REVISIT ENCODER & DECODER

Size: px
Start display at page:

Download "REVISIT ENCODER & DECODER"

Transcription

1 PERCEPTION-LINK BEHAVIOR MODEL: REVISIT ENCODER & DECODER IMI PHD Presentation Presenter: William Gu Yuanlong (PhD student) Supervisor: Assoc. Prof. Gerald Seet Gim Lee Co-Supervisor: Prof. Nadia Magnenat-Thalmann

2 2 of 15 CONTENT Introduction Summary of reviewed interface Overview of the proposed framework Encoder and Decoder Conclusion Future work Telepresence (Sense of being there) vs Tele social presence (Sense of being together) [1] Reference [1] F. Biocca et al., The networked minds measure of social presence: Pilot test of the factor structure and concurrent validity, in International Workshop on Presence, 2001.

3 3 of 15 COMMUNICATION MEDIUMS Distance Telecommunication Essential tools Advantage Improves productivity Eases constrain on resources Face to face communication Golden standard How you say it is more important than what you say Advantage More social richness Reference [1] E. Paulos, Personal Tele-Embodiment, University of California at Berkeley, [2] K. M. Tsui et al, Towards Measuring the Quality of Interaction: Communication through Telepresence Robots, in Performance Metrics for Intelligent Systems Workshop, 2012.

4 Degree of social presence 4 of 15 - Improve the existing telepresence robot in term of social presence. - Two aspect of the works were explored 1) Physical appearance (EDGAR) 2) Operator s interface (PLB) MOTIVATION Face to Face Hasegawa s Bot[3] EDGAR EDGAR Wider range of nonverbal cues; less certain postures Life-sized system Rear projection robotic head for realistic face display PRoP[1] MeBot [2] Existing academic TPR Wider range of nonverbal cues Smaller systems (Mebot and Hasegawa) Control systems contradict each other Passive model controller Natural Interface Commercial Limited nonverbal cues Semi-autonomous behavior Anthropomorphism in term of appearance and functionality Reference [1] E. Paulos, Personal Tele-Embodiment, University of California at Berkeley, [2] C. Breazeal, MeBot : A robotic platform for socially embodied telepresence, in The 5th ACM/IEEE international conference on Human-robot interaction, [3] K. Hasegawa and Y. Nakauchi, Preliminary Evaluation of a Telepresence Robot Conveying Pre-motions for Avoiding Speech Collisions, in hai-conference.net, 2013.

5 5 of 15 SUMMARY: REVIEW OF THE OPERATOR S INTERFACE Reference [1] C. Breazeal, MeBot : A robotic platform for socially embodied telepresence, in The 5th ACM/IEEE international conference on Human-robot interaction, [2] K. Hasegawa and Y. Nakauchi, Preliminary Evaluation of a Telepresence Robot Conveying Pre-motions for Avoiding Speech Collisions, in hai-conference.net, [3] H. Park, E. Kim, S. Jang, and S. Park, HMM-based gesture recognition for robot control, in Pattern recognition and Image Analysis, 2005, pp [4] J. M. Susskind et al., Generating Facial Expressions with Deep Belief Nets, in Affective Computing, Emotion Modeling, Synthesis and Recognition, 2008.

6 6 of 15 Natural interface GENERAL FRAMEWORK A novel flexible model that exhibit expressive nonverbal cues without compromising safety and operator cognitive load. Perception-link behavior system integration Encodes various features into their styles Convolution Neural Network with Restricted Boltzmann machine and Sample Pooling [1] Associates style of various features, both operator and interactants FUSION adaptive resonance theory [2] Decodes the current state based on the style and the previous state. Factored gated restricted Boltzmann machine [3] Reference [1] H. Lee et al, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in Proceedings of the 26th Annual International Conference on Machine Learning, [2] A. Tan et al., Intelligence through interaction: Towards a unified theory for learning, in Advances in Neural Networks, [3] R. Memisevic and G. E. Hinton, Learning to represent spatial transformations with factored higherorder Boltzmann machines., Neural computation, 2010.

7 7 of 15 Labeled encoded signal h = max(h 0:(T c+1) ) n n n REVISITING ENCODER Revisited gestures encoder Additional database Compared various unsupervised method BOW Kmean BOW GMM h (0) CNN-RBM-Max Evaluated via intra and inter cluster distance between known label. i t i t 1 N h 1 n N Window of size T N h t 1 n N h (k) i t k h (T c+1) i t k c+1 i t T+1 i i 0 1 n N N h T h = f(i 1:c ; W, b) Convoluted weight Convoluted window of size c Convoluted Neural Network via Restricted Boltzmann Machine and Max pooling

8 8 of 15 DECODER FOR GESTURES Two main considerations Capability to generate different gestures given any encoded signal. Capability to generate similar variations of gestures if encoded signals are close to each others. Basic concept behind encoding and decoding signals One of the possible applications: Collision preventions

9 9 of 15 FRBM MODEL h t Gate W 2 Factored Gated Restricted Boltzmann Machine Bottom up to estimate the h t given i (t 1): t T+1 and z t R W 3 h t = f(w 1 i t: t T+1 [W 3 R z t ]; W 2, b) z t W 1 Top down to infer i t i t: t T+1 = g W 2 h t W 3 R z t ; W 1, a i t i t 1 i t T+1

10 Side Front Top Intensity of each feature in Z Intensity of features #18 (Normalized) 10 of 15 GESTURES DIFFERENT LABELS Input: Z (encoded signals) Output: Gestures Frame index (15Hz) G1 G2 G3 G4 G5 Number of features in Z Given a specific encoded signals (top), a unique gesture(right) can be reconstructed (Animation is looped)

11 Intensity of each feature in Z Side Front Top 11 of 15 GESTURES A LABEL S PROXIMITY Input: Z (encoded signals) Output: Gestures N1 N2 N3 Original Number of features in Z Given a set of encoded signals with similar intensity(top), a set of gesture(right) with similar trait can be reconstructed. (Animation is looped)

12 12 of 15 Reality Encoding Decoding CONCLUSION Capability to generate different gestures given a specific set of encoded signal. Capability to generate similar variations of gestures given three similar encoded signals. Future Challenges for decoder A evaluation method to prove the correctness of the decoded signals. A set of new features to encode and decode the frequencies characteristic. A cheap and real-time method to explore non-collision encoded signals Ideal

13 Gestures/Postures PCA3 PCA2 13 of 15 FUTURE WORK Associator Adaptive Resonance Theory Euclidean Encoder for the face Currently, the current model works on CK++ data base (frontal only) Identities PCA1 Expression Facial identity and expression

14 QUESTION AND ANSWER

Course Structure. Psychology 452 Week 12: Deep Learning. Chapter 8 Discussion. Part I: Deep Learning: What and Why? Rufus. Rufus Processed By Fetch

Course Structure. Psychology 452 Week 12: Deep Learning. Chapter 8 Discussion. Part I: Deep Learning: What and Why? Rufus. Rufus Processed By Fetch Psychology 452 Week 12: Deep Learning What Is Deep Learning? Preliminary Ideas (that we already know!) The Restricted Boltzmann Machine (RBM) Many Layers of RBMs Pros and Cons of Deep Learning Course Structure

More information

TUTORIAL PART 1 Unsupervised Learning

TUTORIAL PART 1 Unsupervised Learning TUTORIAL PART 1 Unsupervised Learning Marc'Aurelio Ranzato Department of Computer Science Univ. of Toronto ranzato@cs.toronto.edu Co-organizers: Honglak Lee, Yoshua Bengio, Geoff Hinton, Yann LeCun, Andrew

More information

Unsupervised Learning of Hierarchical Models. in collaboration with Josh Susskind and Vlad Mnih

Unsupervised Learning of Hierarchical Models. in collaboration with Josh Susskind and Vlad Mnih Unsupervised Learning of Hierarchical Models Marc'Aurelio Ranzato Geoff Hinton in collaboration with Josh Susskind and Vlad Mnih Advanced Machine Learning, 9 March 2011 Example: facial expression recognition

More information

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, 2017 Spis treści Website Acknowledgments Notation xiii xv xix 1 Introduction 1 1.1 Who Should Read This Book?

More information

CSC321 Lecture 20: Autoencoders

CSC321 Lecture 20: Autoencoders CSC321 Lecture 20: Autoencoders Roger Grosse Roger Grosse CSC321 Lecture 20: Autoencoders 1 / 16 Overview Latent variable models so far: mixture models Boltzmann machines Both of these involve discrete

More information

UNSUPERVISED LEARNING

UNSUPERVISED LEARNING UNSUPERVISED LEARNING Topics Layer-wise (unsupervised) pre-training Restricted Boltzmann Machines Auto-encoders LAYER-WISE (UNSUPERVISED) PRE-TRAINING Breakthrough in 2006 Layer-wise (unsupervised) pre-training

More information

Deep Generative Models. (Unsupervised Learning)

Deep Generative Models. (Unsupervised Learning) Deep Generative Models (Unsupervised Learning) CEng 783 Deep Learning Fall 2017 Emre Akbaş Reminders Next week: project progress demos in class Describe your problem/goal What you have done so far What

More information

Convolutional Neural Networks

Convolutional Neural Networks Convolutional Neural Networks Books» http://www.deeplearningbook.org/ Books http://neuralnetworksanddeeplearning.com/.org/ reviews» http://www.deeplearningbook.org/contents/linear_algebra.html» http://www.deeplearningbook.org/contents/prob.html»

More information

Building a Multi-FPGA Virtualized Restricted Boltzmann Machine Architecture Using Embedded MPI

Building a Multi-FPGA Virtualized Restricted Boltzmann Machine Architecture Using Embedded MPI Building a Multi-FPGA Virtualized Restricted Boltzmann Machine Architecture Using Embedded MPI Charles Lo and Paul Chow {locharl1, pc}@eecg.toronto.edu Department of Electrical and Computer Engineering

More information

Activity Mining in Sensor Networks

Activity Mining in Sensor Networks MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Activity Mining in Sensor Networks Christopher R. Wren, David C. Minnen TR2004-135 December 2004 Abstract We present results from the exploration

More information

Speaker Representation and Verification Part II. by Vasileios Vasilakakis

Speaker Representation and Verification Part II. by Vasileios Vasilakakis Speaker Representation and Verification Part II by Vasileios Vasilakakis Outline -Approaches of Neural Networks in Speaker/Speech Recognition -Feed-Forward Neural Networks -Training with Back-propagation

More information

Multimodal context analysis and prediction

Multimodal context analysis and prediction Multimodal context analysis and prediction Valeria Tomaselli (valeria.tomaselli@st.com) Sebastiano Battiato Giovanni Maria Farinella Tiziana Rotondo (PhD student) Outline 2 Context analysis vs prediction

More information

Deep Learning Autoencoder Models

Deep Learning Autoencoder Models Deep Learning Autoencoder Models Davide Bacciu Dipartimento di Informatica Università di Pisa Intelligent Systems for Pattern Recognition (ISPR) Generative Models Wrap-up Deep Learning Module Lecture Generative

More information

Dynamic Data Modeling, Recognition, and Synthesis. Rui Zhao Thesis Defense Advisor: Professor Qiang Ji

Dynamic Data Modeling, Recognition, and Synthesis. Rui Zhao Thesis Defense Advisor: Professor Qiang Ji Dynamic Data Modeling, Recognition, and Synthesis Rui Zhao Thesis Defense Advisor: Professor Qiang Ji Contents Introduction Related Work Dynamic Data Modeling & Analysis Temporal localization Insufficient

More information

Dynamical Systems and Deep Learning: Overview. Abbas Edalat

Dynamical Systems and Deep Learning: Overview. Abbas Edalat Dynamical Systems and Deep Learning: Overview Abbas Edalat Dynamical Systems The notion of a dynamical system includes the following: A phase or state space, which may be continuous, e.g. the real line,

More information

Knowledge Extraction from DBNs for Images

Knowledge Extraction from DBNs for Images Knowledge Extraction from DBNs for Images Son N. Tran and Artur d Avila Garcez Department of Computer Science City University London Contents 1 Introduction 2 Knowledge Extraction from DBNs 3 Experimental

More information

Speech and Language Processing

Speech and Language Processing Speech and Language Processing Lecture 5 Neural network based acoustic and language models Information and Communications Engineering Course Takahiro Shinoaki 08//6 Lecture Plan (Shinoaki s part) I gives

More information

The Origin of Deep Learning. Lili Mou Jan, 2015

The Origin of Deep Learning. Lili Mou Jan, 2015 The Origin of Deep Learning Lili Mou Jan, 2015 Acknowledgment Most of the materials come from G. E. Hinton s online course. Outline Introduction Preliminary Boltzmann Machines and RBMs Deep Belief Nets

More information

Presented By: Omer Shmueli and Sivan Niv

Presented By: Omer Shmueli and Sivan Niv Deep Speaker: an End-to-End Neural Speaker Embedding System Chao Li, Xiaokong Ma, Bing Jiang, Xiangang Li, Xuewei Zhang, Xiao Liu, Ying Cao, Ajay Kannan, Zhenyao Zhu Presented By: Omer Shmueli and Sivan

More information

Agenda. Digit Classification using CNN Digit Classification using SAE Visualization: Class models, filters and saliency 2 DCT

Agenda. Digit Classification using CNN Digit Classification using SAE Visualization: Class models, filters and saliency 2 DCT versus 1 Agenda Deep Learning: Motivation Learning: Backpropagation Deep architectures I: Convolutional Neural Networks (CNN) Deep architectures II: Stacked Auto Encoders (SAE) Caffe Deep Learning Toolbox:

More information

Jakub Hajic Artificial Intelligence Seminar I

Jakub Hajic Artificial Intelligence Seminar I Jakub Hajic Artificial Intelligence Seminar I. 11. 11. 2014 Outline Key concepts Deep Belief Networks Convolutional Neural Networks A couple of questions Convolution Perceptron Feedforward Neural Network

More information

Towards Fully-automated Driving

Towards Fully-automated Driving Towards Fully-automated Driving Challenges and Potential Solutions Dr. Gijs Dubbelman Mobile Perception Systems EE-SPS/VCA Mobile Perception Systems 6 PhDs, postdoc, project manager, software engineer,

More information

Multimodal Machine Learning

Multimodal Machine Learning Multimodal Machine Learning Louis-Philippe (LP) Morency CMU Multimodal Communication and Machine Learning Laboratory [MultiComp Lab] 1 CMU Course 11-777: Multimodal Machine Learning 2 Lecture Objectives

More information

Affect recognition from facial movements and body gestures by hierarchical deep spatio-temporal features and fusion strategy

Affect recognition from facial movements and body gestures by hierarchical deep spatio-temporal features and fusion strategy Accepted Manuscript Affect recognition from facial movements and body gestures by hierarchical deep spatio-temporal features and fusion strategy Bo Sun, Siming Cao, Jun He, Lejun Yu PII: S0893-6080(17)30284-8

More information

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight)

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight) CSCE 636 Neural Networks Instructor: Yoonsuck Choe Deep Learning What Is Deep Learning? Learning higher level abstractions/representations from data. Motivation: how the brain represents sensory information

More information

from Object Image Based on

from Object Image Based on Inference of Grasping Pattern from Object Image Based on Interaction Descriptor Tadashi Matsuo, Takuya Kawakami, Yoko Ogawa, Nobutaka Shimada Ritsumeikan University Introduction An object as a tool has

More information

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight)

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight) CSCE 636 Neural Networks Instructor: Yoonsuck Choe Deep Learning What Is Deep Learning? Learning higher level abstractions/representations from data. Motivation: how the brain represents sensory information

More information

Deep Learning Architectures and Algorithms

Deep Learning Architectures and Algorithms Deep Learning Architectures and Algorithms In-Jung Kim 2016. 12. 2. Agenda Introduction to Deep Learning RBM and Auto-Encoders Convolutional Neural Networks Recurrent Neural Networks Reinforcement Learning

More information

Introduction to Deep Neural Networks

Introduction to Deep Neural Networks Introduction to Deep Neural Networks Presenter: Chunyuan Li Pattern Classification and Recognition (ECE 681.01) Duke University April, 2016 Outline 1 Background and Preliminaries Why DNNs? Model: Logistic

More information

Probabilistic Graphical Models for Image Analysis - Lecture 1

Probabilistic Graphical Models for Image Analysis - Lecture 1 Probabilistic Graphical Models for Image Analysis - Lecture 1 Alexey Gronskiy, Stefan Bauer 21 September 2018 Max Planck ETH Center for Learning Systems Overview 1. Motivation - Why Graphical Models 2.

More information

Knowledge Extraction from Deep Belief Networks for Images

Knowledge Extraction from Deep Belief Networks for Images Knowledge Extraction from Deep Belief Networks for Images Son N. Tran City University London Northampton Square, ECV 0HB, UK Son.Tran.@city.ac.uk Artur d Avila Garcez City University London Northampton

More information

Learning Deep Architectures

Learning Deep Architectures Learning Deep Architectures Yoshua Bengio, U. Montreal Microsoft Cambridge, U.K. July 7th, 2009, Montreal Thanks to: Aaron Courville, Pascal Vincent, Dumitru Erhan, Olivier Delalleau, Olivier Breuleux,

More information

Deep unsupervised learning

Deep unsupervised learning Deep unsupervised learning Advanced data-mining Yongdai Kim Department of Statistics, Seoul National University, South Korea Unsupervised learning In machine learning, there are 3 kinds of learning paradigm.

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

Convolution and Pooling as an Infinitely Strong Prior

Convolution and Pooling as an Infinitely Strong Prior Convolution and Pooling as an Infinitely Strong Prior Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Convolutional

More information

CSCI 315: Artificial Intelligence through Deep Learning

CSCI 315: Artificial Intelligence through Deep Learning CSCI 315: Artificial Intelligence through Deep Learning W&L Winter Term 2017 Prof. Levy Recurrent Neural Networks (Chapter 7) Recall our first-week discussion... How do we know stuff? (MIT Press 1996)

More information

Why DNN Works for Acoustic Modeling in Speech Recognition?

Why DNN Works for Acoustic Modeling in Speech Recognition? Why DNN Works for Acoustic Modeling in Speech Recognition? Prof. Hui Jiang Department of Computer Science and Engineering York University, Toronto, Ont. M3J 1P3, CANADA Joint work with Y. Bao, J. Pan,

More information

Bayesian Hidden Markov Models and Extensions

Bayesian Hidden Markov Models and Extensions Bayesian Hidden Markov Models and Extensions Zoubin Ghahramani Department of Engineering University of Cambridge joint work with Matt Beal, Jurgen van Gael, Yunus Saatci, Tom Stepleton, Yee Whye Teh Modeling

More information

Unsupervised Learning

Unsupervised Learning CS 3750 Advanced Machine Learning hkc6@pitt.edu Unsupervised Learning Data: Just data, no labels Goal: Learn some underlying hidden structure of the data P(, ) P( ) Principle Component Analysis (Dimensionality

More information

Keywords Eigenface, face recognition, kernel principal component analysis, machine learning. II. LITERATURE REVIEW & OVERVIEW OF PROPOSED METHODOLOGY

Keywords Eigenface, face recognition, kernel principal component analysis, machine learning. II. LITERATURE REVIEW & OVERVIEW OF PROPOSED METHODOLOGY Volume 6, Issue 3, March 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Eigenface and

More information

What and where: A Bayesian inference theory of attention

What and where: A Bayesian inference theory of attention What and where: A Bayesian inference theory of attention Sharat Chikkerur, Thomas Serre, Cheston Tan & Tomaso Poggio CBCL, McGovern Institute for Brain Research, MIT Preliminaries Outline Perception &

More information

Lecture 16 Deep Neural Generative Models

Lecture 16 Deep Neural Generative Models Lecture 16 Deep Neural Generative Models CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 22, 2017 Approach so far: We have considered simple models and then constructed

More information

IMISOUND: An Unsupervised System for Sound Query by Vocal Imitation

IMISOUND: An Unsupervised System for Sound Query by Vocal Imitation IMISOUND: An Unsupervised System for Sound Query by Vocal Imitation Yichi Zhang and Zhiyao Duan Audio Information Research (AIR) Lab Department of Electrical and Computer Engineering University of Rochester

More information

An Evolutionary Programming Based Algorithm for HMM training

An Evolutionary Programming Based Algorithm for HMM training An Evolutionary Programming Based Algorithm for HMM training Ewa Figielska,Wlodzimierz Kasprzak Institute of Control and Computation Engineering, Warsaw University of Technology ul. Nowowiejska 15/19,

More information

Deep Learning. Jun Zhu

Deep Learning. Jun Zhu [70240413 Statistical Machine Learning, Spring, 2015] Deep Learning Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent Technology & Systems Tsinghua University

More information

Feature Design. Feature Design. Feature Design. & Deep Learning

Feature Design. Feature Design. Feature Design. & Deep Learning Artificial Intelligence and its applications Lecture 9 & Deep Learning Professor Daniel Yeung danyeung@ieee.org Dr. Patrick Chan patrickchan@ieee.org South China University of Technology, China Appropriately

More information

Neural Map. Structured Memory for Deep RL. Emilio Parisotto

Neural Map. Structured Memory for Deep RL. Emilio Parisotto Neural Map Structured Memory for Deep RL Emilio Parisotto eparisot@andrew.cmu.edu PhD Student Machine Learning Department Carnegie Mellon University Supervised Learning Most deep learning problems are

More information

Quantum Artificial Intelligence and Machine Learning: The Path to Enterprise Deployments. Randall Correll. +1 (703) Palo Alto, CA

Quantum Artificial Intelligence and Machine Learning: The Path to Enterprise Deployments. Randall Correll. +1 (703) Palo Alto, CA Quantum Artificial Intelligence and Machine : The Path to Enterprise Deployments Randall Correll randall.correll@qcware.com +1 (703) 867-2395 Palo Alto, CA 1 Bundled software and services Professional

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 CS 188: Artificial Intelligence Fall 2011 Lecture 20: HMMs / Speech / ML 11/8/2011 Dan Klein UC Berkeley Today HMMs Demo bonanza! Most likely explanation queries Speech recognition A massive HMM! Details

More information

APPLIED DEEP LEARNING PROF ALEXIEI DINGLI

APPLIED DEEP LEARNING PROF ALEXIEI DINGLI APPLIED DEEP LEARNING PROF ALEXIEI DINGLI TECH NEWS TECH NEWS HOW TO DO IT? TECH NEWS APPLICATIONS TECH NEWS TECH NEWS NEURAL NETWORKS Interconnected set of nodes and edges Designed to perform complex

More information

Neural Networks and Machine Learning research at the Laboratory of Computer and Information Science, Helsinki University of Technology

Neural Networks and Machine Learning research at the Laboratory of Computer and Information Science, Helsinki University of Technology Neural Networks and Machine Learning research at the Laboratory of Computer and Information Science, Helsinki University of Technology Erkki Oja Department of Computer Science Aalto University, Finland

More information

Neuroevolution for sound event detection in real life audio: A pilot study

Neuroevolution for sound event detection in real life audio: A pilot study Neuroevolution for sound event detection in real life audio: A pilot study Christian Kroos & Mark D. Plumbley Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, UK Background

More information

Machine Learning for Signal Processing Neural Networks Continue. Instructor: Bhiksha Raj Slides by Najim Dehak 1 Dec 2016

Machine Learning for Signal Processing Neural Networks Continue. Instructor: Bhiksha Raj Slides by Najim Dehak 1 Dec 2016 Machine Learning for Signal Processing Neural Networks Continue Instructor: Bhiksha Raj Slides by Najim Dehak 1 Dec 2016 1 So what are neural networks?? Voice signal N.Net Transcription Image N.Net Text

More information

The Changing Landscape of Land Administration

The Changing Landscape of Land Administration The Changing Landscape of Land Administration B r e n t J o n e s P E, PLS E s r i World s Largest Media Company No Journalists No Content Producers No Photographers World s Largest Hospitality Company

More information

Classification of Hand-Written Digits Using Scattering Convolutional Network

Classification of Hand-Written Digits Using Scattering Convolutional Network Mid-year Progress Report Classification of Hand-Written Digits Using Scattering Convolutional Network Dongmian Zou Advisor: Professor Radu Balan Co-Advisor: Dr. Maneesh Singh (SRI) Background Overview

More information

self-driving car technology introduction

self-driving car technology introduction self-driving car technology introduction slide 1 Contents of this presentation 1. Motivation 2. Methods 2.1 road lane detection 2.2 collision avoidance 3. Summary 4. Future work slide 2 Motivation slide

More information

RegML 2018 Class 8 Deep learning

RegML 2018 Class 8 Deep learning RegML 2018 Class 8 Deep learning Lorenzo Rosasco UNIGE-MIT-IIT June 18, 2018 Supervised vs unsupervised learning? So far we have been thinking of learning schemes made in two steps f(x) = w, Φ(x) F, x

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable models Background PCA

More information

SGD and Deep Learning

SGD and Deep Learning SGD and Deep Learning Subgradients Lets make the gradient cheating more formal. Recall that the gradient is the slope of the tangent. f(w 1 )+rf(w 1 ) (w w 1 ) Non differentiable case? w 1 Subgradients

More information

Speech-driven Facial Animation

Speech-driven Facial Animation peech-driven Facial Animation how to learn a stream-to-stream mapping? Hiroshi himodaira (ICC, CTR) Junichi Yamagishi, Gregor Hofer, ichael Berger peech-driven facial animation? It's a computer animated

More information

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 7: Factor Analysis Princeton University COS 495 Instructor: Yingyu Liang Supervised v.s. Unsupervised Math formulation for supervised learning Given training data x i, y i

More information

Deep Neural Networks

Deep Neural Networks Deep Neural Networks DT2118 Speech and Speaker Recognition Giampiero Salvi KTH/CSC/TMH giampi@kth.se VT 2015 1 / 45 Outline State-to-Output Probability Model Artificial Neural Networks Perceptron Multi

More information

Data Informatics. Seon Ho Kim, Ph.D.

Data Informatics. Seon Ho Kim, Ph.D. Data Informatics Seon Ho Kim, Ph.D. seonkim@usc.edu What is Machine Learning? Overview slides by ETHEM ALPAYDIN Why Learn? Learn: programming computers to optimize a performance criterion using example

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) Human Brain Neurons Input-Output Transformation Input Spikes Output Spike Spike (= a brief pulse) (Excitatory Post-Synaptic Potential)

More information

Administration. Registration Hw3 is out. Lecture Captioning (Extra-Credit) Scribing lectures. Questions. Due on Thursday 10/6

Administration. Registration Hw3 is out. Lecture Captioning (Extra-Credit) Scribing lectures. Questions. Due on Thursday 10/6 Administration Registration Hw3 is out Due on Thursday 10/6 Questions Lecture Captioning (Extra-Credit) Look at Piazza for details Scribing lectures With pay; come talk to me/send email. 1 Projects Projects

More information

Deep Learning of Invariant Spatiotemporal Features from Video. Bo Chen, Jo-Anne Ting, Ben Marlin, Nando de Freitas University of British Columbia

Deep Learning of Invariant Spatiotemporal Features from Video. Bo Chen, Jo-Anne Ting, Ben Marlin, Nando de Freitas University of British Columbia Deep Learning of Invariant Spatiotemporal Features from Video Bo Chen, Jo-Anne Ting, Ben Marlin, Nando de Freitas University of British Columbia Introduction Focus: Unsupervised feature extraction from

More information

Lecture: Face Recognition

Lecture: Face Recognition Lecture: Face Recognition Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 12-1 What we will learn today Introduction to face recognition The Eigenfaces Algorithm Linear

More information

ONE-VECTOR REPRESENTATIONS OF STOCHASTIC SIGNALS FOR PATTERN RECOGNITION HAO TANG DISSERTATION

ONE-VECTOR REPRESENTATIONS OF STOCHASTIC SIGNALS FOR PATTERN RECOGNITION HAO TANG DISSERTATION c 2010 Hao Tang ONE-VECTOR REPRESENTATIONS OF STOCHASTIC SIGNALS FOR PATTERN RECOGNITION BY HAO TANG DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

More information

Face detection and recognition. Detection Recognition Sally

Face detection and recognition. Detection Recognition Sally Face detection and recognition Detection Recognition Sally Face detection & recognition Viola & Jones detector Available in open CV Face recognition Eigenfaces for face recognition Metric learning identification

More information

Unsupervised Neural Nets

Unsupervised Neural Nets Unsupervised Neural Nets (and ICA) Lyle Ungar (with contributions from Quoc Le, Socher & Manning) Lyle Ungar, University of Pennsylvania Semi-Supervised Learning Hypothesis:%P(c x)%can%be%more%accurately%computed%using%

More information

Unsupervised Learning: K-Means, Gaussian Mixture Models

Unsupervised Learning: K-Means, Gaussian Mixture Models Unsupervised Learning: K-Means, Gaussian Mixture Models These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online.

More information

Structured deep models: Deep learning on graphs and beyond

Structured deep models: Deep learning on graphs and beyond Structured deep models: Deep learning on graphs and beyond Hidden layer Hidden layer Input Output ReLU ReLU, 25 May 2018 CompBio Seminar, University of Cambridge In collaboration with Ethan Fetaya, Rianne

More information

Competitive Learning for Deep Temporal Networks

Competitive Learning for Deep Temporal Networks Competitive Learning for Deep Temporal Networks Robert Gens Computer Science and Engineering University of Washington Seattle, WA 98195 rcg@cs.washington.edu Pedro Domingos Computer Science and Engineering

More information

Tutorial on Methods for Interpreting and Understanding Deep Neural Networks. Part 3: Applications & Discussion

Tutorial on Methods for Interpreting and Understanding Deep Neural Networks. Part 3: Applications & Discussion Tutorial on Methods for Interpreting and Understanding Deep Neural Networks W. Samek, G. Montavon, K.-R. Müller Part 3: Applications & Discussion ICASSP 2017 Tutorial W. Samek, G. Montavon & K.-R. Müller

More information

Machine Learning. Boris

Machine Learning. Boris Machine Learning Boris Nadion boris@astrails.com @borisnadion @borisnadion boris@astrails.com astrails http://astrails.com awesome web and mobile apps since 2005 terms AI (artificial intelligence)

More information

An efficient way to learn deep generative models

An efficient way to learn deep generative models An efficient way to learn deep generative models Geoffrey Hinton Canadian Institute for Advanced Research & Department of Computer Science University of Toronto Joint work with: Ruslan Salakhutdinov, Yee-Whye

More information

Modelling Time Series with Neural Networks. Volker Tresp Summer 2017

Modelling Time Series with Neural Networks. Volker Tresp Summer 2017 Modelling Time Series with Neural Networks Volker Tresp Summer 2017 1 Modelling of Time Series The next figure shows a time series (DAX) Other interesting time-series: energy prize, energy consumption,

More information

Decoding conceptual representations

Decoding conceptual representations Decoding conceptual representations!!!! Marcel van Gerven! Computational Cognitive Neuroscience Lab (www.ccnlab.net) Artificial Intelligence Department Donders Centre for Cognition Donders Institute for

More information

Situation. The XPS project. PSO publication pattern. Problem. Aims. Areas

Situation. The XPS project. PSO publication pattern. Problem. Aims. Areas Situation The XPS project we are looking at a paradigm in its youth, full of potential and fertile with new ideas and new perspectives Researchers in many countries are experimenting with particle swarms

More information

LEARNING REPRESENTATIONS OF SEQUENCES IPAM GRADUATE SUMMER SCHOOL ON DEEP LEARNING

LEARNING REPRESENTATIONS OF SEQUENCES IPAM GRADUATE SUMMER SCHOOL ON DEEP LEARNING LEARNING REPRESENTATIONS OF SEQUENCES IPAM GRADUATE SUMMER SCHOOL ON DEEP LEARNING GRAHAM TAYLOR SCHOOL OF ENGINEERING UNIVERSITY OF GUELPH Papers and software available at: http://www.uoguelph.ca/~gwtaylor

More information

Speaker recognition by means of Deep Belief Networks

Speaker recognition by means of Deep Belief Networks Speaker recognition by means of Deep Belief Networks Vasileios Vasilakakis, Sandro Cumani, Pietro Laface, Politecnico di Torino, Italy {first.lastname}@polito.it 1. Abstract Most state of the art speaker

More information

PATTERN CLASSIFICATION

PATTERN CLASSIFICATION PATTERN CLASSIFICATION Second Edition Richard O. Duda Peter E. Hart David G. Stork A Wiley-lnterscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS

More information

Topics in Natural Language Processing

Topics in Natural Language Processing Topics in Natural Language Processing Shay Cohen Institute for Language, Cognition and Computation University of Edinburgh Lecture 9 Administrativia Next class will be a summary Please email me questions

More information

Introduction p. 1 Compression Techniques p. 3 Lossless Compression p. 4 Lossy Compression p. 5 Measures of Performance p. 5 Modeling and Coding p.

Introduction p. 1 Compression Techniques p. 3 Lossless Compression p. 4 Lossy Compression p. 5 Measures of Performance p. 5 Modeling and Coding p. Preface p. xvii Introduction p. 1 Compression Techniques p. 3 Lossless Compression p. 4 Lossy Compression p. 5 Measures of Performance p. 5 Modeling and Coding p. 6 Summary p. 10 Projects and Problems

More information

Lecture 14: Deep Generative Learning

Lecture 14: Deep Generative Learning Generative Modeling CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 14: Deep Generative Learning Density estimation Reconstructing probability density function using samples Bohyung Han

More information

Variational Autoencoders. Presented by Alex Beatson Materials from Yann LeCun, Jaan Altosaar, Shakir Mohamed

Variational Autoencoders. Presented by Alex Beatson Materials from Yann LeCun, Jaan Altosaar, Shakir Mohamed Variational Autoencoders Presented by Alex Beatson Materials from Yann LeCun, Jaan Altosaar, Shakir Mohamed Contents 1. Why unsupervised learning, and why generative models? (Selected slides from Yann

More information

Artificial Neural Networks Examination, June 2005

Artificial Neural Networks Examination, June 2005 Artificial Neural Networks Examination, June 2005 Instructions There are SIXTY questions. (The pass mark is 30 out of 60). For each question, please select a maximum of ONE of the given answers (either

More information

Acoustic Unit Discovery (AUD) Models. Leda Sarı

Acoustic Unit Discovery (AUD) Models. Leda Sarı Acoustic Unit Discovery (AUD) Models Leda Sarı Lucas Ondel and Lukáš Burget A summary of AUD experiments from JHU Frederick Jelinek Summer Workshop 2016 lsari2@illinois.edu November 07, 2016 1 / 23 The

More information

Multi-scale Geometric Summaries for Similarity-based Upstream S

Multi-scale Geometric Summaries for Similarity-based Upstream S Multi-scale Geometric Summaries for Similarity-based Upstream Sensor Fusion Duke University, ECE / Math 3/6/2019 Overall Goals / Design Choices Leverage multiple, heterogeneous modalities in identification

More information

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann (Feed-Forward) Neural Networks 2016-12-06 Dr. Hajira Jabeen, Prof. Jens Lehmann Outline In the previous lectures we have learned about tensors and factorization methods. RESCAL is a bilinear model for

More information

Processor & SOC Architecture

Processor & SOC Architecture Processor & SOC Architecture - Processor & Accelerator Design (Front-End) Neural Processor, DSP, GPU, CPU, MCU Design Accelerator, Multimedia Processor Design SOC architecture, C-modeling Memory system

More information

Image Recognition by a Second-Order Convolutional Neural Network with Dynamic Receptive Fields

Image Recognition by a Second-Order Convolutional Neural Network with Dynamic Receptive Fields Image Recognition by a Second-Order Convolutional Neural Network with Dynamic Receptive Fields Roman Nemkov nemkov.roman@yandex.ru Oksana Mezentseva omezentceva@ncfu.ru Maksim Brodnikov brodmv@gmail.com

More information

A GENERIC MODEL FOR ESTIMATING USER INTENTIONS IN HUMAN-ROBOT COOPERATION

A GENERIC MODEL FOR ESTIMATING USER INTENTIONS IN HUMAN-ROBOT COOPERATION A GENERIC MODEL FOR ESTIMATING USER INTENTIONS IN HUMAN-ROBOT COOPERATION Oliver C. Schrempf, and Uwe D. Hanebeck Intelligent Sensor-Actuator-Systems Laboratory Institute of Computer Science and Engineering

More information

CS325 Artificial Intelligence Ch. 15,20 Hidden Markov Models and Particle Filtering

CS325 Artificial Intelligence Ch. 15,20 Hidden Markov Models and Particle Filtering CS325 Artificial Intelligence Ch. 15,20 Hidden Markov Models and Particle Filtering Cengiz Günay, Emory Univ. Günay Ch. 15,20 Hidden Markov Models and Particle FilteringSpring 2013 1 / 21 Get Rich Fast!

More information

Greedy Layer-Wise Training of Deep Networks

Greedy Layer-Wise Training of Deep Networks Greedy Layer-Wise Training of Deep Networks Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle NIPS 2007 Presented by Ahmed Hefny Story so far Deep neural nets are more expressive: Can learn

More information

Artificial Neural Networks. Introduction to Computational Neuroscience Tambet Matiisen

Artificial Neural Networks. Introduction to Computational Neuroscience Tambet Matiisen Artificial Neural Networks Introduction to Computational Neuroscience Tambet Matiisen 2.04.2018 Artificial neural network NB! Inspired by biology, not based on biology! Applications Automatic speech recognition

More information

Reading Group on Deep Learning Session 4 Unsupervised Neural Networks

Reading Group on Deep Learning Session 4 Unsupervised Neural Networks Reading Group on Deep Learning Session 4 Unsupervised Neural Networks Jakob Verbeek & Daan Wynen 206-09-22 Jakob Verbeek & Daan Wynen Unsupervised Neural Networks Outline Autoencoders Restricted) Boltzmann

More information

Neural Network Control of Robot Manipulators and Nonlinear Systems

Neural Network Control of Robot Manipulators and Nonlinear Systems Neural Network Control of Robot Manipulators and Nonlinear Systems F.L. LEWIS Automation and Robotics Research Institute The University of Texas at Arlington S. JAG ANNATHAN Systems and Controls Research

More information

DANIEL WILSON AND BEN CONKLIN. Integrating AI with Foundation Intelligence for Actionable Intelligence

DANIEL WILSON AND BEN CONKLIN. Integrating AI with Foundation Intelligence for Actionable Intelligence DANIEL WILSON AND BEN CONKLIN Integrating AI with Foundation Intelligence for Actionable Intelligence INTEGRATING AI WITH FOUNDATION INTELLIGENCE FOR ACTIONABLE INTELLIGENCE in an arms race for artificial

More information

Hierarchical Clustering of Dynamical Systems based on Eigenvalue Constraints

Hierarchical Clustering of Dynamical Systems based on Eigenvalue Constraints Proc. 3rd International Conference on Advances in Pattern Recognition (S. Singh et al. (Eds.): ICAPR 2005, LNCS 3686, Springer), pp. 229-238, 2005 Hierarchical Clustering of Dynamical Systems based on

More information