On the Eigenspectrum of the Gram Matrix and the Generalisation Error of Kernel PCA (Shawe-Taylor, et al. 2005) Ameet Talwalkar 02/13/07

Size: px
Start display at page:

Download "On the Eigenspectrum of the Gram Matrix and the Generalisation Error of Kernel PCA (Shawe-Taylor, et al. 2005) Ameet Talwalkar 02/13/07"

Transcription

1 On the Egenspectru of the Gra Matr and the Generalsaton Error of Kernel PCA Shawe-aylor, et al. 005 Aeet alwalar 0/3/07

2 Outlne Bacground Motvaton PCA, MDS Isoap Kernel PCA Generalsaton Error of Kernel PCA

3 Lossy Densonal Reducton: Motvaton Coputatonal effcency sualzaton of data requres D or 3D representatons Curse of Densonalty : Learnng algorths requre reasonably good saplng Intractable learnng proble A A ractable learnng proble D Red -> Lossless Manfold Learnng Assues estence of ntrnsc denson, or a reduced representaton contanng all ndependent varables

4 Lnear Densonal Reducton Assues nput data s a lnear functon of the ndependent varables Coon Methods: Prncpal Coponent Analyss PCA Multdensonal Scalng MDS

5 PCA Bg Pcture Lnearly transfor nput data n a way that: Mazes sgnal varance Mnzes redundancy of sgnal covarance

6 PCA Sple Eaple Orgnal Data Ponts E.g. shoe sze easured n ft, c y provdes a good appro of data

7 PCA Sple Eaple cont Orgnal data restored usng only frst prncpal coponent

8 PCA Covarance Covarance s a easure of how uch two varables vary together cov, y E[ y y] cov, var If and y are ndependent, then cov,y 0

9 PCA Covarance Matr Stores parwse covarance of varables Dagonals are varances Syetrc, Postve Se-defnte Start wth colun vector observatons of n varables Covarance s an n n atr C C X X E [ [ ] [ ] X E X X E X ] XX

10 Egendecoposton Egenvectors v and egenvalues λ for an n n atr, A, are pars v, λ such that: Av λv If A s a real syetrc atr, t can be dagonalzed nto A E DE E A s orthonoral egenvectors D dagonal atr of A s egenvalues A s postve se-defnte > egenvalues non-negatve negatve

11 PCA Goal 3 Lnearly transfor nput data n a way that: Mazes sgnal varance Mnzes redundancy of sgnal covarance Algorth: Select varance azng drecton nput space Fnd net varance azng drecton that s orthogonal to all prevously selected drectons Repeat - tes Fnd a transforaton, P, such that Y PX and C Y s dagonalzed Soluton: proect data onto egenvectors of C

12 PCA Algorth Goal: Fnd P where Y PX s.t.. C Y s dagonalzed C Y where YY PX PX PXX P PAP A XX EDE note: egenvectors of E are orthonoral Select P E, or a atr where each row s an egenvector of C C Y PAP P P D DP P Inverse ranspose for orthonoral atr C Y s dagonalzed PCs are the egenvectors of C th dagonal value of C Y s the varance of X along p

13 Gra Matr Kernel Matr Gven X, a collecton of colun vector observatons of n varables Gra Matr of M: atr of dot products of nputs, real, syetrc Postve se-defnte slarty atr K K X X

14 Classcal Multdensonal Scalng Gven obects and dsslarty δ for each par, fnd space n whch δ Eucldean dstance If δ Eucldean Dstance: Can convert Dsslarty atr to Gra Matr or we can ust start wth Gra Matr MDS yelds sae answer as PCA

15 Classcal Multdensonal Scalng Convert Dsslarty Matr to Gra Matr K Egendecoposton of K K EDE ED K X X X ED / ED / D / Reduce Denson / E ED / ED / / Construct X fro subset of egenvectors/egenvalues egenvalues Identcal to PCA

16 Ltatons of Lnear Methods Cannot account for non- lnear relatonshp of data n nput space Sall Eucldean dstance Data ay stll have lnear relatonshp n soe feature space Isoap: : use geodesc dstance to recover anfold Length of shortest curve on a anfold connectng two ponts on the anfold Large geodesc dstance

17 Local Estaton of Manfolds Sall patches on a non-lnear anfold loo lnear Locally lnear neghborhoods defned n two ways -nearest neghbors: fnd the nearest ponts to a gven pont ε-ball: fnd all ponts that le wthn ε of a gven pont

18 Isoap dea Create weghted graph vertces dataponts edges between neghbors, weghted by Eucldean dstance Dstance atr parwse Shortest paths Construct d-densonal d densonal ebeddng Perfor MDS and eyeball resdual varance

19 Eyeballng Intrnsc Denson

20 Isoap Convergence Guaranteed to asyptotcally recover conve Eucldean anfolds For a suffcently hgh densty of data ponts, gven arbtrarly sall values λ, λ and µ,, then wth probablty at least - µ: graph dstance - λ + λ geodesc dstance Rate of convergence dependent on densty of ponts and propertes of underlyng anfold radus of curvature, branch separaton

21 Kernel Functons Kernel functon: slarty easure between two vectors Defne non-lnear appng fro nput space to hgh- densonal feature space: : X F Defne such that: y, y Effcency: ay be uch ore effcent to copute than appng and dot product n hgh densonal space Fleblty: can be chosen arbtrarly so long as t s postve ve defnte syetrc

22 Postve Defnte Syetrc PDS Kernels Gven colun vector observatons of n varables Kernel Matr: atr n whch K, Kernel s PDS f K s syetrc and postve se- defnte If K s postve se-defnte then s the dot product n soe dot product space feature space

23 Kernel rc For any algorth relyng solely on dot-products, we can replace the dot-product wth a postve- defnte ernel Allows for non-lnearty Eaple: PCA

24 Kernel PCA Kernel PCA PCA: PCA: egenvectors of Covarance atr egenvectors of Covarance atr are Prncpal Coponents are Prncpal Coponents Can rewrte solely wth dot Can rewrte solely wth dotproducts products Kernel PCA: Kernel PCA: y y y y : by ultply * ],... [ λ C * λ λ

25 Kernel PCA Kernel PCA [ ] y y λ K λ y y y ]:... [ λ Kernel Matr Kernel Matr

26 Kernel PCA Kernel PCA K s ernel gra atr K s ernel gra atr Use Use egendecoposton egendecoposton on K to fnd on K to fnd egenvectors egenvectors Proect test ponts n F on subset of Proect test ponts n F on subset of egenvectors denson reducton egenvectors denson reducton PCA: PCA: egenvectors of Covarance atr egenvectors of Covarance atr are Prncpal Coponents are Prncpal Coponents Can rewrte solely wth dot Can rewrte solely wth dotproducts products Kernel PCA: Kernel PCA: y y y y : by ultply * ],... [ λ C * λ λ K λ, κ λ λ

27 heory behnd densonal reducton? Densonal reducton has ganed popularty snce Isoap,, LLE publshed But, not uch theory behnd t Isoap s an ecepton Assung estence of underlyng anfold Do varous d red algorths converge to the correct anfold? What s the rate of convergence,.e., gven nput X of ponts, how close s d_redx to underlyng anfold?

28 Why focus on KPCA? Generalzaton of densonal reducton LLE and Isoap are fors of KPCA Resdual arance an ntutve easureent of accuracy Lt s clear and provable: Gven an underlyng anfold wth denson, as approaches nfnty, resdual varance approaches 0 Paper also uses R to easure d red accuracy n fnte case

29 What we re nterested n Resdual arance Captured arance C n > λ λ λ λ + λ hs paper provdes bounds for the sus of these process egenvalues as a functon of eprcal egenvalues

30 Eprcal egenvalues Eprcal egenvalues Perfor PCA on saple, S, of ponts Perfor PCA on saple, S, of ponts Note: are egenvalues of C Note: are egenvalues of C S, and, and y y y y y y ˆ,, : by ultply * ],... [ λ κ µ κ * S C µ µ λ ˆ µ

31 Process egenvalues Eprcal egenproble: y [ κ... ], ultply * by y y, µ y As approaches nfnty, ths becoes: : χ κ, y p d λ y for a gven ernel functon and densty p on a space X µ λ s an estate for process egenvalue

32 Proectons onto Subspaces P : Proecton onto subspace P : Proecton onto orthogonal copleent of P : Resdual of proecton onto dstance between orgnal pont and ts proecton

33 Egenvalues and Proectons Equatons azed when v st egenvector of K q st egenvalue of operator K q equals epected squared nor of st egenvector of K q ntuton: frst egenvector s drecton for whch the epected square of the resdual s nal q defnes dstrbuton of K general forula applcable to eprcal and process cases λ Κ Ε q q P [ ] [ ] Pv Εq n Εq P v F v λ Κ q a Εq v F

34 Eprcal/Process Epectatons of Eprcal/Process Subspaces Frst two equatons follow fro last slde Ε λ P Εˆ P ˆ µ Ε P ˆ : Average resdual over entre dstrbuton of proecton onto frst eprcal egenvectors agreed? Εˆ P : Eprcal average of squared nor for ponts n S proected onto frst process egenvectors

35 wo sple nequaltes s the best soluton for eprcal data S ˆ Εˆ P Ε ˆ µ ˆ P s the best soluton for underlyng process Ε P Ε Pˆ λ Goal of paper: show that chan of nequaltes below s accurate and bound dfference between frst and last ters Εˆ Ε Ε Ε P ˆ ˆ P P Pˆ

36 What we re nterested n Resdual arance Captured arance C n λ λ λ > λ + λ Ε P Ε + Ε P P hs paper provdes bounds for the sus of these process egenvalues as a functon of eprcal egenvalues

37 And now a frst Bound If we perfor PCA n feature space defned by κ,y, then wth probablty greater than -δ over rando -saples S, f new data s proected onto Ṽ the su the largest process egenvalues captured varance s bounded by: λ Ε P l + l a µ S l R Ε 9 + ln δ P ˆ κ, where support of the dstrbuton s n a ball of radus R n feature space

38 And now a frst Bound Frst ter: l + l a µ S l κ, radeoff between ters wthn a ter: as l ncreases, captured varance ncreases, but so does the rato of l/ For well-behaved ernels those for whch dot product s bounded, the square root ter should be a constant Second ter: R 9 + ln δ Includes dependences on confdence paraeter and dstrbuton radus R

39 + he second bound If we perfor PCA n feature space defned by κ,y, then wth probablty greater than -δ over rando -saples S, f new data s proected onto Ṽ the epected squared resdual s bounded by: > Ε Ε λ P P ˆ + > l l µ S + n κ, l R 8 ln δ where support of the dstrbuton s n a ball of radus R n feature space

40 Net steps How tght are these bounds? Can we do better? Can we use these bounds to copare estng densonal reducton algorths Can we construct a ernel that azes the tghtness of ths bound?

LECTURE :FACTOR ANALYSIS

LECTURE :FACTOR ANALYSIS LCUR :FACOR ANALYSIS Rta Osadchy Based on Lecture Notes by A. Ng Motvaton Dstrbuton coes fro MoG Have suffcent aount of data: >>n denson Use M to ft Mture of Gaussans nu. of tranng ponts If

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2015. All Rghts Reserved. Created: July 15, 1999 Last Modfed: January 5, 2015 Contents 1 Lnear Fttng

More information

y new = M x old Feature Selection: Linear Transformations Constraint Optimization (insertion)

y new = M x old Feature Selection: Linear Transformations Constraint Optimization (insertion) Feature Selecton: Lnear ransforatons new = M x old Constrant Optzaton (nserton) 3 Proble: Gven an objectve functon f(x) to be optzed and let constrants be gven b h k (x)=c k, ovng constants to the left,

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2014. All Rghts Reserved. Created: July 15, 1999 Last Modfed: February 9, 2008 Contents 1 Lnear Fttng

More information

Excess Error, Approximation Error, and Estimation Error

Excess Error, Approximation Error, and Estimation Error E0 370 Statstcal Learnng Theory Lecture 10 Sep 15, 011 Excess Error, Approxaton Error, and Estaton Error Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton So far, we have consdered the fnte saple

More information

XII.3 The EM (Expectation-Maximization) Algorithm

XII.3 The EM (Expectation-Maximization) Algorithm XII.3 The EM (Expectaton-Maxzaton) Algorth Toshnor Munaata 3/7/06 The EM algorth s a technque to deal wth varous types of ncoplete data or hdden varables. It can be appled to a wde range of learnng probles

More information

COS 511: Theoretical Machine Learning

COS 511: Theoretical Machine Learning COS 5: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #0 Scrbe: José Sões Ferrera March 06, 203 In the last lecture the concept of Radeacher coplexty was ntroduced, wth the goal of showng that

More information

Statistical pattern recognition

Statistical pattern recognition Statstcal pattern recognton Bayes theorem Problem: decdng f a patent has a partcular condton based on a partcular test However, the test s mperfect Someone wth the condton may go undetected (false negatve

More information

Computational and Statistical Learning theory Assignment 4

Computational and Statistical Learning theory Assignment 4 Coputatonal and Statstcal Learnng theory Assgnent 4 Due: March 2nd Eal solutons to : karthk at ttc dot edu Notatons/Defntons Recall the defnton of saple based Radeacher coplexty : [ ] R S F) := E ɛ {±}

More information

Recap: the SVM problem

Recap: the SVM problem Machne Learnng 0-70/5-78 78 Fall 0 Advanced topcs n Ma-Margn Margn Learnng Erc Xng Lecture 0 Noveber 0 Erc Xng @ CMU 006-00 Recap: the SVM proble We solve the follong constraned opt proble: a s.t. J 0

More information

1 Definition of Rademacher Complexity

1 Definition of Rademacher Complexity COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #9 Scrbe: Josh Chen March 5, 2013 We ve spent the past few classes provng bounds on the generalzaton error of PAClearnng algorths for the

More information

Scattering by a perfectly conducting infinite cylinder

Scattering by a perfectly conducting infinite cylinder Scatterng by a perfectly conductng nfnte cylnder Reeber that ths s the full soluton everywhere. We are actually nterested n the scatterng n the far feld lt. We agan use the asyptotc relatonshp exp exp

More information

Several generation methods of multinomial distributed random number Tian Lei 1, a,linxihe 1,b,Zhigang Zhang 1,c

Several generation methods of multinomial distributed random number Tian Lei 1, a,linxihe 1,b,Zhigang Zhang 1,c Internatonal Conference on Appled Scence and Engneerng Innovaton (ASEI 205) Several generaton ethods of ultnoal dstrbuted rando nuber Tan Le, a,lnhe,b,zhgang Zhang,c School of Matheatcs and Physcs, USTB,

More information

BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS. Dariusz Biskup

BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS. Dariusz Biskup BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS Darusz Bskup 1. Introducton The paper presents a nonparaetrc procedure for estaton of an unknown functon f n the regresson odel y = f x + ε = N. (1) (

More information

System in Weibull Distribution

System in Weibull Distribution Internatonal Matheatcal Foru 4 9 no. 9 94-95 Relablty Equvalence Factors of a Seres-Parallel Syste n Webull Dstrbuton M. A. El-Dacese Matheatcs Departent Faculty of Scence Tanta Unversty Tanta Egypt eldacese@yahoo.co

More information

On the Calderón-Zygmund lemma for Sobolev functions

On the Calderón-Zygmund lemma for Sobolev functions arxv:0810.5029v1 [ath.ca] 28 Oct 2008 On the Calderón-Zygund lea for Sobolev functons Pascal Auscher october 16, 2008 Abstract We correct an naccuracy n the proof of a result n [Aus1]. 2000 MSC: 42B20,

More information

Determination of the Confidence Level of PSD Estimation with Given D.O.F. Based on WELCH Algorithm

Determination of the Confidence Level of PSD Estimation with Given D.O.F. Based on WELCH Algorithm Internatonal Conference on Inforaton Technology and Manageent Innovaton (ICITMI 05) Deternaton of the Confdence Level of PSD Estaton wth Gven D.O.F. Based on WELCH Algorth Xue-wang Zhu, *, S-jan Zhang

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

On Pfaff s solution of the Pfaff problem

On Pfaff s solution of the Pfaff problem Zur Pfaff scen Lösung des Pfaff scen Probles Mat. Ann. 7 (880) 53-530. On Pfaff s soluton of te Pfaff proble By A. MAYER n Lepzg Translated by D. H. Delpenc Te way tat Pfaff adopted for te ntegraton of

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e.

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e. SSTEM MODELLIN In order to solve a control syste proble, the descrptons of the syste and ts coponents ust be put nto a for sutable for analyss and evaluaton. The followng ethods can be used to odel physcal

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

COMP th April, 2007 Clement Pang

COMP th April, 2007 Clement Pang COMP 540 12 th Aprl, 2007 Cleent Pang Boostng Cobnng weak classers Fts an Addtve Model Is essentally Forward Stagewse Addtve Modelng wth Exponental Loss Loss Functons Classcaton: Msclasscaton, Exponental,

More information

Differentiating Gaussian Processes

Differentiating Gaussian Processes Dfferentatng Gaussan Processes Andrew McHutchon Aprl 17, 013 1 Frst Order Dervatve of the Posteror Mean The posteror mean of a GP s gven by, f = x, X KX, X 1 y x, X α 1 Only the x, X term depends on the

More information

Finite Vector Space Representations Ross Bannister Data Assimilation Research Centre, Reading, UK Last updated: 2nd August 2003

Finite Vector Space Representations Ross Bannister Data Assimilation Research Centre, Reading, UK Last updated: 2nd August 2003 Fnte Vector Space epresentatons oss Bannster Data Asslaton esearch Centre, eadng, UK ast updated: 2nd August 2003 Contents What s a lnear vector space?......... 1 About ths docuent............ 2 1. Orthogonal

More information

Perceptual Organization (IV)

Perceptual Organization (IV) Perceptual Organzaton IV Introducton to Coputatonal and Bologcal Vson CS 0--56 Coputer Scence Departent BGU Ohad Ben-Shahar Segentaton Segentaton as parttonng Gven: I - a set of age pxels H a regon hoogenety

More information

Slobodan Lakić. Communicated by R. Van Keer

Slobodan Lakić. Communicated by R. Van Keer Serdca Math. J. 21 (1995), 335-344 AN ITERATIVE METHOD FOR THE MATRIX PRINCIPAL n-th ROOT Slobodan Lakć Councated by R. Van Keer In ths paper we gve an teratve ethod to copute the prncpal n-th root and

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

PGM Learning Tasks and Metrics

PGM Learning Tasks and Metrics Probablstc Graphcal odels Learnng Overvew PG Learnng Tasks and etrcs Learnng doan epert True dstrbuton P* aybe correspondng to a PG * dataset of nstances D{d],...d]} sapled fro P* elctaton Network Learnng

More information

Biostatistics. Chapter 11 Simple Linear Correlation and Regression. Jing Li

Biostatistics. Chapter 11 Simple Linear Correlation and Regression. Jing Li Bostatstcs Chapter 11 Smple Lnear Correlaton and Regresson Jng L jng.l@sjtu.edu.cn http://cbb.sjtu.edu.cn/~jngl/courses/2018fall/b372/ Dept of Bonformatcs & Bostatstcs, SJTU Recall eat chocolate Cell 175,

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

1 Review From Last Time

1 Review From Last Time COS 5: Foundatons of Machne Learnng Rob Schapre Lecture #8 Scrbe: Monrul I Sharf Aprl 0, 2003 Revew Fro Last Te Last te, we were talkng about how to odel dstrbutons, and we had ths setup: Gven - exaples

More information

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values Fall 007 Soluton to Mdterm Examnaton STAT 7 Dr. Goel. [0 ponts] For the general lnear model = X + ε, wth uncorrelated errors havng mean zero and varance σ, suppose that the desgn matrx X s not necessarly

More information

Properties of Least Squares

Properties of Least Squares Week 3 3.1 Smple Lnear Regresson Model 3. Propertes of Least Squares Estmators Y Y β 1 + β X + u weekly famly expendtures X weekly famly ncome For a gven level of x, the expected level of food expendtures

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F)

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F) EN40: Dynacs and Vbratons Hoework 4: Work, Energy and Lnear Moentu Due Frday March 6 th School of Engneerng Brown Unversty 1. The Rydberg potental s a sple odel of atoc nteractons. It specfes the potental

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980 MT07: Multvarate Statstcal Methods Mke Tso: emal mke.tso@manchester.ac.uk Webpage for notes: http://www.maths.manchester.ac.uk/~mkt/new_teachng.htm. Introducton to multvarate data. Books Chat eld, C. and

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 13 The Smple Lnear Regresson Model and Correlaton 1999 Prentce-Hall, Inc. Chap. 13-1 Chapter Topcs Types of Regresson Models Determnng the Smple Lnear

More information

Error Bars in both X and Y

Error Bars in both X and Y Error Bars n both X and Y Wrong ways to ft a lne : 1. y(x) a x +b (σ x 0). x(y) c y + d (σ y 0) 3. splt dfference between 1 and. Example: Prmordal He abundance: Extrapolate ft lne to [ O / H ] 0. [ He

More information

Solving Fuzzy Linear Programming Problem With Fuzzy Relational Equation Constraint

Solving Fuzzy Linear Programming Problem With Fuzzy Relational Equation Constraint Intern. J. Fuzz Maeatcal Archve Vol., 0, -0 ISSN: 0 (P, 0 0 (onlne Publshed on 0 Septeber 0 www.researchasc.org Internatonal Journal of Solvng Fuzz Lnear Prograng Proble W Fuzz Relatonal Equaton Constrant

More information

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU Group M D L M Chapter Bayesan Decson heory Xn-Shun Xu @ SDU School of Computer Scence and echnology, Shandong Unversty Bayesan Decson heory Bayesan decson theory s a statstcal approach to data mnng/pattern

More information

Xiangwen Li. March 8th and March 13th, 2001

Xiangwen Li. March 8th and March 13th, 2001 CS49I Approxaton Algorths The Vertex-Cover Proble Lecture Notes Xangwen L March 8th and March 3th, 00 Absolute Approxaton Gven an optzaton proble P, an algorth A s an approxaton algorth for P f, for an

More information

Linear Classification, SVMs and Nearest Neighbors

Linear Classification, SVMs and Nearest Neighbors 1 CSE 473 Lecture 25 (Chapter 18) Lnear Classfcaton, SVMs and Nearest Neghbors CSE AI faculty + Chrs Bshop, Dan Klen, Stuart Russell, Andrew Moore Motvaton: Face Detecton How do we buld a classfer to dstngush

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

ITERATIVE ESTIMATION PROCEDURE FOR GEOSTATISTICAL REGRESSION AND GEOSTATISTICAL KRIGING

ITERATIVE ESTIMATION PROCEDURE FOR GEOSTATISTICAL REGRESSION AND GEOSTATISTICAL KRIGING ESE 5 ITERATIVE ESTIMATION PROCEDURE FOR GEOSTATISTICAL REGRESSION AND GEOSTATISTICAL KRIGING Gven a geostatstcal regresson odel: k Y () s x () s () s x () s () s, s R wth () unknown () E[ ( s)], s R ()

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

CHAPT II : Prob-stats, estimation

CHAPT II : Prob-stats, estimation CHAPT II : Prob-stats, estaton Randoness, probablty Probablty densty functons and cuulatve densty functons. Jont, argnal and condtonal dstrbutons. The Bayes forula. Saplng and statstcs Descrptve and nferental

More information

PHYS 450 Spring semester Lecture 02: Dealing with Experimental Uncertainties. Ron Reifenberger Birck Nanotechnology Center Purdue University

PHYS 450 Spring semester Lecture 02: Dealing with Experimental Uncertainties. Ron Reifenberger Birck Nanotechnology Center Purdue University PHYS 45 Sprng semester 7 Lecture : Dealng wth Expermental Uncertantes Ron Refenberger Brck anotechnology Center Purdue Unversty Lecture Introductory Comments Expermental errors (really expermental uncertantes)

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Applied Mathematics Letters

Applied Mathematics Letters Appled Matheatcs Letters 2 (2) 46 5 Contents lsts avalable at ScenceDrect Appled Matheatcs Letters journal hoepage: wwwelseverco/locate/al Calculaton of coeffcents of a cardnal B-splne Gradr V Mlovanovć

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

Pattern Classification

Pattern Classification Pattern Classfcaton All materals n these sldes ere taken from Pattern Classfcaton (nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wley & Sons, 000 th the permsson of the authors and the publsher

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Mamum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models for

More information

FINDING RELATIONS BETWEEN VARIABLES

FINDING RELATIONS BETWEEN VARIABLES Per Lug Martell - Syste and In Slco Bology. AA 05-06- Unversty of Bologna FINDING RELATIONS BETWEEN VARIABLES Pearson s Correlaton Relaton between coupled varables What couples of varables are n relaton?

More information

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β Ordnary Least Squares (OLS): Smple Lnear Regresson (SLR) Analytcs The SLR Setup Sample Statstcs Ordnary Least Squares (OLS): FOCs and SOCs Back to OLS and Sample Statstcs Predctons (and Resduals) wth OLS

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. ) with a symmetric Pcovariance matrix of the y( x ) measurements V

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. ) with a symmetric Pcovariance matrix of the y( x ) measurements V Fall Analyss o Experental Measureents B Esensten/rev S Errede General Least Squares wth General Constrants: Suppose we have easureents y( x ( y( x, y( x,, y( x wth a syetrc covarance atrx o the y( x easureents

More information

Outline. Multivariate Parametric Methods. Multivariate Data. Basic Multivariate Statistics. Steven J Zeil

Outline. Multivariate Parametric Methods. Multivariate Data. Basic Multivariate Statistics. Steven J Zeil Outlne Multvarate Parametrc Methods Steven J Zel Old Domnon Unv. Fall 2010 1 Multvarate Data 2 Multvarate ormal Dstrbuton 3 Multvarate Classfcaton Dscrmnants Tunng Complexty Dscrete Features 4 Multvarate

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

Denote the function derivatives f(x) in given points. x a b. Using relationships (1.2), polynomials (1.1) are written in the form

Denote the function derivatives f(x) in given points. x a b. Using relationships (1.2), polynomials (1.1) are written in the form SET OF METHODS FO SOUTION THE AUHY POBEM FO STIFF SYSTEMS OF ODINAY DIFFEENTIA EUATIONS AF atypov and YuV Nulchev Insttute of Theoretcal and Appled Mechancs SB AS 639 Novosbrs ussa Introducton A constructon

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

Lecture 3. Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab. 13- Jan- 15.

Lecture 3. Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab. 13- Jan- 15. Lecture Caera Models Caera Calbraton rofessor Slvo Savarese Coputatonal Vson and Geoetry Lab Slvo Savarese Lecture - - Jan- 5 Lecture Caera Models Caera Calbraton Recap of caera odels Caera calbraton proble

More information

β0 + β1xi and want to estimate the unknown

β0 + β1xi and want to estimate the unknown SLR Models Estmaton Those OLS Estmates Estmators (e ante) v. estmates (e post) The Smple Lnear Regresson (SLR) Condtons -4 An Asde: The Populaton Regresson Functon B and B are Lnear Estmators (condtonal

More information

Geometric Camera Calibration

Geometric Camera Calibration Geoetrc Caera Calbraton EECS 598-8 Fall 24! Foundatons of Coputer Vson!! Instructor: Jason Corso (jjcorso)! web.eecs.uch.edu/~jjcorso/t/598f4!! Readngs: F.; SZ 6. (FL 4.6; extra notes)! Date: 9/7/4!! Materals

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

Chapter 3. Two-Variable Regression Model: The Problem of Estimation

Chapter 3. Two-Variable Regression Model: The Problem of Estimation Chapter 3. Two-Varable Regresson Model: The Problem of Estmaton Ordnary Least Squares Method (OLS) Recall that, PRF: Y = β 1 + β X + u Thus, snce PRF s not drectly observable, t s estmated by SRF; that

More information

, are assumed to fluctuate around zero, with E( i) 0. Now imagine that this overall random effect, , is composed of many independent factors,

, are assumed to fluctuate around zero, with E( i) 0. Now imagine that this overall random effect, , is composed of many independent factors, Part II. Contnuous Spatal Data Analyss 3. Spatally-Dependent Rando Effects Observe that all regressons n the llustratons above [startng wth expresson (..3) n the Sudan ranfall exaple] have reled on an

More information

Modeling and Simulation NETW 707

Modeling and Simulation NETW 707 Modelng and Smulaton NETW 707 Lecture 5 Tests for Random Numbers Course Instructor: Dr.-Ing. Magge Mashaly magge.ezzat@guc.edu.eg C3.220 1 Propertes of Random Numbers Random Number Generators (RNGs) must

More information

Similarities, Distances and Manifold Learning

Similarities, Distances and Manifold Learning Smlartes, Dstances and Manfold Learnng Prof. Rchard C. Wlson Dept. of Computer Scence Unversty of York Part I: Eucldean Space Poston, Smlarty and Dstance Manfold Learnng n Eucldean space Some famous technques

More information

AUTO-CALIBRATION. FACTORIZATION. STRUCTURE FROM MOTION.

AUTO-CALIBRATION. FACTORIZATION. STRUCTURE FROM MOTION. AUO-CALIBRAION. FACORIZAION. SRUCURE FRO OION. hank you for the sldes. hey coe ostly fro the followng sources. arc ollefeys U. of North Carolna artal Hebert CU Slvo Savarese U. of chgan Dan Huttenlocher

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

2016 Wiley. Study Session 2: Ethical and Professional Standards Application 6 Wley Study Sesson : Ethcal and Professonal Standards Applcaton LESSON : CORRECTION ANALYSIS Readng 9: Correlaton and Regresson LOS 9a: Calculate and nterpret a sample covarance and a sample correlaton

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

Outline. Communication. Bellman Ford Algorithm. Bellman Ford Example. Bellman Ford Shortest Path [1]

Outline. Communication. Bellman Ford Algorithm. Bellman Ford Example. Bellman Ford Shortest Path [1] DYNAMIC SHORTEST PATH SEARCH AND SYNCHRONIZED TASK SWITCHING Jay Wagenpfel, Adran Trachte 2 Outlne Shortest Communcaton Path Searchng Bellmann Ford algorthm Algorthm for dynamc case Modfcatons to our algorthm

More information

Efficient, General Point Cloud Registration with Kernel Feature Maps

Efficient, General Point Cloud Registration with Kernel Feature Maps Effcent, General Pont Cloud Regstraton wth Kernel Feature Maps Hanchen Xong, Sandor Szedmak, Justus Pater Insttute of Computer Scence Unversty of Innsbruck 30 May 2013 Hanchen Xong (Un.Innsbruck) 3D Regstraton

More information

On the number of regions in an m-dimensional space cut by n hyperplanes

On the number of regions in an m-dimensional space cut by n hyperplanes 6 On the nuber of regons n an -densonal space cut by n hyperplanes Chungwu Ho and Seth Zeran Abstract In ths note we provde a unfor approach for the nuber of bounded regons cut by n hyperplanes n general

More information

General Averaged Divergence Analysis

General Averaged Divergence Analysis General Averaged Dvergence Analyss Dacheng ao, Xuelong 2, Xndong u 3,, and Stephen J Maybank 2 Departent of Coputng, Hong Kong Polytechnc Unversty, Hong Kong 2 Sch Coputer Scence & Inforaton Systes, Brkbeck,

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

CSE 252C: Computer Vision III

CSE 252C: Computer Vision III CSE 252C: Computer Vson III Lecturer: Serge Belonge Scrbe: Catherne Wah LECTURE 15 Kernel Machnes 15.1. Kernels We wll study two methods based on a specal knd of functon k(x, y) called a kernel: Kernel

More information

e i is a random error

e i is a random error Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown

More information

Introducing Entropy Distributions

Introducing Entropy Distributions Graubner, Schdt & Proske: Proceedngs of the 6 th Internatonal Probablstc Workshop, Darstadt 8 Introducng Entropy Dstrbutons Noel van Erp & Peter van Gelder Structural Hydraulc Engneerng and Probablstc

More information

Machine Learning. Support Vector Machines. Eric Xing. Lecture 4, August 12, Reading: Eric CMU,

Machine Learning. Support Vector Machines. Eric Xing. Lecture 4, August 12, Reading: Eric CMU, Machne Learnng Support Vector Machnes Erc Xng Lecture 4 August 2 200 Readng: Erc Xng @ CMU 2006-200 Erc Xng @ CMU 2006-200 2 What s a good Decson Boundar? Wh e a have such boundares? Irregular dstrbuton

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

Outline. Review Numerical Approach. Schedule for April and May. Review Simple Methods. Review Notation and Order

Outline. Review Numerical Approach. Schedule for April and May. Review Simple Methods. Review Notation and Order Sstes of Ordnar Dfferental Equatons Aprl, Solvng Sstes of Ordnar Dfferental Equatons Larr Caretto Mecancal Engneerng 9 Nuercal Analss of Engneerng Sstes Aprl, Outlne Revew bascs of nuercal solutons of

More information

Structure from Motion. Forsyth&Ponce: Chap. 12 and 13 Szeliski: Chap. 7

Structure from Motion. Forsyth&Ponce: Chap. 12 and 13 Szeliski: Chap. 7 Structure from Moton Forsyth&once: Chap. 2 and 3 Szelsk: Chap. 7 Introducton to Structure from Moton Forsyth&once: Chap. 2 Szelsk: Chap. 7 Structure from Moton Intro he Reconstructon roblem p 3?? p p 2

More information

Gradient Descent Learning and Backpropagation

Gradient Descent Learning and Backpropagation Artfcal Neural Networks (art 2) Chrstan Jacob Gradent Descent Learnng and Backpropagaton CSC 533 Wnter 200 Learnng by Gradent Descent Defnton of the Learnng roble Let us start wth the sple case of lnear

More information

Lecture 4: Universal Hash Functions/Streaming Cont d

Lecture 4: Universal Hash Functions/Streaming Cont d CSE 5: Desgn and Analyss of Algorthms I Sprng 06 Lecture 4: Unversal Hash Functons/Streamng Cont d Lecturer: Shayan Oves Gharan Aprl 6th Scrbe: Jacob Schreber Dsclamer: These notes have not been subjected

More information

Norms, Condition Numbers, Eigenvalues and Eigenvectors

Norms, Condition Numbers, Eigenvalues and Eigenvectors Norms, Condton Numbers, Egenvalues and Egenvectors 1 Norms A norm s a measure of the sze of a matrx or a vector For vectors the common norms are: N a 2 = ( x 2 1/2 the Eucldean Norm (1a b 1 = =1 N x (1b

More information

Relating Principal Component Analysis on Merged Data Sets to a Regression Approach

Relating Principal Component Analysis on Merged Data Sets to a Regression Approach Relatng Prncpal Coponent Analyss on Merged Data Sets to a Regresson Approach Mchael Meyners & El Mostafa Qannar Fachberech Statstk, Unverstät Dortund, 44 Dortund, Gerany chael.eyners@udo.edu ENIIAA INRA,

More information

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner.

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner. (C) 998 Gerald B Sheblé, all rghts reserved Lnear Prograng Introducton Contents I. What s LP? II. LP Theor III. The Splex Method IV. Refneents to the Splex Method What s LP? LP s an optzaton technque that

More information