Simulation of a Gaussian random vector: A propagative approach to the Gibbs sampler

Size: px
Start display at page:

Download "Simulation of a Gaussian random vector: A propagative approach to the Gibbs sampler"

Transcription

1 Simulation of a Gaussian random vector: A propagative approach to the Gibbs sampler C. Lantuéjoul, N. Desassis and F. Fouedjio MinesParisTech Kriging and Gaussian processes for computer experiments CHORUS Workshop,

2 Outline Presentation of the problem reminder and notation running Gibbs sampler on large Gaussian random vectors Propagative version of the Gibbs sampler two remarks basic algorithm possible extensions Applications simulation of a nonstationary Gaussian random field conditional simulation of a Cox process 2

3 Presentation of the problem 3

4 Reminder and notation Let Y S = (Y s, s S) be a standardized Gaussian random vector with covariance matrix C. (Simple) kriging: If s S and A S. The kriging of Y s on Y A is a linear estimator Ys A = α A λ αy α. The weights λ α are chosen so as to minimize the estimation variance V ar{y s Ys A }. They are solutions of the linear system β A λ βc α,β = C α,s α A The estimation variance is σ 2A s Conditional distribution: = V ar{y s Y A s } = 1 α A λ αc α,s Y s Y A = y A is normally distributed. More precisely, we have Y s Y A = y A N ( ) ys A, σs 2A 4

5 Simulation of a Gaussian random vector using the Gibbs sampler Problem: Simulate the Gaussian vector Y S iteratively. Algorithm: (i) reset y c S; (ii) put y n S = ys; c (iii) select s U(S) and generate ys n N ( ) ys S\s, σs 2S\s ; (iv) put y c S = y n S and goto (ii). Problem: When S is large, the kriging matrices cannot be inverted. 5

6 Simulation of a Gaussian random vector using the Gibbs sampler; approximate algorithm To illustrate the approach, the components of S are depicted as the nodes of a square grid, which makes it possible to consider kriging neighbourhoods as balls B s,r. r Algorithm: (i) reset y c S; (ii) put y n S = y c S; (iii) select s U(S) and generate ys n N ( y B s,r\s s (iv) put y c S = y n S and goto (ii). ), σ 2B s,r\s s ; 6

7 Example (10000 components), spherical covariance (range 10) Neighbourhood radius of

8 Example (10000 components), spherical covariance (range 10) Neighbourhood radius of

9 Extrema Scans 9 Extrema

10 Gibbs sampler for Gaussian random vectors A propagative version 10

11 Two useful remarks Remark 1: Let Y S N(0, C). The kriging estimate ys S\s and its estimation variance σs 2S\s can be expressed using the inverse C 1 of matrix C: Remark 2: y S\s s = t s C 1 st C 1 ss y t σ 2S\s s = 1 C 1 ss Galli and Gao (2001): If X = C 1 Y, then X N(0, C 1 ). Consequence: As (C 1 ) 1 = C, the Gibbs sampler can be run exactly on X. Idea: Apply the exact Gibbs sampler to X and transport the results to Y using the relation Y = CX. 11

12 Running the Gibbs sampler on X Remark: X S\s s = t s C st C ss X t = t s C st X t = X s Y s V ar{x s X S\s s } = 1 C ss = 1 Algorithm: (i) reset x c S; (ii) put x n S = x c S; (iii) select p U(S) and generate x n p N(x c p y c p,1); (iv) put x c S = x n S and goto (ii). Definition: The point p is called a pivot. 12

13 Transporting the Gibbs sampler to Y If x n p N(x c p y c p, 1), then x n p = x c p y c p + u with u N. Then y n s = t C st x n t = t p C st x c t + C sp x n p = y c s C sp x c p + C sp (x c p y c p + u) = y c s + C sp (u y c p) Taking s = p, we obtain y n p = u, which finally gives y n s = y c s + C sp (y n p y c p) s S Algorithm: (i) reset y c S; (ii) select p U(S) and generate y n p N; (iii) put y n s = y c s + C sp (y n p y c p) for each s S; (iv) put y c S = y n S and goto (ii). 13

14 Example of a vector with components Spherical covariance function with range

15 Variograms of simulations gamma(h) Spherical covariance (10) h Simulation variograms obtained after 1, 2, 3, 5, 7, 10, 15 and 20 scans. In black, the variogram model. 15

16 Generalizations Generating the pivot value y n p can be generated as a function of y c p, e.g. y n p N(ry c p, 1 r 2 ). It is sometimes convenient to draw y n close to y c. Blocking strategy y n s = y c s + C sp (y n p y c p) y n s C sp y n p = y c s C sp y c p Thus, kriging residuals are preserved by the propagative approach of the Gibbs sampler. This remark remains valid when the pivot p is replaced by a family P of pivots. (i) put y c = 0; (ii) select P at random in S and generate y n P N(0, C PP ); (iii) put ys n = ys c + ys n,p (iv) put y c = y n, and goto (ii). y c,p s for each s S; 16

17 Application Simulation of a non-stationary Gaussian random field 17

18 Simulation of a nonstationary Gaussian random field Let Z be a nonstationary Gaussian random field. It can be written as m + σy, where Y is a (non necessarily stationary), standardized Gaussian random field. Problem: Generate Z in the discrete domain S. Notation: Let C be the covariance matrix of Y S. Algorithm: (i) generate y S N(0, C); (ii) put z s = m s + σ s y s for each s S. 18

19 Example: point source model C s,t = exp ( λ s t ) exp ( µ e ν s e ν t ) m = 0 and σ = 1. λ = 0.05, µ = 5 and ν = Simulation field

20 Application Conditional simulation of a Cox process 20

21 Motivation A piece of land is covered with trees. It is partitioned into congruent plots. The number of trees is known on a number of plots. We want to predict the number of trees on each plot This can be done by averaging a set of conditional simulations. The spatial distribution of trees is modelled by a Cox process. 21

22 Cox process Definition: A Cox process is a Poisson point process with random intensity function. Remark: The random intensity function is also called potential. 22

23 Properties of the Cox process Let N S = (N s, s S) be the number of trees on all plots, and let Z S be their potential. Mean value: Covariance between plots: Cov{N s, N t } = E{N s } = E{Z s } { Cov{Zs, Z t } if s t V ar{z s } + E{Z s } if s = t Conditional distribution: Given the potential, the numbers of trees on differents plots are conditionally independent. P {N S = n S Z S = z S } = exp( z s ) zn s s n s! s S 23

24 Cox-lognormal process The potential is lognormally distributed, i.e. Z S = exp(µ + σy S ), where Y S is a standardized Gaussian random vector (covariance matrix C). µ = and σ = 0.7. C s,t = exp( s t /15). Simulation field unit plots. 24

25 Conditional simulation of a Cox-lognormal process Problem: Generate N S given N A = n A for some A S. Idea: At each iteration, candidate values are proposed for y S using the propagative version of the Gibbs sampler. They are accepted or rejected using Metropolis-Hastings criterion. Algorithm: (i) put y c S = 0; (ii) generate p U(S) and y n p N; (iii) put z c A = e µ+σyc A, z n A = z c A e σc Ap (yn p yc p ), and generate u U; (iv) if u > p(n A z n A)/p(n A z c A), then goto (ii); (v) put y c S = y c S + C Sp (y n p y c p); (vi) goto (ii). 25

26 20 conditioning data points Reality (TL), conditioning data points (TR), and two conditional simulations (BL and BR) 26

27 100 conditioning data points Reality (TL), conditioning data points (TR), and two conditional simulations (BL and BR) 27

28 500 conditioning data points Reality (TL), conditioning data points (TR), and two conditional simulations (BL and BR) 28

29 Conclusions An iterative algorithm, derived from the Gibbs sampler, has been proposed for simulating Gaussian random vectors. At each iteration, a component is selected and randomly assigned a new value. This value is then linearly propagated to the other components. Because it does not require the inversion of the covariance matrix, this algorithm does not incur the dimensionality problem of the standard Gibbs sampler. This can be used to simulate random processes related to Gaussian random fields even if they are nonstationary or subject to soft constraints. 29

30 References Desassis N. et Lantuéjoul C. (2011) - Simulation d un vecteur gaussien: une approche propagative de l chantillonneur de Gibbs. 43 emes Journées de Statistique, Tunis (Tunisie). Lantuéjoul C. and Dessassis N. (2012) - Simulation of a Gaussian random vector: A propagative version of the Gibbs sampler. 9 th Int. Geostatistics Congress, Oslo (Norway). Fouedjio F. (2014) - Développement de modèles géostatistiques globaux non-stationnaires. Thèse MinesParisTech (à soutenir). 30

31 Rate of convergence Let Y (n) the random vector generated at the n th scan. Systematic scan If Y (0) N(0, C (0) ), then Y (n) N(0, C (n) ). Besides, we have C (n) C = B n( C (0) C )t B n where B = (Id L) 1 U. The matrices Id, L and U are respectively the identity matrix, the lower and upper parts of C C = Id + L + U If follows that the rate of convergence is governed by the square of the spectral radius of B. 31

Prediction by conditional simulation

Prediction by conditional simulation Prediction by conditional simulation C. Lantuéjoul MinesParisTech christian.lantuejoul@mines-paristech.fr Introductive example Problem: A submarine cable has to be laid on the see floor between points

More information

Is there still room for new developments in geostatistics?

Is there still room for new developments in geostatistics? Is there still room for new developments in geostatistics? Jean-Paul Chilès MINES ParisTech, Fontainebleau, France, IAMG 34th IGC, Brisbane, 8 August 2012 Matheron: books and monographs 1962-1963: Treatise

More information

CONDITIONAL SIMULATION OF A COX PROCESS USING MULTIPLE SAMPLE SUPPORTS

CONDITIONAL SIMULATION OF A COX PROCESS USING MULTIPLE SAMPLE SUPPORTS CONDITIONAL SIMULATION OF A COX PROCESS USING MULTIPLE SAMPLE SUPPORTS GAVIN BROWN, JOHAN FERREIRA and CHRISTIAN LANTUÉJOUL De Beers MRM, PO Box 23329, Claremont 7735, Cape Town, South Africa De Beers

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

GeoEnv -July Simulations. D. Renard N. Desassis. Geostatistics & RGeostats

GeoEnv -July Simulations. D. Renard N. Desassis. Geostatistics & RGeostats GeoEnv -July 2014 Simulations D. Renard N. Desassis Geostatistics & RGeostats 1 o Why are simulations necessary? Simulations Estimation (Kriging) produces smooth results We need a different method which

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee September 03 05, 2017 Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles Linear Regression Linear regression is,

More information

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Environmentrics 00, 1 12 DOI: 10.1002/env.XXXX Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Regina Wu a and Cari G. Kaufman a Summary: Fitting a Bayesian model to spatial

More information

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods Pattern Recognition and Machine Learning Chapter 11: Sampling Methods Elise Arnaud Jakob Verbeek May 22, 2008 Outline of the chapter 11.1 Basic Sampling Algorithms 11.2 Markov Chain Monte Carlo 11.3 Gibbs

More information

Correcting Variogram Reproduction of P-Field Simulation

Correcting Variogram Reproduction of P-Field Simulation Correcting Variogram Reproduction of P-Field Simulation Julián M. Ortiz (jmo1@ualberta.ca) Department of Civil & Environmental Engineering University of Alberta Abstract Probability field simulation is

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Simulated Annealing Barnabás Póczos & Ryan Tibshirani Andrey Markov Markov Chains 2 Markov Chains Markov chain: Homogen Markov chain: 3 Markov Chains Assume that the state

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

A full scale, non stationary approach for the kriging of large spatio(-temporal) datasets

A full scale, non stationary approach for the kriging of large spatio(-temporal) datasets A full scale, non stationary approach for the kriging of large spatio(-temporal) datasets Thomas Romary, Nicolas Desassis & Francky Fouedjio Mines ParisTech Centre de Géosciences, Equipe Géostatistique

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes TK4150 - Intro 1 Chapter 4 - Fundamentals of spatial processes Lecture notes Odd Kolbjørnsen and Geir Storvik January 30, 2017 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites

More information

Advanced Introduction to Machine Learning

Advanced Introduction to Machine Learning 10-715 Advanced Introduction to Machine Learning Homework 3 Due Nov 12, 10.30 am Rules 1. Homework is due on the due date at 10.30 am. Please hand over your homework at the beginning of class. Please see

More information

arxiv: v1 [stat.me] 3 Dec 2014

arxiv: v1 [stat.me] 3 Dec 2014 A Generalized Convolution Model and Estimation for Non-stationary Random Functions F. Fouedjio, N. Desassis, J. Rivoirard Équipe Géostatistique - Centre de Géosciences, MINES ParisTech 35, rue Saint-Honoré,

More information

Cosmology & CMB. Set5: Data Analysis. Davide Maino

Cosmology & CMB. Set5: Data Analysis. Davide Maino Cosmology & CMB Set5: Data Analysis Davide Maino Gaussian Statistics Statistical isotropy states only two-point correlation function is needed and it is related to power spectrum Θ(ˆn) = lm Θ lm Y lm (ˆn)

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo Group Prof. Daniel Cremers 11. Sampling Methods: Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Applications of Randomized Methods for Decomposing and Simulating from Large Covariance Matrices

Applications of Randomized Methods for Decomposing and Simulating from Large Covariance Matrices Applications of Randomized Methods for Decomposing and Simulating from Large Covariance Matrices Vahid Dehdari and Clayton V. Deutsch Geostatistical modeling involves many variables and many locations.

More information

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Abhirup Datta 1 Sudipto Banerjee 1 Andrew O. Finley 2 Alan E. Gelfand 3 1 University of Minnesota, Minneapolis,

More information

ENGRG Introduction to GIS

ENGRG Introduction to GIS ENGRG 59910 Introduction to GIS Michael Piasecki October 13, 2017 Lecture 06: Spatial Analysis Outline Today Concepts What is spatial interpolation Why is necessary Sample of interpolation (size and pattern)

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry

More information

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu Anwesan Pal:

More information

6 Markov Chain Monte Carlo (MCMC)

6 Markov Chain Monte Carlo (MCMC) 6 Markov Chain Monte Carlo (MCMC) The underlying idea in MCMC is to replace the iid samples of basic MC methods, with dependent samples from an ergodic Markov chain, whose limiting (stationary) distribution

More information

Monte Carlo Methods. Leon Gu CSD, CMU

Monte Carlo Methods. Leon Gu CSD, CMU Monte Carlo Methods Leon Gu CSD, CMU Approximate Inference EM: y-observed variables; x-hidden variables; θ-parameters; E-step: q(x) = p(x y, θ t 1 ) M-step: θ t = arg max E q(x) [log p(y, x θ)] θ Monte

More information

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods Prof. Daniel Cremers 14. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Concentration inequalities for Feynman-Kac particle models. P. Del Moral. INRIA Bordeaux & IMB & CMAP X. Journées MAS 2012, SMAI Clermond-Ferrand

Concentration inequalities for Feynman-Kac particle models. P. Del Moral. INRIA Bordeaux & IMB & CMAP X. Journées MAS 2012, SMAI Clermond-Ferrand Concentration inequalities for Feynman-Kac particle models P. Del Moral INRIA Bordeaux & IMB & CMAP X Journées MAS 2012, SMAI Clermond-Ferrand Some hyper-refs Feynman-Kac formulae, Genealogical & Interacting

More information

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence Bayesian Inference in GLMs Frequentists typically base inferences on MLEs, asymptotic confidence limits, and log-likelihood ratio tests Bayesians base inferences on the posterior distribution of the unknowns

More information

Geostatistics for Gaussian processes

Geostatistics for Gaussian processes Introduction Geostatistical Model Covariance structure Cokriging Conclusion Geostatistics for Gaussian processes Hans Wackernagel Geostatistics group MINES ParisTech http://hans.wackernagel.free.fr Kernels

More information

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling Professor Erik Sudderth Brown University Computer Science October 27, 2016 Some figures and materials courtesy

More information

Comparing Non-informative Priors for Estimation and. Prediction in Spatial Models

Comparing Non-informative Priors for Estimation and. Prediction in Spatial Models Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Vigre Semester Report by: Regina Wu Advisor: Cari Kaufman January 31, 2010 1 Introduction Gaussian random fields with specified

More information

Multivariate Geostatistics

Multivariate Geostatistics Hans Wackernagel Multivariate Geostatistics An Introduction with Applications Third, completely revised edition with 117 Figures and 7 Tables Springer Contents 1 Introduction A From Statistics to Geostatistics

More information

Non-gaussian spatiotemporal modeling

Non-gaussian spatiotemporal modeling Dec, 2008 1/ 37 Non-gaussian spatiotemporal modeling Thais C O da Fonseca Joint work with Prof Mark F J Steel Department of Statistics University of Warwick Dec, 2008 Dec, 2008 2/ 37 1 Introduction Motivation

More information

Introduction to Geostatistics

Introduction to Geostatistics Introduction to Geostatistics Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore,

More information

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Elizabeth C. Mannshardt-Shamseldin Advisor: Richard L. Smith Duke University Department

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes Chapter 4 - Fundamentals of spatial processes Lecture notes Geir Storvik January 21, 2013 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites Mostly positive correlation Negative

More information

MCMC: Markov Chain Monte Carlo

MCMC: Markov Chain Monte Carlo I529: Machine Learning in Bioinformatics (Spring 2013) MCMC: Markov Chain Monte Carlo Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013 Contents Review of Markov

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture February Arnaud Doucet

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture February Arnaud Doucet Stat 535 C - Statistical Computing & Monte Carlo Methods Lecture 13-28 February 2006 Arnaud Doucet Email: arnaud@cs.ubc.ca 1 1.1 Outline Limitations of Gibbs sampling. Metropolis-Hastings algorithm. Proof

More information

Machine learning: Hypothesis testing. Anders Hildeman

Machine learning: Hypothesis testing. Anders Hildeman Location of trees 0 Observed trees 50 100 150 200 250 300 350 400 450 500 0 100 200 300 400 500 600 700 800 900 1000 Figur: Observed points pattern of the tree specie Beilschmiedia pendula. Location of

More information

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation A Framework for Daily Spatio-Temporal Stochastic Weather Simulation, Rick Katz, Balaji Rajagopalan Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric

More information

Substitution Random Fields with Gaussian and Gamma Distributions: Theory and Application to a Pollution Data Set

Substitution Random Fields with Gaussian and Gamma Distributions: Theory and Application to a Pollution Data Set Substitution Random Fields with Gaussian and Gamma Distributions: Theory and Application to a Pollution Data Set Xavier Emery Abstract This paper presents random field models with Gaussian or gamma univariate

More information

ECE531 Screencast 5.5: Bayesian Estimation for the Linear Gaussian Model

ECE531 Screencast 5.5: Bayesian Estimation for the Linear Gaussian Model ECE53 Screencast 5.5: Bayesian Estimation for the Linear Gaussian Model D. Richard Brown III Worcester Polytechnic Institute Worcester Polytechnic Institute D. Richard Brown III / 8 Bayesian Estimation

More information

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, N.C.,

More information

A Study on Minimal-point Composite Designs

A Study on Minimal-point Composite Designs A Study on Minimal-point Composite Designs by Yin-Jie Huang Advisor Ray-Bing Chen Institute of Statistics, National University of Kaohsiung Kaohsiung, Taiwan 8 R.O.C. July 007 Contents Introduction Construction

More information

Machine Learning for Data Science (CS4786) Lecture 12

Machine Learning for Data Science (CS4786) Lecture 12 Machine Learning for Data Science (CS4786) Lecture 12 Gaussian Mixture Models Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016fa/ Back to K-means Single link is sensitive to outliners We

More information

Bayesian model selection in graphs by using BDgraph package

Bayesian model selection in graphs by using BDgraph package Bayesian model selection in graphs by using BDgraph package A. Mohammadi and E. Wit March 26, 2013 MOTIVATION Flow cytometry data with 11 proteins from Sachs et al. (2005) RESULT FOR CELL SIGNALING DATA

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos Contents Markov Chain Monte Carlo Methods Sampling Rejection Importance Hastings-Metropolis Gibbs Markov Chains

More information

Downscaling Seismic Data to the Meter Scale: Sampling and Marginalization. Subhash Kalla LSU Christopher D. White LSU James S.

Downscaling Seismic Data to the Meter Scale: Sampling and Marginalization. Subhash Kalla LSU Christopher D. White LSU James S. Downscaling Seismic Data to the Meter Scale: Sampling and Marginalization Subhash Kalla LSU Christopher D. White LSU James S. Gunning CSIRO Contents Context of this research Background Data integration

More information

The Proportional Effect of Spatial Variables

The Proportional Effect of Spatial Variables The Proportional Effect of Spatial Variables J. G. Manchuk, O. Leuangthong and C. V. Deutsch Centre for Computational Geostatistics, Department of Civil and Environmental Engineering University of Alberta

More information

Hidden Markov Models for precipitation

Hidden Markov Models for precipitation Hidden Markov Models for precipitation Pierre Ailliot Université de Brest Joint work with Peter Thomson Statistics Research Associates (NZ) Page 1 Context Part of the project Climate-related risks for

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning for for Advanced Topics in California Institute of Technology April 20th, 2017 1 / 50 Table of Contents for 1 2 3 4 2 / 50 History of methods for Enrico Fermi used to calculate incredibly accurate predictions

More information

Wrapped Gaussian processes: a short review and some new results

Wrapped Gaussian processes: a short review and some new results Wrapped Gaussian processes: a short review and some new results Giovanna Jona Lasinio 1, Gianluca Mastrantonio 2 and Alan Gelfand 3 1-Università Sapienza di Roma 2- Università RomaTRE 3- Duke University

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods Prof. Daniel Cremers 11. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Advances and Applications in Perfect Sampling

Advances and Applications in Perfect Sampling and Applications in Perfect Sampling Ph.D. Dissertation Defense Ulrike Schneider advisor: Jem Corcoran May 8, 2003 Department of Applied Mathematics University of Colorado Outline Introduction (1) MCMC

More information

Markov Switching Regular Vine Copulas

Markov Switching Regular Vine Copulas Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS057) p.5304 Markov Switching Regular Vine Copulas Stöber, Jakob and Czado, Claudia Lehrstuhl für Mathematische Statistik,

More information

Discrete solid-on-solid models

Discrete solid-on-solid models Discrete solid-on-solid models University of Alberta 2018 COSy, University of Manitoba - June 7 Discrete processes, stochastic PDEs, deterministic PDEs Table: Deterministic PDEs Heat-diffusion equation

More information

Concepts and Applications of Kriging. Eric Krause Konstantin Krivoruchko

Concepts and Applications of Kriging. Eric Krause Konstantin Krivoruchko Concepts and Applications of Kriging Eric Krause Konstantin Krivoruchko Outline Introduction to interpolation Exploratory spatial data analysis (ESDA) Using the Geostatistical Wizard Validating interpolation

More information

MCMC and Gibbs Sampling. Sargur Srihari

MCMC and Gibbs Sampling. Sargur Srihari MCMC and Gibbs Sampling Sargur srihari@cedar.buffalo.edu 1 Topics 1. Markov Chain Monte Carlo 2. Markov Chains 3. Gibbs Sampling 4. Basic Metropolis Algorithm 5. Metropolis-Hastings Algorithm 6. Slice

More information

Building Blocks for Direct Sequential Simulation on Unstructured Grids

Building Blocks for Direct Sequential Simulation on Unstructured Grids Building Blocks for Direct Sequential Simulation on Unstructured Grids Abstract M. J. Pyrcz (mpyrcz@ualberta.ca) and C. V. Deutsch (cdeutsch@ualberta.ca) University of Alberta, Edmonton, Alberta, CANADA

More information

State-Space Methods for Inferring Spike Trains from Calcium Imaging

State-Space Methods for Inferring Spike Trains from Calcium Imaging State-Space Methods for Inferring Spike Trains from Calcium Imaging Joshua Vogelstein Johns Hopkins April 23, 2009 Joshua Vogelstein (Johns Hopkins) State-Space Calcium Imaging April 23, 2009 1 / 78 Outline

More information

PRODUCING PROBABILITY MAPS TO ASSESS RISK OF EXCEEDING CRITICAL THRESHOLD VALUE OF SOIL EC USING GEOSTATISTICAL APPROACH

PRODUCING PROBABILITY MAPS TO ASSESS RISK OF EXCEEDING CRITICAL THRESHOLD VALUE OF SOIL EC USING GEOSTATISTICAL APPROACH PRODUCING PROBABILITY MAPS TO ASSESS RISK OF EXCEEDING CRITICAL THRESHOLD VALUE OF SOIL EC USING GEOSTATISTICAL APPROACH SURESH TRIPATHI Geostatistical Society of India Assumptions and Geostatistical Variogram

More information

Climate Change: the Uncertainty of Certainty

Climate Change: the Uncertainty of Certainty Climate Change: the Uncertainty of Certainty Reinhard Furrer, UZH JSS, Geneva Oct. 30, 2009 Collaboration with: Stephan Sain - NCAR Reto Knutti - ETHZ Claudia Tebaldi - Climate Central Ryan Ford, Doug

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

Lecture 15. Theory of random processes Part III: Poisson random processes. Harrison H. Barrett University of Arizona

Lecture 15. Theory of random processes Part III: Poisson random processes. Harrison H. Barrett University of Arizona Lecture 15 Theory of random processes Part III: Poisson random processes Harrison H. Barrett University of Arizona 1 OUTLINE Poisson and independence Poisson and rarity; binomial selection Poisson point

More information

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data Hierarchical models for spatial data Based on the book by Banerjee, Carlin and Gelfand Hierarchical Modeling and Analysis for Spatial Data, 2004. We focus on Chapters 1, 2 and 5. Geo-referenced data arise

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4. (*. Let independent variables X,..., X n have U(0, distribution. Show that for every x (0,, we have P ( X ( < x and P ( X (n > x as n. Ex. 4.2 (**. By using induction or otherwise,

More information

Advanced topics from statistics

Advanced topics from statistics Advanced topics from statistics Anders Ringgaard Kristensen Advanced Herd Management Slide 1 Outline Covariance and correlation Random vectors and multivariate distributions The multinomial distribution

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Concepts and Applications of Kriging

Concepts and Applications of Kriging Esri International User Conference San Diego, California Technical Workshops July 24, 2012 Concepts and Applications of Kriging Konstantin Krivoruchko Eric Krause Outline Intro to interpolation Exploratory

More information

Removing systematic noise from lightcurves

Removing systematic noise from lightcurves Removing systematic noise from lightcurves A discussion of past approaches and potential future directions Giri Gopalan 1 Dr. Peter Plavchan 2 1 Department of Statistics Harvard University 2 Caltech NASA

More information

Statistics and data analyses

Statistics and data analyses Statistics and data analyses Designing experiments Measuring time Instrumental quality Precision Standard deviation depends on Number of measurements Detection quality Systematics and methology σ tot =

More information

Adaptive Monte Carlo methods

Adaptive Monte Carlo methods Adaptive Monte Carlo methods Jean-Michel Marin Projet Select, INRIA Futurs, Université Paris-Sud joint with Randal Douc (École Polytechnique), Arnaud Guillin (Université de Marseille) and Christian Robert

More information

Module Master Recherche Apprentissage et Fouille

Module Master Recherche Apprentissage et Fouille Module Master Recherche Apprentissage et Fouille Michele Sebag Balazs Kegl Antoine Cornuéjols http://tao.lri.fr 19 novembre 2008 Unsupervised Learning Clustering Data Streaming Application: Clustering

More information

Geostatistics in Hydrology: Kriging interpolation

Geostatistics in Hydrology: Kriging interpolation Chapter Geostatistics in Hydrology: Kriging interpolation Hydrologic properties, such as rainfall, aquifer characteristics (porosity, hydraulic conductivity, transmissivity, storage coefficient, etc.),

More information

Alternative implementations of Monte Carlo EM algorithms for likelihood inferences

Alternative implementations of Monte Carlo EM algorithms for likelihood inferences Genet. Sel. Evol. 33 001) 443 45 443 INRA, EDP Sciences, 001 Alternative implementations of Monte Carlo EM algorithms for likelihood inferences Louis Alberto GARCÍA-CORTÉS a, Daniel SORENSEN b, Note a

More information

Two Statistical Problems in X-ray Astronomy

Two Statistical Problems in X-ray Astronomy Two Statistical Problems in X-ray Astronomy Alexander W Blocker October 21, 2008 Outline 1 Introduction 2 Replacing stacking Problem Current method Model Further development 3 Time symmetry Problem Model

More information

Covariance function estimation in Gaussian process regression

Covariance function estimation in Gaussian process regression Covariance function estimation in Gaussian process regression François Bachoc Department of Statistics and Operations Research, University of Vienna WU Research Seminar - May 2015 François Bachoc Gaussian

More information

Concepts and Applications of Kriging. Eric Krause

Concepts and Applications of Kriging. Eric Krause Concepts and Applications of Kriging Eric Krause Sessions of note Tuesday ArcGIS Geostatistical Analyst - An Introduction 8:30-9:45 Room 14 A Concepts and Applications of Kriging 10:15-11:30 Room 15 A

More information

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields 1 Introduction Jo Eidsvik Department of Mathematical Sciences, NTNU, Norway. (joeid@math.ntnu.no) February

More information

Optimizing Thresholds in Truncated Pluri-Gaussian Simulation

Optimizing Thresholds in Truncated Pluri-Gaussian Simulation Optimizing Thresholds in Truncated Pluri-Gaussian Simulation Samaneh Sadeghi and Jeff B. Boisvert Truncated pluri-gaussian simulation (TPGS) is an extension of truncated Gaussian simulation. This method

More information

Spatio-temporal modeling of avalanche frequencies in the French Alps

Spatio-temporal modeling of avalanche frequencies in the French Alps Available online at www.sciencedirect.com Procedia Environmental Sciences 77 (011) 311 316 1 11 Spatial statistics 011 Spatio-temporal modeling of avalanche frequencies in the French Alps Aurore Lavigne

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit VII Sparse Matrix Computations Part 1: Direct Methods Dianne P. O Leary c 2008

More information

Adaptive Sampling of Clouds with a Fleet of UAVs: Improving Gaussian Process Regression by Including Prior Knowledge

Adaptive Sampling of Clouds with a Fleet of UAVs: Improving Gaussian Process Regression by Including Prior Knowledge Master s Thesis Presentation Adaptive Sampling of Clouds with a Fleet of UAVs: Improving Gaussian Process Regression by Including Prior Knowledge Diego Selle (RIS @ LAAS-CNRS, RT-TUM) Master s Thesis Presentation

More information

Multi-resolution models for large data sets

Multi-resolution models for large data sets Multi-resolution models for large data sets Douglas Nychka, National Center for Atmospheric Research National Science Foundation NORDSTAT, Umeå, June, 2012 Credits Steve Sain, NCAR Tia LeRud, UC Davis

More information

ES-2 Lecture: More Least-squares Fitting. Spring 2017

ES-2 Lecture: More Least-squares Fitting. Spring 2017 ES-2 Lecture: More Least-squares Fitting Spring 2017 Outline Quick review of least-squares line fitting (also called `linear regression ) How can we find the best-fit line? (Brute-force method is not efficient)

More information

Markov chain Monte Carlo methods in atmospheric remote sensing

Markov chain Monte Carlo methods in atmospheric remote sensing 1 / 45 Markov chain Monte Carlo methods in atmospheric remote sensing Johanna Tamminen johanna.tamminen@fmi.fi ESA Summer School on Earth System Monitoring and Modeling July 3 Aug 11, 212, Frascati July,

More information

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016 Log Gaussian Cox Processes Chi Group Meeting February 23, 2016 Outline Typical motivating application Introduction to LGCP model Brief overview of inference Applications in my work just getting started

More information

Bayesian networks: approximate inference

Bayesian networks: approximate inference Bayesian networks: approximate inference Machine Intelligence Thomas D. Nielsen September 2008 Approximative inference September 2008 1 / 25 Motivation Because of the (worst-case) intractability of exact

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

Multimodal Nested Sampling

Multimodal Nested Sampling Multimodal Nested Sampling Farhan Feroz Astrophysics Group, Cavendish Lab, Cambridge Inverse Problems & Cosmology Most obvious example: standard CMB data analysis pipeline But many others: object detection,

More information

On the spatial distribution of critical points of Random Plane Waves

On the spatial distribution of critical points of Random Plane Waves On the spatial distribution of critical points of Random Plane Waves Valentina Cammarota Department of Mathematics, King s College London Workshop on Probabilistic Methods in Spectral Geometry and PDE

More information

An introduction to adaptive MCMC

An introduction to adaptive MCMC An introduction to adaptive MCMC Gareth Roberts MIRAW Day on Monte Carlo methods March 2011 Mainly joint work with Jeff Rosenthal. http://www2.warwick.ac.uk/fac/sci/statistics/crism/ Conferences and workshops

More information

Lecture 8: The Metropolis-Hastings Algorithm

Lecture 8: The Metropolis-Hastings Algorithm 30.10.2008 What we have seen last time: Gibbs sampler Key idea: Generate a Markov chain by updating the component of (X 1,..., X p ) in turn by drawing from the full conditionals: X (t) j Two drawbacks:

More information

spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models

spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models Andrew O. Finley 1, Sudipto Banerjee 2, and Bradley P. Carlin 2 1 Michigan State University, Departments

More information

F denotes cumulative density. denotes probability density function; (.)

F denotes cumulative density. denotes probability density function; (.) BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information