the xture as well as the propertes

More information

PROBABILITY AND STATISTICS Vol. III - Analysis of Variance and Analysis of Covariance - V. Nollau ANALYSIS OF VARIANCE AND ANALYSIS OF COVARIANCE

PROBABILITY AND STATISTICS Vol. III - Analysis of Variance and Analysis of Covariance - V. Nollau ANALYSIS OF VARIANCE AND ANALYSIS OF COVARIANCE ANALYSIS OF VARIANCE AND ANALYSIS OF COVARIANCE V. Nollau Insttute of Matheatcal Stochastcs, Techncal Unversty of Dresden, Gerany Keywords: Analyss of varance, least squares ethod, odels wth fxed effects,

More information

Need for Probabilistic Reasoning. Raymond J. Mooney. Conditional Probability. Axioms of Probability Theory. Classification (Categorization)

Need for Probabilistic Reasoning. Raymond J. Mooney. Conditional Probability. Axioms of Probability Theory. Classification (Categorization) Need for Probablstc Reasonng CS 343: Artfcal Intelence Probablstc Reasonng and Naïve Bayes Rayond J. Mooney Unversty of Texas at Austn Most everyday reasonng s based on uncertan evdence and nferences.

More information

AN ANALYSIS OF A FRACTAL KINETICS CURVE OF SAVAGEAU

AN ANALYSIS OF A FRACTAL KINETICS CURVE OF SAVAGEAU AN ANALYI OF A FRACTAL KINETIC CURE OF AAGEAU by John Maloney and Jack Hedel Departent of Matheatcs Unversty of Nebraska at Oaha Oaha, Nebraska 688 Eal addresses: aloney@unoaha.edu, jhedel@unoaha.edu Runnng

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm The Expectaton-Maxmaton Algorthm Charles Elan elan@cs.ucsd.edu November 16, 2007 Ths chapter explans the EM algorthm at multple levels of generalty. Secton 1 gves the standard hgh-level verson of the algorthm.

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

A be a probability space. A random vector

A be a probability space. A random vector Statstcs 1: Probablty Theory II 8 1 JOINT AND MARGINAL DISTRIBUTIONS In Probablty Theory I we formulate the concept of a (real) random varable and descrbe the probablstc behavor of ths random varable by

More information

CHAPTER 10 ROTATIONAL MOTION

CHAPTER 10 ROTATIONAL MOTION CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n x-y plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The

More information

Several generation methods of multinomial distributed random number Tian Lei 1, a,linxihe 1,b,Zhigang Zhang 1,c

Several generation methods of multinomial distributed random number Tian Lei 1, a,linxihe 1,b,Zhigang Zhang 1,c Internatonal Conference on Appled Scence and Engneerng Innovaton (ASEI 205) Several generaton ethods of ultnoal dstrbuted rando nuber Tan Le, a,lnhe,b,zhgang Zhang,c School of Matheatcs and Physcs, USTB,

More information

Computational and Statistical Learning theory Assignment 4

Computational and Statistical Learning theory Assignment 4 Coputatonal and Statstcal Learnng theory Assgnent 4 Due: March 2nd Eal solutons to : karthk at ttc dot edu Notatons/Defntons Recall the defnton of saple based Radeacher coplexty : [ ] R S F) := E ɛ {±}

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

The Parity of the Number of Irreducible Factors for Some Pentanomials

The Parity of the Number of Irreducible Factors for Some Pentanomials The Party of the Nuber of Irreducble Factors for Soe Pentanoals Wolfra Koepf 1, Ryul K 1 Departent of Matheatcs Unversty of Kassel, Kassel, F. R. Gerany Faculty of Matheatcs and Mechancs K Il Sung Unversty,

More information

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax .9.1: AC power analyss Reson: Deceber 13, 010 15 E Man Sute D Pullan, WA 99163 (509 334 6306 Voce and Fax Oerew n chapter.9.0, we ntroduced soe basc quanttes relate to delery of power usng snusodal sgnals.

More information

Applied Mathematics Letters

Applied Mathematics Letters Appled Matheatcs Letters 2 (2) 46 5 Contents lsts avalable at ScenceDrect Appled Matheatcs Letters journal hoepage: wwwelseverco/locate/al Calculaton of coeffcents of a cardnal B-splne Gradr V Mlovanovć

More information

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements CS 750 Machne Learnng Lecture 5 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square CS 750 Machne Learnng Announcements Homework Due on Wednesday before the class Reports: hand n before

More information

Determination of the Confidence Level of PSD Estimation with Given D.O.F. Based on WELCH Algorithm

Determination of the Confidence Level of PSD Estimation with Given D.O.F. Based on WELCH Algorithm Internatonal Conference on Inforaton Technology and Manageent Innovaton (ICITMI 05) Deternaton of the Confdence Level of PSD Estaton wth Gven D.O.F. Based on WELCH Algorth Xue-wang Zhu, *, S-jan Zhang

More information

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner.

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner. (C) 998 Gerald B Sheblé, all rghts reserved Lnear Prograng Introducton Contents I. What s LP? II. LP Theor III. The Splex Method IV. Refneents to the Splex Method What s LP? LP s an optzaton technque that

More information

Outline. Prior Information and Subjective Probability. Subjective Probability. The Histogram Approach. Subjective Determination of the Prior Density

Outline. Prior Information and Subjective Probability. Subjective Probability. The Histogram Approach. Subjective Determination of the Prior Density Outlne Pror Inforaton and Subjectve Probablty u89603 1 Subjectve Probablty Subjectve Deternaton of the Pror Densty Nonnforatve Prors Maxu Entropy Prors Usng the Margnal Dstrbuton to Deterne the Pror Herarchcal

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

PHYS 1443 Section 002 Lecture #20

PHYS 1443 Section 002 Lecture #20 PHYS 1443 Secton 002 Lecture #20 Dr. Jae Condtons for Equlbru & Mechancal Equlbru How to Solve Equlbru Probles? A ew Exaples of Mechancal Equlbru Elastc Propertes of Solds Densty and Specfc Gravty lud

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probablty Mcroscopc propertes of matter: quantum mechancs, atomc and molecular propertes Macroscopc propertes of matter: thermodynamcs, E, H, C V, C p, S, A, G How do we relate these two propertes?

More information

On Pfaff s solution of the Pfaff problem

On Pfaff s solution of the Pfaff problem Zur Pfaff scen Lösung des Pfaff scen Probles Mat. Ann. 7 (880) 53-530. On Pfaff s soluton of te Pfaff proble By A. MAYER n Lepzg Translated by D. H. Delpenc Te way tat Pfaff adopted for te ntegraton of

More information

= z 20 z n. (k 20) + 4 z k = 4

= z 20 z n. (k 20) + 4 z k = 4 Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

1 Definition of Rademacher Complexity

1 Definition of Rademacher Complexity COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #9 Scrbe: Josh Chen March 5, 2013 We ve spent the past few classes provng bounds on the generalzaton error of PAClearnng algorths for the

More information

CS-433: Simulation and Modeling Modeling and Probability Review

CS-433: Simulation and Modeling Modeling and Probability Review CS-433: Smulaton and Modelng Modelng and Probablty Revew Exercse 1. (Probablty of Smple Events) Exercse 1.1 The owner of a camera shop receves a shpment of fve cameras from a camera manufacturer. Unknown

More information

On the Eigenspectrum of the Gram Matrix and the Generalisation Error of Kernel PCA (Shawe-Taylor, et al. 2005) Ameet Talwalkar 02/13/07

On the Eigenspectrum of the Gram Matrix and the Generalisation Error of Kernel PCA (Shawe-Taylor, et al. 2005) Ameet Talwalkar 02/13/07 On the Egenspectru of the Gra Matr and the Generalsaton Error of Kernel PCA Shawe-aylor, et al. 005 Aeet alwalar 0/3/07 Outlne Bacground Motvaton PCA, MDS Isoap Kernel PCA Generalsaton Error of Kernel

More information

, are assumed to fluctuate around zero, with E( i) 0. Now imagine that this overall random effect, , is composed of many independent factors,

, are assumed to fluctuate around zero, with E( i) 0. Now imagine that this overall random effect, , is composed of many independent factors, Part II. Contnuous Spatal Data Analyss 3. Spatally-Dependent Rando Effects Observe that all regressons n the llustratons above [startng wth expresson (..3) n the Sudan ranfall exaple] have reled on an

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Probability and Random Variable Primer

Probability and Random Variable Primer B. Maddah ENMG 622 Smulaton 2/22/ Probablty and Random Varable Prmer Sample space and Events Suppose that an eperment wth an uncertan outcome s performed (e.g., rollng a de). Whle the outcome of the eperment

More information

Statistical analysis of Accelerated life testing under Weibull distribution based on fuzzy theory

Statistical analysis of Accelerated life testing under Weibull distribution based on fuzzy theory Statstcal analyss of Accelerated lfe testng under Webull dstrbuton based on fuzzy theory Han Xu, Scence & Technology on Relablty & Envronental Engneerng Laboratory, School of Relablty and Syste Engneerng,

More information

Expectation Maximization Mixture Models HMMs

Expectation Maximization Mixture Models HMMs -755 Machne Learnng for Sgnal Processng Mture Models HMMs Class 9. 2 Sep 200 Learnng Dstrbutons for Data Problem: Gven a collecton of eamples from some data, estmate ts dstrbuton Basc deas of Mamum Lelhood

More information

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e.

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e. SSTEM MODELLIN In order to solve a control syste proble, the descrptons of the syste and ts coponents ust be put nto a for sutable for analyss and evaluaton. The followng ethods can be used to odel physcal

More information

Markov Chain Monte-Carlo (MCMC)

Markov Chain Monte-Carlo (MCMC) Markov Chan Monte-Carlo (MCMC) What for s t and what does t look lke? A. Favorov, 2003-2017 favorov@sens.org favorov@gal.co Monte Carlo ethod: a fgure square The value s unknown. Let s saple a rando value

More information

ASYMMETRIC TRAFFIC ASSIGNMENT WITH FLOW RESPONSIVE SIGNAL CONTROL IN AN URBAN NETWORK

ASYMMETRIC TRAFFIC ASSIGNMENT WITH FLOW RESPONSIVE SIGNAL CONTROL IN AN URBAN NETWORK AYMMETRIC TRAFFIC AIGNMENT WITH FLOW REPONIVE IGNAL CONTROL IN AN URBAN NETWORK Ken'etsu UCHIDA *, e'ch KAGAYA **, Tohru HAGIWARA *** Dept. of Engneerng - Hoado Unversty * E-al: uchda@eng.houda.ac.p **

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. ) with a symmetric Pcovariance matrix of the y( x ) measurements V

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. ) with a symmetric Pcovariance matrix of the y( x ) measurements V Fall Analyss o Experental Measureents B Esensten/rev S Errede General Least Squares wth General Constrants: Suppose we have easureents y( x ( y( x, y( x,, y( x wth a syetrc covarance atrx o the y( x easureents

More information

Notes prepared by Prof Mrs) M.J. Gholba Class M.Sc Part(I) Information Technology

Notes prepared by Prof Mrs) M.J. Gholba Class M.Sc Part(I) Information Technology Inverse transformatons Generaton of random observatons from gven dstrbutons Assume that random numbers,,, are readly avalable, where each tself s a random varable whch s unformly dstrbuted over the range(,).

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

y new = M x old Feature Selection: Linear Transformations Constraint Optimization (insertion)

y new = M x old Feature Selection: Linear Transformations Constraint Optimization (insertion) Feature Selecton: Lnear ransforatons new = M x old Constrant Optzaton (nserton) 3 Proble: Gven an objectve functon f(x) to be optzed and let constrants be gven b h k (x)=c k, ovng constants to the left,

More information

SDMML HT MSc Problem Sheet 4

SDMML HT MSc Problem Sheet 4 SDMML HT 06 - MSc Problem Sheet 4. The recever operatng characterstc ROC curve plots the senstvty aganst the specfcty of a bnary classfer as the threshold for dscrmnaton s vared. Let the data space be

More information

Chapter 13. Gas Mixtures. Study Guide in PowerPoint. Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A.

Chapter 13. Gas Mixtures. Study Guide in PowerPoint. Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Chapter 3 Gas Mxtures Study Gude n PowerPont to accopany Therodynacs: An Engneerng Approach, 5th edton by Yunus A. Çengel and Mchael A. Boles The dscussons n ths chapter are restrcted to nonreactve deal-gas

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 where (x 1,..., x N ) X N, N s called the populaton sze, f(x) f (x) for at least one {1, 2,..., N}, and those dfferent from f(x) are called the tral dstrbutons n terms of mportance samplng. Dfferent ways

More information

PHYS 342L NOTES ON ANALYZING DATA. Spring Semester 2002

PHYS 342L NOTES ON ANALYZING DATA. Spring Semester 2002 PHYS 34L OTES O AALYZIG DATA Sprng Seester 00 Departent of Phscs Purdue Unverst A ajor aspect of eperental phscs (and scence n general) s easureent of soe quanttes and analss of eperentall obtaned data.

More information

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

Hidden Markov Models & The Multivariate Gaussian (10/26/04) CS281A/Stat241A: Statstcal Learnng Theory Hdden Markov Models & The Multvarate Gaussan (10/26/04) Lecturer: Mchael I. Jordan Scrbes: Jonathan W. Hu 1 Hdden Markov Models As a bref revew, hdden Markov models

More information

Gradient Descent Learning and Backpropagation

Gradient Descent Learning and Backpropagation Artfcal Neural Networks (art 2) Chrstan Jacob Gradent Descent Learnng and Backpropagaton CSC 533 Wnter 200 Learnng by Gradent Descent Defnton of the Learnng roble Let us start wth the sple case of lnear

More information

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2) 1/16 MATH 829: Introducton to Data Mnng and Analyss The EM algorthm (part 2) Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 20, 2016 Recall 2/16 We are gven ndependent observatons

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

LECTURE :FACTOR ANALYSIS

LECTURE :FACTOR ANALYSIS LCUR :FACOR ANALYSIS Rta Osadchy Based on Lecture Notes by A. Ng Motvaton Dstrbuton coes fro MoG Have suffcent aount of data: >>n denson Use M to ft Mture of Gaussans nu. of tranng ponts If

More information

Gaussian Mixture Models

Gaussian Mixture Models Lab Gaussan Mxture Models Lab Objectve: Understand the formulaton of Gaussan Mxture Models (GMMs) and how to estmate GMM parameters. You ve already seen GMMs as the observaton dstrbuton n certan contnuous

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

6.3.4 Modified Euler s method of integration

6.3.4 Modified Euler s method of integration 6.3.4 Modfed Euler s method of ntegraton Before dscussng the applcaton of Euler s method for solvng the swng equatons, let us frst revew the basc Euler s method of numercal ntegraton. Let the general from

More information

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics )

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics ) Ismor Fscher, 8//008 Stat 54 / -8.3 Summary Statstcs Measures of Center and Spread Dstrbuton of dscrete contnuous POPULATION Random Varable, numercal True center =??? True spread =???? parameters ( populaton

More information

Quantum Particle Motion in Physical Space

Quantum Particle Motion in Physical Space Adv. Studes Theor. Phys., Vol. 8, 014, no. 1, 7-34 HIKARI Ltd, www.-hkar.co http://dx.do.org/10.1988/astp.014.311136 Quantu Partcle Moton n Physcal Space A. Yu. Saarn Dept. of Physcs, Saara State Techncal

More information

Elastic Collisions. Definition: two point masses on which no external forces act collide without losing any energy.

Elastic Collisions. Definition: two point masses on which no external forces act collide without losing any energy. Elastc Collsons Defnton: to pont asses on hch no external forces act collde thout losng any energy v Prerequstes: θ θ collsons n one denson conservaton of oentu and energy occurs frequently n everyday

More information

Multipoint Analysis for Sibling Pairs. Biostatistics 666 Lecture 18

Multipoint Analysis for Sibling Pairs. Biostatistics 666 Lecture 18 Multpont Analyss for Sblng ars Bostatstcs 666 Lecture 8 revously Lnkage analyss wth pars of ndvduals Non-paraetrc BS Methods Maxu Lkelhood BD Based Method ossble Trangle Constrant AS Methods Covered So

More information

Solutions for Homework #9

Solutions for Homework #9 Solutons for Hoewor #9 PROBEM. (P. 3 on page 379 n the note) Consder a sprng ounted rgd bar of total ass and length, to whch an addtonal ass s luped at the rghtost end. he syste has no dapng. Fnd the natural

More information

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F)

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F) EN40: Dynacs and Vbratons Hoework 4: Work, Energy and Lnear Moentu Due Frday March 6 th School of Engneerng Brown Unversty 1. The Rydberg potental s a sple odel of atoc nteractons. It specfes the potental

More information

Estimation of Reliability in Multicomponent Stress-Strength Based on Generalized Rayleigh Distribution

Estimation of Reliability in Multicomponent Stress-Strength Based on Generalized Rayleigh Distribution Journal of Modern Appled Statstcal Methods Volue 13 Issue 1 Artcle 4 5-1-014 Estaton of Relablty n Multcoponent Stress-Strength Based on Generalzed Raylegh Dstrbuton Gadde Srnvasa Rao Unversty of Dodoa,

More information

On Syndrome Decoding of Punctured Reed-Solomon and Gabidulin Codes 1

On Syndrome Decoding of Punctured Reed-Solomon and Gabidulin Codes 1 Ffteenth Internatonal Workshop on Algebrac and Cobnatoral Codng Theory June 18-24, 2016, Albena, Bulgara pp. 35 40 On Syndroe Decodng of Punctured Reed-Soloon and Gabduln Codes 1 Hannes Bartz hannes.bartz@tu.de

More information

By M. O'Neill,* I. G. Sinclairf and Francis J. Smith

By M. O'Neill,* I. G. Sinclairf and Francis J. Smith 52 Polynoal curve fttng when abscssas and ordnates are both subject to error By M. O'Nell,* I. G. Snclarf and Francs J. Sth Departents of Coputer Scence and Appled Matheatcs, School of Physcs and Appled

More information

Research Article Green s Theorem for Sign Data

Research Article Green s Theorem for Sign Data Internatonal Scholarly Research Network ISRN Appled Mathematcs Volume 2012, Artcle ID 539359, 10 pages do:10.5402/2012/539359 Research Artcle Green s Theorem for Sgn Data Lous M. Houston The Unversty of

More information

2 Complement Representation PIC. John J. Sudano Lockheed Martin Moorestown, NJ, 08057, USA

2 Complement Representation PIC. John J. Sudano Lockheed Martin Moorestown, NJ, 08057, USA The yste Probablty nforaton ontent P Relatonshp to ontrbutng oponents obnng ndependent Mult-ource elefs Hybrd and Pedgree Pgnstc Probabltes ohn. udano Lockheed Martn Moorestown 08057 U john.j.sudano@lco.co

More information

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis Statstcal analyss usng matlab HY 439 Presented by: George Fortetsanaks Roadmap Probablty dstrbutons Statstcal estmaton Fttng data to probablty dstrbutons Contnuous dstrbutons Contnuous random varable X

More information

Study of the possibility of eliminating the Gibbs paradox within the framework of classical thermodynamics *

Study of the possibility of eliminating the Gibbs paradox within the framework of classical thermodynamics * tudy of the possblty of elnatng the Gbbs paradox wthn the fraework of classcal therodynacs * V. Ihnatovych Departent of Phlosophy, Natonal echncal Unversty of Ukrane Kyv Polytechnc Insttute, Kyv, Ukrane

More information

Two Conjectures About Recency Rank Encoding

Two Conjectures About Recency Rank Encoding Internatonal Journal of Matheatcs and Coputer Scence, 0(205, no. 2, 75 84 M CS Two Conjectures About Recency Rank Encodng Chrs Buhse, Peter Johnson, Wlla Lnz 2, Matthew Spson 3 Departent of Matheatcs and

More information

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS HCMC Unversty of Pedagogy Thong Nguyen Huu et al. A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS Thong Nguyen Huu and Hao Tran Van Department of mathematcs-nformaton,

More information

arxiv: v2 [math.co] 3 Sep 2017

arxiv: v2 [math.co] 3 Sep 2017 On the Approxate Asyptotc Statstcal Independence of the Peranents of 0- Matrces arxv:705.0868v2 ath.co 3 Sep 207 Paul Federbush Departent of Matheatcs Unversty of Mchgan Ann Arbor, MI, 4809-043 Septeber

More information

Finite Mixture Models and Expectation Maximization. Most slides are from: Dr. Mario Figueiredo, Dr. Anil Jain and Dr. Rong Jin

Finite Mixture Models and Expectation Maximization. Most slides are from: Dr. Mario Figueiredo, Dr. Anil Jain and Dr. Rong Jin Fnte Mxture Models and Expectaton Maxmzaton Most sldes are from: Dr. Maro Fgueredo, Dr. Anl Jan and Dr. Rong Jn Recall: The Supervsed Learnng Problem Gven a set of n samples X {(x, y )},,,n Chapter 3 of

More information

Three Algorithms for Flexible Flow-shop Scheduling

Three Algorithms for Flexible Flow-shop Scheduling Aercan Journal of Appled Scences 4 (): 887-895 2007 ISSN 546-9239 2007 Scence Publcatons Three Algorths for Flexble Flow-shop Schedulng Tzung-Pe Hong, 2 Pe-Yng Huang, 3 Gwoboa Horng and 3 Chan-Lon Wang

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

ITERATIVE ESTIMATION PROCEDURE FOR GEOSTATISTICAL REGRESSION AND GEOSTATISTICAL KRIGING

ITERATIVE ESTIMATION PROCEDURE FOR GEOSTATISTICAL REGRESSION AND GEOSTATISTICAL KRIGING ESE 5 ITERATIVE ESTIMATION PROCEDURE FOR GEOSTATISTICAL REGRESSION AND GEOSTATISTICAL KRIGING Gven a geostatstcal regresson odel: k Y () s x () s () s x () s () s, s R wth () unknown () E[ ( s)], s R ()

More information

Identifying assessor differences in weighting the underlying sensory dimensions EL MOSTAFA QANNARI (1) MICHAEL MEYNERS (2)

Identifying assessor differences in weighting the underlying sensory dimensions EL MOSTAFA QANNARI (1) MICHAEL MEYNERS (2) Identfyng assessor dfferences n weghtng the underlyng sensory densons EL MOSTAFA QANNARI () MICHAEL MEYNERS (2) () ENITIAA/INRA - Unté de Statstque Applquée à la Caractérsaton des Alents Rue de la Géraudère

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

ON THE NUMBER OF PRIMITIVE PYTHAGOREAN QUINTUPLES

ON THE NUMBER OF PRIMITIVE PYTHAGOREAN QUINTUPLES Journal of Algebra, Nuber Theory: Advances and Applcatons Volue 3, Nuber, 05, Pages 3-8 ON THE NUMBER OF PRIMITIVE PYTHAGOREAN QUINTUPLES Feldstrasse 45 CH-8004, Zürch Swtzerland e-al: whurlann@bluewn.ch

More information

Appendix B: Resampling Algorithms

Appendix B: Resampling Algorithms 407 Appendx B: Resamplng Algorthms A common problem of all partcle flters s the degeneracy of weghts, whch conssts of the unbounded ncrease of the varance of the mportance weghts ω [ ] of the partcles

More information

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach A Bayes Algorthm for the Multtask Pattern Recognton Problem Drect Approach Edward Puchala Wroclaw Unversty of Technology, Char of Systems and Computer etworks, Wybrzeze Wyspanskego 7, 50-370 Wroclaw, Poland

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

New Approach to Fuzzy Decision Matrices

New Approach to Fuzzy Decision Matrices Acta Polytecnca Hungarca Vol. 14 No. 5 017 New Approac to Fuzzy Decson Matrces Pavla Rotterová Ondře Pavlačka Departent of Mateatcal Analyss and Applcatons of Mateatcs Faculty of cence Palacký Unversty

More information

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method Appled Mathematcal Scences, Vol. 7, 0, no. 47, 07-0 HIARI Ltd, www.m-hkar.com Comparson of the Populaton Varance Estmators of -Parameter Exponental Dstrbuton Based on Multple Crtera Decson Makng Method

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

On an identity for the cycle indices of rooted tree automorphism groups

On an identity for the cycle indices of rooted tree automorphism groups On an dentty for the cycle ndces of rooted tree autoorphs groups Stephan G Wagner Insttut für Analyss und Coputatonal Nuber Theory Technsche Unverstät Graz Steyrergasse 30, 800 Graz, Austra wagner@fnanzathtugrazat

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information