Outline. Communication. Bellman Ford Algorithm. Bellman Ford Example. Bellman Ford Shortest Path [1]

Size: px
Start display at page:

Download "Outline. Communication. Bellman Ford Algorithm. Bellman Ford Example. Bellman Ford Shortest Path [1]"

Transcription

1 DYNAMIC SHORTEST PATH SEARCH AND SYNCHRONIZED TASK SWITCHING Jay Wagenpfel, Adran Trachte 2 Outlne Shortest Communcaton Path Searchng Bellmann Ford algorthm Algorthm for dynamc case Modfcatons to our algorthm Synchronzed Task Swtchng Combnng tasks An algorthm for synchronzed task swtchng Tme complexty Summary Communcaton 4 Bellman Ford Algorthm Algorthm Restrctons n Dynamc Case Setup: Network of agents, transmttng data to the base. Communcaton costs, whch ncrease wth ncreasng dstance between agents, should be kept low Routng protocol needed, to fnd the shortest path to the base Bellman Ford Shortest Path [] Bellman Ford Example 6 Setup: Set of edges whch are connected over vertces. Goal: Fnd shortest path from each agent to base. Notaton: 2 2 c = communcaton cost to base of agent N = set of neghbors of agent vj = com. cost from agent to agent j wth j N d = downstream neghbor of agent Update rule for every agent: c = mn( cj + vj) j N d = arg(mn( c + v )) j N j j 2 CCtB = + 2 = 2 6. Intalzaton a) c B = b) c = 2. Agents search for possble new shortest CCtB = + 2 = path to base. 2 CCtB = + = 2 c = mn( cj + vj) j N d = arg(mn( c + v )) j j j N [] Rchard Bellman On a Routng Problem 9

2 Bellman Ford Example 7. Intalzaton a) c B = b) c = 2. Agents search for possble new shortest path to base.. Shortest path s found after maxmum of N teratons Bellman Ford Algorthm Algorthm Restrctons n Dynamc Case Dynamc shortest path search Loopng n dynamc case 9 Changes to statc case: Topology of network changes Weghtngs of vertces vary over tme Certan problems occur n dynamc case loopng communcaton loops occur, connecton to base gets lost longest path search because of old nformaton n the network, agents choose wrong path to base ) Agents n steady state 2) Downstream Neghbor moves away communcaton cost ncreases ) Agents search for new shortest path Loopng n dynamc case ) Agents n steady state 2) Downstream Neghbor moves away communcaton cost ncreases ) Agents search for new shortest path 2 Longest path search

3 Idea of Dynamc Shortest Path Search 4 Dynamc Shortest Path Search Regular Search Hgh frequency search Problem: changng weghts and tme delayed nformaton propagaton leads to loops and wrong pathes But: No problem n statc case, because here, the communcaton cost only decreases whle convergng to shortest path Idea: Fx the communcaton costs and topology between agents and use statc computaton to fnd shortest path Advantages: Fnds real shortest path for gven setup (no longest path, loops) Dsadvantages: Needs tme to converge, durng ths tme, not optmal path Realzaton of Dynamc Shortest Path Search Realzaton of Dynamc Shortest Path Search 6 Procedure: ) Fx communcaton costs to all negbor agents 2) Start new statc shortest path search ) When shortest path search s fnshed, set new found downstream negbhor as new d.n. 4) Go to frst step. Two Problems: How do agents know when to fnsh the shortest path search and start wth a new one wth updated communcaton costs? How assure that new found shortest path downstream neghbor s stll n communcaton range? Frst Problem: Idea: Base s central processng unt and therefore can be used as a quas synchronsaton module to start the new search. New search should start, after shortest path to base was found. Wat worst case tme for shortest path search. New search sgnal wll be propagated over whole communcaton range from each agent. New search sgnal s faster than shortest path search. Base sends new search sgnal to all agents n communcaton range after worst case computaton tme for shortest path Realzaton of Dynamc Shortest Path Search Realzaton of Dynamc Shortest Path Search 7 Worst case tme for new shortest path to base: Worst case topology s connected chan Worst case update s, f agents farest away from base update frst. Second Problem: Idea: Agents should not move out of communcaton range whle shortest path search assume maxmum speed of agent v max worst case f agents move n opposte drecton wth maxmum speed, durng whole worst case computaton tme R S R R S = 2 * v max * (N ) * t R t maxmum tme wthn communcator updates all communcators update at least once wthn tmespan t v max v 2 * v max max R S = R 2 * v max * (N ) * t t total = (N ) * t s worst case tme to fnd shortest path 2 * v max * (N ) * t

4 N = 4 + t =.2s v max = m/s R = 2m 2 Dynamc Shortest Path Search Analyss R S = m t total =.s TP: L [2] + KTF 9 Dynamc shortest path search [2] L et al Dstrbuted Cooperatve Coverage Control of Sensor Networks 2 Dynamc Shortest Path Search Lmtatons 2 Worst case watng tme: (N ) * t 22 Dynamc Shortest Path Search Increases wth growng number of agents N and computaton tme Δt. Tme between new searches becomes to bg, and therefore the error ncreases. Regular Search Hgh frequency search Lmted neghbor range: R S = R 2 * v max * (N ) * t Decreases wth growng number of Agents N, computaton tme Δt and v max. Maybe R S becomes to small for a proper shortest path search. 2 Hgh search frequency Motvaton N = 4 + t =.2s v max = m/s R = 2m Idea: Increase the frequency wth whch a new search starts. Securty Radus R S would be bgger and tme between searches smaller R S = 2m t total =.s TP: L [2] + KTF steps 7 steps 24 Hgher new search frequency [2] L et al Dstrbuted Cooperatve Coverage Control of Sensor Networks 2

5 Hgh search frequency Hgh search frequency 2 26 Error n % of optmal communcaton cost For hgh frequency search, shortest path s not guaranteed! realcctb - optcctb * optcctb 27 Dscusson Regular search Postve: Fnds shortest path usng only local nformaton (no loopng etc.) Negatve: Strong dependence on number of agents etc. Error whle watng for worst case convergence tme Hgh frequency search Postve: Reduces dstance to optmum Negatve: Shortest path s not guaranteed to be found n computaton tme Rough knowledge of topology needed 2 Synchronzed Task Swtchng Combnng Tasks An Algorthm for Synchronzed Task Swtchng Tme Complexty Smulaton Results Combnng Tasks Combnng Tasks 29 Coverage control: Maxmzng the probablty of detectng events. Most mportant areas of the msson space are well covered. Exploraton of the msson space: Use of deployment algorthms. Maxmze the area covered by all agents. Combne both tasks: Frst explore the msson space. Then cover the most mportant areas. Enables the agents to cover areas unreachable f only usng coverage control. Swtch task when the exploraton task s fnshed.

6 Combnng Tasks How do the agents know that the exploraton task s fnshed? For each agent, only local nformaton s avalable. But, nformaton about all agents (=global nformaton) s necessary. Use of consensus lke algorthms Enables each agent to determne the state of the network. Task swtch s performed, when all agents agree that the exploraton task s fnshed. 2 Notatons B drectonal communcaton between agent and ts neghbors N N( k) = { j {,.., n} s s < R} j Communcaton topology s undrected graph G: A Adjacency matrx of G aj = a = f j N ( k) j D Degree matrx of G d = aj j State varables for consensus: z Task state of agents z = x Consensus state f agent has fnshed frst task An Algorthm Assumptons: There exsts a tme k such that A(k)=A(k ) for all k k. There exsts a tme k k s.t. z(k)= for all k k. If A(k+)A(k), that s there exsts s.t. N (k+)n (k), then z (k+)= even f agent has fnshed frst task. More Notatons: Z dag(z(k)) I nn dentty matrx n vector wth all elements equal to d d = N s the cardnalty of the set N 4 An Algorthm Algorthm: If z =, set each agent s consensus varable x to the average value of the sum of ts own task state z and the consensus states of ts neghbors. Else, set x =. Update rule: For each agent: x( k+ ) = z xj( k) + d + j N Whole network: xk ( + ) = Z ( D+ I) [ A xk ( ) + ] An Algorthm State of the network and task stwtch: If at least one agent has not fnshed the frst task, x (k)< for all agents. If all agents have fnshed the frst task, z(k)= and for every agent, x (k) for k. Perform task swtch f x s suffcently close to. Convergence of Algorthm: For constant z(k), system s an asymptotcally stable LTI system wth constant nput. There s always one unque equlbrum pont x EP and x EP = for z=. 6 Threshold for Task Swtch When s x suffcently close to? Task swtch f x > δ, wth δ < If δ s too small, false task swtch mght happen. How to determne δ? Derve from statc case where no topology changes happen. Show that even under swtchng topology, x (k) s never larger than max x wc n the worst case statc topology.

7 Tme Complexty Tme Complexty 7 In [] the term Tme Complexty s ntroduced: The Tme Complexty TC s the tme an algorthm needs to perform, dependng on the number of agents n. For the task swtch, a sensble noton s the tme from when the last agent fnshes the frst task untl the last agent starts wth the second task. Upper bound: An upper bound to the order of the tme complexty s gven by: ln( δ ( n)) TCA O( ) n ln ( ) n Proof: At step k, let be the agent such that x mn (k ) := x (k ) x j (k ) for all agents j. Then n the next step for agent : x( k+ ) = xj( k) + z ( k) ( d x( k) + ) d + j N ( ) k d x ( ) + k = T The smallest possble value for x (k +) s acheved by maxmzng the number of neghbors. x( k+ ) ( ( n ) x( k) + ) n [] Martnez, Bullo, Cortes, Frazzol On synchronous robotc networks Part II: Tme complexty of rendezvous and deployment algorthms Tme Complexty Tme Complexty 9 4 Proof: The value x mn (k +) := x (k +) provdes a lower bound on the consensus values of all agents j n step k +: xj ( k + ) xmn ( k + ) = ( ( n ) xmn n ( k) + ) Ths can easly be seen: Suppose there exsts x l (k +) < x mn (k +) xl( k+ ) = xj( k) + ( dl xmn dl + j N ( ) k dl + ( k) + ) ( ( n ) xmn N ( k ) + ) = xmn ( k + ) Proof of Tme Complexty: Ths lower bound on the consensus value of all agents can be generally descrbed by: xmn ( k+ ) = ( ( n ) xmn ( k) + ) n The soluton to ths dfference equaton for k k s: k k n xmn ( k) = ( xmn ( kt )) n Wth the swtchng condton x > δ and k T the step when all agents have swtched to the second task t follows: ln ( δ ( n) ) TC = kt k n ln ( n ) Tme Complexty Tme Complexty 4 42 Smulatons: Smulaton of task swtch for dfferent topologes and numbers of agents n task before swtch. Chan topology: Watng for only one agent: Watng for all agents: Smulatons: Random topology: Watng for one agent: Watng for all agents:

8 Tme Complexty 4 Smulatons: Random topology: Watng for one agent: Watng for all agents: Smulaton Results: No Exploraton Smulaton Results 46 Jont Event Detecton Rate Wthout Exploraton Wth Exploraton Task-Swtch Smulaton Results: Wth Exploraton Summary Summary We dscussed problems n searchng the shortest communcaton path n the dynamc case. We presented an algorthm to compute the shortest path n the dynamc case. We ntroduced an algorthm to synchronze a task swtch n a dstrbuted network. We dscussed the tme complexty of the presented algorthm. We presented a example smulaton to show the mproved performance of the combned tasks.

Dynamic Systems on Graphs

Dynamic Systems on Graphs Prepared by F.L. Lews Updated: Saturday, February 06, 200 Dynamc Systems on Graphs Control Graphs and Consensus A network s a set of nodes that collaborates to acheve what each cannot acheve alone. A network,

More information

Changing Topology and Communication Delays

Changing Topology and Communication Delays Prepared by F.L. Lews Updated: Saturday, February 3, 00 Changng Topology and Communcaton Delays Changng Topology The graph connectvty or topology may change over tme. Let G { G, G,, G M } wth M fnte be

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang CS DESIGN ND NLYSIS OF LGORITHMS DYNMIC PROGRMMING Dr. Dasy Tang Dynamc Programmng Idea: Problems can be dvded nto stages Soluton s a sequence o decsons and the decson at the current stage s based on the

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

ECE559VV Project Report

ECE559VV Project Report ECE559VV Project Report (Supplementary Notes Loc Xuan Bu I. MAX SUM-RATE SCHEDULING: THE UPLINK CASE We have seen (n the presentaton that, for downlnk (broadcast channels, the strategy maxmzng the sum-rate

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

Design and Optimization of Fuzzy Controller for Inverse Pendulum System Using Genetic Algorithm

Design and Optimization of Fuzzy Controller for Inverse Pendulum System Using Genetic Algorithm Desgn and Optmzaton of Fuzzy Controller for Inverse Pendulum System Usng Genetc Algorthm H. Mehraban A. Ashoor Unversty of Tehran Unversty of Tehran h.mehraban@ece.ut.ac.r a.ashoor@ece.ut.ac.r Abstract:

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

Real-Time Systems. Multiprocessor scheduling. Multiprocessor scheduling. Multiprocessor scheduling

Real-Time Systems. Multiprocessor scheduling. Multiprocessor scheduling. Multiprocessor scheduling Real-Tme Systems Multprocessor schedulng Specfcaton Implementaton Verfcaton Multprocessor schedulng -- -- Global schedulng How are tasks assgned to processors? Statc assgnment The processor(s) used for

More information

Tracking with Kalman Filter

Tracking with Kalman Filter Trackng wth Kalman Flter Scott T. Acton Vrgna Image and Vdeo Analyss (VIVA), Charles L. Brown Department of Electrcal and Computer Engneerng Department of Bomedcal Engneerng Unversty of Vrgna, Charlottesvlle,

More information

Portfolios with Trading Constraints and Payout Restrictions

Portfolios with Trading Constraints and Payout Restrictions Portfolos wth Tradng Constrants and Payout Restrctons John R. Brge Northwestern Unversty (ont wor wth Chrs Donohue Xaodong Xu and Gongyun Zhao) 1 General Problem (Very) long-term nvestor (eample: unversty

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED.

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED. EE 539 Homeworks Sprng 08 Updated: Tuesday, Aprl 7, 08 DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED. For full credt, show all work. Some problems requre hand calculatons.

More information

Lecture 4: November 17, Part 1 Single Buffer Management

Lecture 4: November 17, Part 1 Single Buffer Management Lecturer: Ad Rosén Algorthms for the anagement of Networs Fall 2003-2004 Lecture 4: November 7, 2003 Scrbe: Guy Grebla Part Sngle Buffer anagement In the prevous lecture we taled about the Combned Input

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY. William A. Pearlman. References: S. Arimoto - IEEE Trans. Inform. Thy., Jan.

THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY. William A. Pearlman. References: S. Arimoto - IEEE Trans. Inform. Thy., Jan. THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY Wllam A. Pearlman 2002 References: S. Armoto - IEEE Trans. Inform. Thy., Jan. 1972 R. Blahut - IEEE Trans. Inform. Thy., July 1972 Recall

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud

Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud Resource Allocaton wth a Budget Constrant for Computng Independent Tasks n the Cloud Wemng Sh and Bo Hong School of Electrcal and Computer Engneerng Georga Insttute of Technology, USA 2nd IEEE Internatonal

More information

Eigenvalues of Random Graphs

Eigenvalues of Random Graphs Spectral Graph Theory Lecture 2 Egenvalues of Random Graphs Danel A. Spelman November 4, 202 2. Introducton In ths lecture, we consder a random graph on n vertces n whch each edge s chosen to be n the

More information

Split alignment. Martin C. Frith April 13, 2012

Split alignment. Martin C. Frith April 13, 2012 Splt algnment Martn C. Frth Aprl 13, 2012 1 Introducton Ths document s about algnng a query sequence to a genome, allowng dfferent parts of the query to match dfferent parts of the genome. Here are some

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

Last Time. Priority-based scheduling. Schedulable utilization Rate monotonic rule: Keep utilization below 69% Static priorities Dynamic priorities

Last Time. Priority-based scheduling. Schedulable utilization Rate monotonic rule: Keep utilization below 69% Static priorities Dynamic priorities Last Tme Prorty-based schedulng Statc prortes Dynamc prortes Schedulable utlzaton Rate monotonc rule: Keep utlzaton below 69% Today Response tme analyss Blockng terms Prorty nverson And solutons Release

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Neuro-Adaptive Design - I:

Neuro-Adaptive Design - I: Lecture 36 Neuro-Adaptve Desgn - I: A Robustfyng ool for Dynamc Inverson Desgn Dr. Radhakant Padh Asst. Professor Dept. of Aerospace Engneerng Indan Insttute of Scence - Bangalore Motvaton Perfect system

More information

The Second Anti-Mathima on Game Theory

The Second Anti-Mathima on Game Theory The Second Ant-Mathma on Game Theory Ath. Kehagas December 1 2006 1 Introducton In ths note we wll examne the noton of game equlbrum for three types of games 1. 2-player 2-acton zero-sum games 2. 2-player

More information

Coarse-Grain MTCMOS Sleep

Coarse-Grain MTCMOS Sleep Coarse-Gran MTCMOS Sleep Transstor Szng Usng Delay Budgetng Ehsan Pakbazna and Massoud Pedram Unversty of Southern Calforna Dept. of Electrcal Engneerng DATE-08 Munch, Germany Leakage n CMOS Technology

More information

Information Weighted Consensus

Information Weighted Consensus Informaton Weghted Consensus A. T. Kamal, J. A. Farrell and A. K. Roy-Chowdhury Unversty of Calforna, Rversde, CA-92521 Abstract Consensus-based dstrbuted estmaton schemes are becomng ncreasngly popular

More information

Temperature. Chapter Heat Engine

Temperature. Chapter Heat Engine Chapter 3 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum ntropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 9 we dscussed the

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

The optimal delay of the second test is therefore approximately 210 hours earlier than =2.

The optimal delay of the second test is therefore approximately 210 hours earlier than =2. THE IEC 61508 FORMULAS 223 The optmal delay of the second test s therefore approxmately 210 hours earler than =2. 8.4 The IEC 61508 Formulas IEC 61508-6 provdes approxmaton formulas for the PF for smple

More information

Analysis of Queuing Delay in Multimedia Gateway Call Routing

Analysis of Queuing Delay in Multimedia Gateway Call Routing Analyss of Queung Delay n Multmeda ateway Call Routng Qwe Huang UTtarcom Inc, 33 Wood Ave. outh Iseln, NJ 08830, U..A Errol Lloyd Computer Informaton cences Department, Unv. of Delaware, Newark, DE 976,

More information

A 2D Bounded Linear Program (H,c) 2D Linear Programming

A 2D Bounded Linear Program (H,c) 2D Linear Programming A 2D Bounded Lnear Program (H,c) h 3 v h 8 h 5 c h 4 h h 6 h 7 h 2 2D Lnear Programmng C s a polygonal regon, the ntersecton of n halfplanes. (H, c) s nfeasble, as C s empty. Feasble regon C s unbounded

More information

A Local Variational Problem of Second Order for a Class of Optimal Control Problems with Nonsmooth Objective Function

A Local Variational Problem of Second Order for a Class of Optimal Control Problems with Nonsmooth Objective Function A Local Varatonal Problem of Second Order for a Class of Optmal Control Problems wth Nonsmooth Objectve Functon Alexander P. Afanasev Insttute for Informaton Transmsson Problems, Russan Academy of Scences,

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

Lecture 7: Boltzmann distribution & Thermodynamics of mixing

Lecture 7: Boltzmann distribution & Thermodynamics of mixing Prof. Tbbtt Lecture 7 etworks & Gels Lecture 7: Boltzmann dstrbuton & Thermodynamcs of mxng 1 Suggested readng Prof. Mark W. Tbbtt ETH Zürch 13 März 018 Molecular Drvng Forces Dll and Bromberg: Chapters

More information

Welfare Properties of General Equilibrium. What can be said about optimality properties of resource allocation implied by general equilibrium?

Welfare Properties of General Equilibrium. What can be said about optimality properties of resource allocation implied by general equilibrium? APPLIED WELFARE ECONOMICS AND POLICY ANALYSIS Welfare Propertes of General Equlbrum What can be sad about optmalty propertes of resource allocaton mpled by general equlbrum? Any crteron used to compare

More information

COS 521: Advanced Algorithms Game Theory and Linear Programming

COS 521: Advanced Algorithms Game Theory and Linear Programming COS 521: Advanced Algorthms Game Theory and Lnear Programmng Moses Charkar February 27, 2013 In these notes, we ntroduce some basc concepts n game theory and lnear programmng (LP). We show a connecton

More information

find (x): given element x, return the canonical element of the set containing x;

find (x): given element x, return the canonical element of the set containing x; COS 43 Sprng, 009 Dsjont Set Unon Problem: Mantan a collecton of dsjont sets. Two operatons: fnd the set contanng a gven element; unte two sets nto one (destructvely). Approach: Canoncal element method:

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

A Delay-tolerant Proximal-Gradient Algorithm for Distributed Learning

A Delay-tolerant Proximal-Gradient Algorithm for Distributed Learning A Delay-tolerant Proxmal-Gradent Algorthm for Dstrbuted Learnng Konstantn Mshchenko Franck Iutzeler Jérôme Malck Massh Amn KAUST Unv. Grenoble Alpes CNRS and Unv. Grenoble Alpes Unv. Grenoble Alpes ICML

More information

Differentiating Gaussian Processes

Differentiating Gaussian Processes Dfferentatng Gaussan Processes Andrew McHutchon Aprl 17, 013 1 Frst Order Dervatve of the Posteror Mean The posteror mean of a GP s gven by, f = x, X KX, X 1 y x, X α 1 Only the x, X term depends on the

More information

Queueing Networks II Network Performance

Queueing Networks II Network Performance Queueng Networks II Network Performance Davd Tpper Assocate Professor Graduate Telecommuncatons and Networkng Program Unversty of Pttsburgh Sldes 6 Networks of Queues Many communcaton systems must be modeled

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

Market structure and Innovation

Market structure and Innovation Market structure and Innovaton Ths presentaton s based on the paper Market structure and Innovaton authored by Glenn C. Loury, publshed n The Quarterly Journal of Economcs, Vol. 93, No.3 ( Aug 1979) I.

More information

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata Multlayer Perceptrons and Informatcs CG: Lecture 6 Mrella Lapata School of Informatcs Unversty of Ednburgh mlap@nf.ed.ac.uk Readng: Kevn Gurney s Introducton to Neural Networks, Chapters 5 6.5 January,

More information

Tokyo Institute of Technology Periodic Sequencing Control over Multi Communication Channels with Packet Losses

Tokyo Institute of Technology Periodic Sequencing Control over Multi Communication Channels with Packet Losses oyo Insttute of echnology Fujta Laboratory oyo Insttute of echnology erodc Sequencng Control over Mult Communcaton Channels wth acet Losses FL6-7- /8/6 zwrman Gusrald oyo Insttute of echnology Fujta Laboratory

More information

Lecture 10: May 6, 2013

Lecture 10: May 6, 2013 TTIC/CMSC 31150 Mathematcal Toolkt Sprng 013 Madhur Tulsan Lecture 10: May 6, 013 Scrbe: Wenje Luo In today s lecture, we manly talked about random walk on graphs and ntroduce the concept of graph expander,

More information

Spatial Statistics and Analysis Methods (for GEOG 104 class).

Spatial Statistics and Analysis Methods (for GEOG 104 class). Spatal Statstcs and Analyss Methods (for GEOG 104 class). Provded by Dr. An L, San Dego State Unversty. 1 Ponts Types of spatal data Pont pattern analyss (PPA; such as nearest neghbor dstance, quadrat

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

4DVAR, according to the name, is a four-dimensional variational method.

4DVAR, according to the name, is a four-dimensional variational method. 4D-Varatonal Data Assmlaton (4D-Var) 4DVAR, accordng to the name, s a four-dmensonal varatonal method. 4D-Var s actually a drect generalzaton of 3D-Var to handle observatons that are dstrbuted n tme. The

More information

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers Psychology 282 Lecture #24 Outlne Regresson Dagnostcs: Outlers In an earler lecture we studed the statstcal assumptons underlyng the regresson model, ncludng the followng ponts: Formal statement of assumptons.

More information

How Strong Are Weak Patents? Joseph Farrell and Carl Shapiro. Supplementary Material Licensing Probabilistic Patents to Cournot Oligopolists *

How Strong Are Weak Patents? Joseph Farrell and Carl Shapiro. Supplementary Material Licensing Probabilistic Patents to Cournot Oligopolists * How Strong Are Weak Patents? Joseph Farrell and Carl Shapro Supplementary Materal Lcensng Probablstc Patents to Cournot Olgopolsts * September 007 We study here the specal case n whch downstream competton

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Lecture 3: Shannon s Theorem

Lecture 3: Shannon s Theorem CSE 533: Error-Correctng Codes (Autumn 006 Lecture 3: Shannon s Theorem October 9, 006 Lecturer: Venkatesan Guruswam Scrbe: Wdad Machmouch 1 Communcaton Model The communcaton model we are usng conssts

More information

CHAPTER IV RESEARCH FINDING AND DISCUSSIONS

CHAPTER IV RESEARCH FINDING AND DISCUSSIONS CHAPTER IV RESEARCH FINDING AND DISCUSSIONS A. Descrpton of Research Fndng. The Implementaton of Learnng Havng ganed the whole needed data, the researcher then dd analyss whch refers to the statstcal data

More information

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorithm + Quantum Zeno Effect + Vaidman Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

More information

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS HCMC Unversty of Pedagogy Thong Nguyen Huu et al. A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS Thong Nguyen Huu and Hao Tran Van Department of mathematcs-nformaton,

More information

Adaptive Consensus Control of Multi-Agent Systems with Large Uncertainty and Time Delays *

Adaptive Consensus Control of Multi-Agent Systems with Large Uncertainty and Time Delays * Journal of Robotcs, etworkng and Artfcal Lfe, Vol., o. (September 04), 5-9 Adaptve Consensus Control of Mult-Agent Systems wth Large Uncertanty and me Delays * L Lu School of Mechancal Engneerng Unversty

More information

Pricing and Resource Allocation Game Theoretic Models

Pricing and Resource Allocation Game Theoretic Models Prcng and Resource Allocaton Game Theoretc Models Zhy Huang Changbn Lu Q Zhang Computer and Informaton Scence December 8, 2009 Z. Huang, C. Lu, and Q. Zhang (CIS) Game Theoretc Models December 8, 2009

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 where (x 1,..., x N ) X N, N s called the populaton sze, f(x) f (x) for at least one {1, 2,..., N}, and those dfferent from f(x) are called the tral dstrbutons n terms of mportance samplng. Dfferent ways

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence)

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence) /24/27 Prevew Fbonacc Sequence Longest Common Subsequence Dynamc programmng s a method for solvng complex problems by breakng them down nto smpler sub-problems. It s applcable to problems exhbtng the propertes

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Homework 9 Solutions. 1. (Exercises from the book, 6 th edition, 6.6, 1-3.) Determine the number of distinct orderings of the letters given:

Homework 9 Solutions. 1. (Exercises from the book, 6 th edition, 6.6, 1-3.) Determine the number of distinct orderings of the letters given: Homework 9 Solutons PROBLEM ONE 1 (Exercses from the book, th edton,, 1-) Determne the number of dstnct orderngs of the letters gven: (a) GUIDE Soluton: 5! (b) SCHOOL Soluton:! (c) SALESPERSONS Soluton:

More information

Physics 2A Chapter 3 HW Solutions

Physics 2A Chapter 3 HW Solutions Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

Common loop optimizations. Example to improve locality. Why Dependence Analysis. Data Dependence in Loops. Goal is to find best schedule:

Common loop optimizations. Example to improve locality. Why Dependence Analysis. Data Dependence in Loops. Goal is to find best schedule: 15-745 Lecture 6 Data Dependence n Loops Copyrght Seth Goldsten, 2008 Based on sldes from Allen&Kennedy Lecture 6 15-745 2005-8 1 Common loop optmzatons Hostng of loop-nvarant computatons pre-compute before

More information

CS286r Assign One. Answer Key

CS286r Assign One. Answer Key CS286r Assgn One Answer Key 1 Game theory 1.1 1.1.1 Let off-equlbrum strateges also be that people contnue to play n Nash equlbrum. Devatng from any Nash equlbrum s a weakly domnated strategy. That s,

More information

( ) = ( ) + ( 0) ) ( )

( ) = ( ) + ( 0) ) ( ) EETOMAGNETI OMPATIBIITY HANDBOOK 1 hapter 9: Transent Behavor n the Tme Doman 9.1 Desgn a crcut usng reasonable values for the components that s capable of provdng a tme delay of 100 ms to a dgtal sgnal.

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Chapter 7 Channel Capacty and Codng Contents 7. Channel models and channel capacty 7.. Channel models Bnary symmetrc channel Dscrete memoryless channels Dscrete-nput, contnuous-output channel Waveform

More information

Lecture Randomized Load Balancing strategies and their analysis. Probability concepts include, counting, the union bound, and Chernoff bounds.

Lecture Randomized Load Balancing strategies and their analysis. Probability concepts include, counting, the union bound, and Chernoff bounds. U.C. Berkeley CS273: Parallel and Dstrbuted Theory Lecture 1 Professor Satsh Rao August 26, 2010 Lecturer: Satsh Rao Last revsed September 2, 2010 Lecture 1 1 Course Outlne We wll cover a samplng of the

More information

CS 468 Lecture 16: Isometry Invariance and Spectral Techniques

CS 468 Lecture 16: Isometry Invariance and Spectral Techniques CS 468 Lecture 16: Isometry Invarance and Spectral Technques Justn Solomon Scrbe: Evan Gawlk Introducton. In geometry processng, t s often desrable to characterze the shape of an object n a manner that

More information

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information

CHAPTER 17 Amortized Analysis

CHAPTER 17 Amortized Analysis CHAPTER 7 Amortzed Analyss In an amortzed analyss, the tme requred to perform a sequence of data structure operatons s averaged over all the operatons performed. It can be used to show that the average

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 31 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 6. Rdge regresson The OLSE s the best lnear unbased

More information

On the Throughput of Clustered Photolithography Tools:

On the Throughput of Clustered Photolithography Tools: On the hroughput of lustered Photolthography ools: Wafer Advancement and Intrnsc Equpment Loss Maruth Kumar Mutnur James R. Morrson, Ph.D. September 23, 2007 Presentaton Outlne Motvaton Model : Synchronous

More information

CHAPTER IV RESEARCH FINDING AND ANALYSIS

CHAPTER IV RESEARCH FINDING AND ANALYSIS CHAPTER IV REEARCH FINDING AND ANALYI A. Descrpton of Research Fndngs To fnd out the dfference between the students who were taught by usng Mme Game and the students who were not taught by usng Mme Game

More information

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger JAB Chan Long-tal clams development ASTIN - September 2005 B.Verder A. Klnger Outlne Chan Ladder : comments A frst soluton: Munch Chan Ladder JAB Chan Chan Ladder: Comments Black lne: average pad to ncurred

More information

Supporting Information

Supporting Information Supportng Informaton The neural network f n Eq. 1 s gven by: f x l = ReLU W atom x l + b atom, 2 where ReLU s the element-wse rectfed lnear unt, 21.e., ReLUx = max0, x, W atom R d d s the weght matrx to

More information

Search sequence databases 2 10/25/2016

Search sequence databases 2 10/25/2016 Search sequence databases 2 10/25/2016 The BLAST algorthms Ø BLAST fnds local matches between two sequences, called hgh scorng segment pars (HSPs). Step 1: Break down the query sequence and the database

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

CS : Algorithms and Uncertainty Lecture 17 Date: October 26, 2016

CS : Algorithms and Uncertainty Lecture 17 Date: October 26, 2016 CS 29-128: Algorthms and Uncertanty Lecture 17 Date: October 26, 2016 Instructor: Nkhl Bansal Scrbe: Mchael Denns 1 Introducton In ths lecture we wll be lookng nto the secretary problem, and an nterestng

More information

Chapter - 2. Distribution System Power Flow Analysis

Chapter - 2. Distribution System Power Flow Analysis Chapter - 2 Dstrbuton System Power Flow Analyss CHAPTER - 2 Radal Dstrbuton System Load Flow 2.1 Introducton Load flow s an mportant tool [66] for analyzng electrcal power system network performance. Load

More information

PHYS 450 Spring semester Lecture 02: Dealing with Experimental Uncertainties. Ron Reifenberger Birck Nanotechnology Center Purdue University

PHYS 450 Spring semester Lecture 02: Dealing with Experimental Uncertainties. Ron Reifenberger Birck Nanotechnology Center Purdue University PHYS 45 Sprng semester 7 Lecture : Dealng wth Expermental Uncertantes Ron Refenberger Brck anotechnology Center Purdue Unversty Lecture Introductory Comments Expermental errors (really expermental uncertantes)

More information

J. Parallel Distrib. Comput.

J. Parallel Distrib. Comput. J. Parallel Dstrb. Comput. 7 (20) 537 555 Contents lsts avalable at ScenceDrect J. Parallel Dstrb. Comput. ournal homepage: www.elsever.com/locate/pdc Game-theoretc statc load balancng for dstrbuted systems

More information