The frequency-dependent Sternheimer equation in TDDFT

Size: px
Start display at page:

Download "The frequency-dependent Sternheimer equation in TDDFT"

Transcription

1 The frequency-dependent Sternheimer equation in TDDFT A new look into an old equation Miguel A. L. Marques 1 Centre for Computational Physics, University of Coimbra, Portugal 2 LPMCN, Université Claude Bernard Lyon 1 and CNRS, France 3 European Theoretical Spectroscopy Facility September 18, 2007 Nanoquanta M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

2 Outline 1 Introduction - the Sternheimer equation 2 Hyperpolarizabilities 3 van der Waals coefficients 4 Outlook resonant Raman scattering M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

3 Outline Introduction - the Sternheimer equation 1 Introduction - the Sternheimer equation 2 Hyperpolarizabilities 3 van der Waals coefficients 4 Outlook resonant Raman scattering M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

4 Introduction - the Sternheimer equation Spectroscopy Spectroscopy: From the latin spectrum an appearance, an apparition, from spectare, to behold + the greek skopein to view. c unoccupied states v occupied states Examples: UV/Vis, IR, X-ray, Dichroism, NMR, Raman, etc. M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

5 Introduction - the Sternheimer equation Linear Response Dyson equation χ = χ 0 + χ 0 [v + f xc ] χ Casida s equation ˆRF q = Ω 2 qf q, where R q,q = (ε aσ ε iσ ) 2 δ qq + 2 ε aσ ε iσ K q,q (ω n ) ε a σ ε i σ. Superoperators and Lanczos methods Time propagation Sternheimer equation P 1 (ω L) 1 Q 1 = 1 ω a 1 + b 2 1 ω a 2 + c2 M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

6 Introduction - the Sternheimer equation Linear response from the KS equations Apply a perturbation of the form δv ext σ (r, t) = κ 0 zδ(t) to the ground state of the system. At t = 0 + the Kohn-Sham orbitals are ϕ j (r, t = 0 + ) = e iκ 0z ϕ j (r). Propagate these KS wave-functions for a (in)finite time. The dynamical polarizability can be obtained from α(ω) = 1 d 3 r z δn(r, ω). κ 0 This prescription has been used with considerable success to calculate the photo-absorption spectrum of several finite systems. As it is based on the propagation of the Kohn-Sham equations, this approach can be easily extended to study non-linear response. M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

7 Introduction - the Sternheimer equation The Sternheimer Equation Hartree-Fock: Coupled Hartree-Fock method DFT: Density functional perturbation theory M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

8 Introduction - the Sternheimer equation The Sternheimer Equation - Frequency with { } H (0) ɛ m ± ω + iη ψ (1) m (r, ±ω) = P c H (1) (±ω)ψ (0) m (r) H (1) (ω) = V (r) + m d 3 r n(1) (r, ω) r r + d 3 r f xc (r, r ) n (1) (r, ω) and occ. { [ ] n (1) (r, ω) = ψ (0) [ ] (1) m (r) ψ m (r, ω) + ψ (1) } (0) m (r, ω) ψ m (r) M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

9 Introduction - the Sternheimer equation The Sternheimer Equation - Frequency with { } H (0) ɛ m ± ω + iη ψ (1) m (r, ±ω) = P c H (1) (±ω)ψ (0) m (r) H (1) (ω) = V (r) + m d 3 r n(1) (r, ω) r r + d 3 r f xc (r, r ) n (1) (r, ω) and occ. { [ ] n (1) (r, ω) = ψ (0) [ ] (1) m (r) ψ m (r, ω) + ψ (1) } (0) m (r, ω) ψ m (r) Main advantages: (Non-)Linear system of equations solvable by standard methods Only the occupied states enter the equation Scaling is N 2, where N is the number of atoms Disadvantages: It is hard to converge close to a resonance M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

10 Introduction - the Sternheimer equation The Sternheimer Equation - Perturbations Different perturbations are possible: Electric V (r) = r i (e.g., polarizabilities, absorption, florescence...) Magnetic V (r) = L i (e.g., susceptibilities, NMR...) Atomic Displacements V (r) = v(r) R i (e.g., phonons...) σ (arb. units) Energy (ev) x y z M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

11 Introduction - the Sternheimer equation Code development - octopus Comput. Phys. Commun. 151, (2003) Phys. Stat. Sol. B 243, (2006) M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

12 Outline Hyperpolarizabilities 1 Introduction - the Sternheimer equation 2 Hyperpolarizabilities 3 van der Waals coefficients 4 Outlook resonant Raman scattering M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

13 Hyperpolarizabilities Optical Rectification Optical rectification of H 2 O: β(0, ω, ω) β (0;ω, ω) [a.u.] ω [ev] JCP 126, (2007) M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

14 Hyperpolarizabilities Second Harmonic Generation Second harmonic generation of paranitroaniline: β( 2ω, ω, ω) β ( 2ω;ω,ω) [a.u.] exp. solv. This work β ( 2ω;ω,ω) [a.u.] exp. solv. exp. gas This work LDA/ALDA LB94/ALDA B3LYP CCSD ω [ev] ω [ev] JCP 126, (2007) M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

15 Hyperpolarizabilities Playtime: PNA in external electric field SHG of paranitroaniline in an external electric field β z ( 2ω,ω,ω) (a.u.) x10 3 a.u. zero field 0.5x10 3 a.u. β z ( 2ω,ω,ω) (a.u.) ω = 0 2ω = 0.2 ev ω [ev] Ex10 3 [a.u.] M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

16 Outline van der Waals coefficients 1 Introduction - the Sternheimer equation 2 Hyperpolarizabilities 3 van der Waals coefficients 4 Outlook resonant Raman scattering M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

17 van der Waals coefficients Van der Waals coefficients Non-retarded regime Casimir-Polder formula ( E = C 6 /R 6 ): C AB 6 = 3 π Retarded regime ( E = K /R 7 ): 0 du α (A) (iu) α (B) (iu), K AB = 23c 8π 2 α(a) (0) α (B) (0) The polarizability is calculated from α ij (iu) = d 3 r n (1) j (r, iu)r i M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

18 van der Waals coefficients Alternative Time Propagation Apply explicitly the perturbation: δv ext (r, t) = x j κδ(t t 0 ) The dynamic polarizability reads, at imaginary frequencies: α ij (iu) = 1 dt d 3 r x i δn(r, t)e ut κ M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

19 van der Waals coefficients Alternative Time Propagation Apply explicitly the perturbation: δv ext (r, t) = x j κδ(t t 0 ) The dynamic polarizability reads, at imaginary frequencies: α ij (iu) = 1 dt d 3 r x i δn(r, t)e ut κ It turns out: Both Sternheimer and time-propagation have the same scaling Only a few frequencies are needed in the Sternheimer approach, but... 2 or 3 fs are sufficient for the time-propagation In the end, the pre-factor is very similar M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

20 van der Waals coefficients C 6 - Polycyclic Aromatic Hydrocarbons C 6 AB (a.u./10 3 ) N A x N B C 6 /N α 2 /N 2 C 6 /N α 2 /N 2 J. Chem. Phys. 127, (2007) M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

21 van der Waals coefficients C 6 - The characteristic frequency London approximation which leads to α(iu) = α(0) 1 + (u/ω 1 ) 2 C 6 = 3ω 1 4 α2 (0) ω 1 = 0.34 IP (Ha) 0.24 ω 1 (a.u.) ω 1 (Ha) Number of Si atoms M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

22 van der Waals coefficients C 3 Surface-cluster interaction For a surface-cluster interaction, E = C 3 /R 3, where C 3 = 1 4π 0 du α(iu) ɛ(iu) 1 ɛ(iu) + 1 C 3 /N Si (a.u.) RPA TDLDA α/q 2 α + β ω 2 /q Number of Si atoms M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

23 Outline Outlook resonant Raman scattering 1 Introduction - the Sternheimer equation 2 Hyperpolarizabilities 3 van der Waals coefficients 4 Outlook resonant Raman scattering M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

24 Outlook resonant Raman scattering Outlook Raman scattering I In non-resonant Stokes Raman spectra, the peak intensities are given by I ν ei A ν e j 1 ω ν (n ν + 1) where A ν lm = kγ 3 E E l E m u kγ w ν kγ Mγ (1) Often, the same expression is used to interpret resonant scattering! M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

25 Outlook resonant Raman scattering Outlook Raman scattering II Perturb the Hamiltonian: How to do resonant Raman correctly? H = H 0 + V E cos(ω E t) + V I cos(ω I t) Then the third derivative becomes: ( ) β(ω I + ω E ; ω I, ω E ) ψ 0 ˆp δψ(ω I + ω E ) + δψ( ω E ) ˆp δψ(ω I ) To recover the non-resonant expression, just put ω I = ω E = 0. M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

26 Outlook resonant Raman scattering Outlook Raman scattering III The perturbed wave-functions are solutions of the equations: Frequency: ɛ k ± ω E Frequency: ɛ k ± ω I (H 0 ɛ k ± ω E ) δψ(±ω E ) = V E 2 ψ0 (2) (H 0 ɛ k ± ω I ) δψ(±ω I ) = V I 2 ψ0, (3) Frequency: ɛ k + σ E ω E + σ I ω I with (σ i = ±, σ E = ±) (H 0 ɛ k + σ I ω I + σ E ω E ) δψ(σ I ω I + σ E ω E ) = V I 2 δψ(σ Eω E ) V E 2 δψ(σ Iω I ) M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

27 Outlook resonant Raman scattering Collaborators Xavier Andrade San Sebastián, Spain Alberto Castro Berlin, Germany Angel Rubio San Sebastián, Spain Silvana Botti Paris, France M. A. L. Marques (Coimbra) The ω-sternheimer equation Nanoquanta / 25

The frequency-dependent Sternheimer equation in TDDFT

The frequency-dependent Sternheimer equation in TDDFT The frequency-dependent Sternheimer equation in TDDFT A new look into an old equation Miguel A. L. Marques 1 Centre for Computational Physics, University of Coimbra, Portugal 2 European Theoretical Spectroscopy

More information

Linear-response excitations. Silvana Botti

Linear-response excitations. Silvana Botti from finite to extended systems 1 LSI, CNRS-CEA-École Polytechnique, Palaiseau, France 2 LPMCN, CNRS-Université Lyon 1, France 3 European Theoretical Spectroscopy Facility September 3, 2008 Benasque, TDDFT

More information

Non-linear optics, k p perturbation theory, and the Sternheimer equation

Non-linear optics, k p perturbation theory, and the Sternheimer equation Non-linear optics, k p perturbation theory, and the Sternheimer equation David A. Strubbe Department of Materials Science and Engineering Massachusetts Institute of Technology, Cambridge, MA Formerly Department

More information

Time Dependent Density Functional Theory. Francesco Sottile

Time Dependent Density Functional Theory. Francesco Sottile An Introduction Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF) Belfast, 29 Jun 2007 Outline 1 Introduction: why TD-DFT? 2 (Just)

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute for Microstructure Physics OUTLINE LECTURE I Phenomena to be described by TDDFT Some generalities on functional theories LECTURE

More information

Untangling Excitation Energy Transfer for the LHC-II complex from Full First-Principles Calculations.

Untangling Excitation Energy Transfer for the LHC-II complex from Full First-Principles Calculations. Untangling Excitation Energy Transfer for the from Full First-Principles Calculations. Joaquim Jornet-Somoza, Joseba Alberdi-Rodríguez, Bruce Milne, Xavier Andrade, Miguel A. L. Marques, Fernando Nogueira,

More information

Time-Dependent Density-Functional Theory

Time-Dependent Density-Functional Theory Summer School on First Principles Calculations for Condensed Matter and Nanoscience August 21 September 3, 2005 Santa Barbara, California Time-Dependent Density-Functional Theory X. Gonze, Université Catholique

More information

Key concepts in Density Functional Theory (II) Silvana Botti

Key concepts in Density Functional Theory (II) Silvana Botti Kohn-Sham scheme, band structure and optical spectra European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address:

More information

Linear response theory and TDDFT

Linear response theory and TDDFT Linear response theory and TDDFT Claudio Attaccalite http://abineel.grenoble.cnrs.fr/ CECAM Yambo School 2013 (Lausanne) Motivations: +- hν Absorption Spectroscopy Many Body Effects!!! Motivations(II):Absorption

More information

TDDFT in Chemistry and Biochemistry III

TDDFT in Chemistry and Biochemistry III TDDFT in Chemistry and Biochemistry III Dmitrij Rappoport Department of Chemistry and Chemical Biology Harvard University TDDFT Winter School Benasque, January 2010 Dmitrij Rappoport (Harvard U.) TDDFT

More information

Key concepts in Density Functional Theory (I) Silvana Botti

Key concepts in Density Functional Theory (I) Silvana Botti From the many body problem to the Kohn-Sham scheme European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre

More information

Time Dependent Density Functional Theory. Francesco Sottile

Time Dependent Density Functional Theory. Francesco Sottile Applications, limitations and... new frontiers Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF) Vienna, 19 January 2007 /55 Outline

More information

Time-dependent density functional theory (TDDFT)

Time-dependent density functional theory (TDDFT) 04/05/16 Hands-on workshop and Humboldt-Kolleg: Density-Functional Theory and Beyond - Basic Principles and Modern Insights Isfahan University of Technology, Isfahan, Iran, May 2 to 13, 2016 Time-dependent

More information

Time-dependent density functional theory (TDDFT)

Time-dependent density functional theory (TDDFT) Advanced Workshop on High-Performance & High-Throughput Materials Simulations using Quantum ESPRESSO ICTP, Trieste, Italy, January 16 to 27, 2017 Time-dependent density functional theory (TDDFT) Ralph

More information

TDDFT II. Alberto Castro

TDDFT II. Alberto Castro Problem set Alberto Castro Institute for Biocomputation and Physics of Complex Systems (BIFI) and Zaragoza Scientific Center for Advanced Modeling (ZCAM), University of Zaragoza, Spain ELK Summit, Lausanne

More information

Many-Body Perturbation Theory. Lucia Reining, Fabien Bruneval

Many-Body Perturbation Theory. Lucia Reining, Fabien Bruneval , Fabien Bruneval Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF) Belfast, 27.6.2007 Outline 1 Reminder 2 Perturbation Theory

More information

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby Advanced Electronic Structure Theory Density functional theory Dr Fred Manby fred.manby@bris.ac.uk http://www.chm.bris.ac.uk/pt/manby/ 6 Strengths of DFT DFT is one of many theories used by (computational)

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute for Microstructure Physics OUTLINE LECTURE I Phenomena to be described by TDDFT LECTURE II Review of ground-state DFT LECTURE

More information

Key concepts in Density Functional Theory (II)

Key concepts in Density Functional Theory (II) Kohn-Sham scheme and band structures European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Present Address: LPMCN Université

More information

Neutral Electronic Excitations:

Neutral Electronic Excitations: Neutral Electronic Excitations: a Many-body approach to the optical absorption spectra Claudio Attaccalite http://abineel.grenoble.cnrs.fr/ Second Les Houches school in computational physics: ab-initio

More information

Density Functional Theory for Superconductors

Density Functional Theory for Superconductors Density Functional Theory for Superconductors M. A. L. Marques marques@tddft.org IMPMC Université Pierre et Marie Curie, Paris VI GDR-DFT05, 18-05-2005, Cap d Agde M. A. L. Marques (IMPMC) DFT for superconductors

More information

Calculations of X-ray Spectra in Real-space and Real-time

Calculations of X-ray Spectra in Real-space and Real-time X-Ray Science in the 21st Century Calculations of X-ray Spectra in Real-space and Real-time J. J. Rehr, F. Vila, Y. Takimoto Department of Physics University of Washington Seattle, WA USA Time (s) KITP,

More information

Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients

Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients 1/10 Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients Julien Toulouse 1,2, Elisa Rebolini 1, Tim Gould 3, John F. Dobson 3, Prasenjit Seal

More information

Theoretical spectroscopy

Theoretical spectroscopy Theoretical spectroscopy from basic developments to real-world applications M. A. L. Marques http://www.tddft.org/bmg/ 1 LPMCN, CNRS-Université Lyon 1, France 2 European Theoretical Spectroscopy Facility

More information

Electronic excitations in materials for solar cells

Electronic excitations in materials for solar cells Electronic excitations in materials for solar cells beyond standard density functional theory Silvana Botti 1 LSI, École Polytechnique-CNRS-CEA, Palaiseau, France 2 LPMCN, CNRS-Université Lyon 1, France

More information

Ab initio phonon calculations in mixed systems

Ab initio phonon calculations in mixed systems Ab initio phonon calculations in mixed systems Andrei Postnikov apostnik@uos.de Outline: Experiment vs. ab initio theory Ways of theory: linear response and frozen phonon approaches Applications: Be x

More information

Time-dependent density functional theory : direct computation of excitation energies

Time-dependent density functional theory : direct computation of excitation energies CECAM Tutorial Electronic excitations and spectroscopies : Theory and Codes Lyon 007 Time-dependent density functional theory : direct computation of excitation energies X. Gonze Université Catholique

More information

Quantum Electrodynamical TDDFT: From basic theorems to approximate functionals

Quantum Electrodynamical TDDFT: From basic theorems to approximate functionals Quantum Electrodynamical TDDFT: From basic theorems to approximate functionals Ilya Tokatly NanoBio Spectroscopy Group - UPV/EHU San Sebastiàn - Spain IKERBASQUE, Basque Foundation for Science - Bilbao

More information

Microscopic-Macroscopic connection. Silvana Botti

Microscopic-Macroscopic connection. Silvana Botti relating experiment and theory European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre for Computational

More information

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride Dimer Philip Straughn Abstract Charge transfer between Na and Cl ions is an important problem in physical chemistry. However,

More information

Photoabsorption Spectra of Si n and Si n O (n 5)

Photoabsorption Spectra of Si n and Si n O (n 5) Commun. Theor. Phys. (Beijing, China) 51 (2009) pp. 751 755 c Chinese Physical Society and IOP Publishing Ltd Vol. 51, No. 4, April 15, 2009 Photoabsorption Spectra of Si n and Si n O (n 5) AN Fang-Fang,

More information

Correlated Light-Matter Interactions in Cavity Quantum Electrodynamics

Correlated Light-Matter Interactions in Cavity Quantum Electrodynamics Correlated in Cavity Quantum Electrodynamics [1] Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin [2] NanoBio Spectroscopy group and ETSF, Universidad del País Vasco, San Sebastián, Spain DPG Frühjahrstagung

More information

Density functional theory in the solid state

Density functional theory in the solid state Density functional theory in the solid state Ari P Seitsonen IMPMC, CNRS & Universités 6 et 7 Paris, IPGP Department of Applied Physics, Helsinki University of Technology Physikalisch-Chemisches Institut

More information

Rabi oscillations within TDDFT: the example of the 2 site Hubbard model

Rabi oscillations within TDDFT: the example of the 2 site Hubbard model Rabi oscillations within TDDFT: the example of the 2 site Hubbard model Johanna I. Fuks, H. Appel, Mehdi,I.V. Tokatly, A. Rubio Donostia- San Sebastian University of Basque Country (UPV) Outline Rabi oscillations

More information

NONLINEAR OPTICS. Ch. 1 INTRODUCTION TO NONLINEAR OPTICS

NONLINEAR OPTICS. Ch. 1 INTRODUCTION TO NONLINEAR OPTICS NONLINEAR OPTICS Ch. 1 INTRODUCTION TO NONLINEAR OPTICS Nonlinear regime - Order of magnitude Origin of the nonlinearities - Induced Dipole and Polarization - Description of the classical anharmonic oscillator

More information

Linear response time-dependent density functional theory

Linear response time-dependent density functional theory Linear response time-dependent density functional theory Emmanuel Fromager Laboratoire de Chimie Quantique, Université de Strasbourg, France fromagere@unistra.fr Emmanuel Fromager (UdS) Cours RFCT, Strasbourg,

More information

f xc Advanced TDDFT PDF Created with deskpdf PDF Writer - Trial :: II. Frequency-Dependent Kernels: Double Excitations

f xc Advanced TDDFT PDF Created with deskpdf PDF Writer - Trial ::   II. Frequency-Dependent Kernels: Double Excitations Advanced TDDFT II. Frequency-Dependent Kernels: Double Excitations f xc Neepa T. Maitra Hunter College and the Graduate Center of the City University of New York First, quick recall of how we get excitations

More information

Plan of the lectures

Plan of the lectures Plan of the lectures 1. Introductory remarks on metallic nanostructures Relevant quantities and typical physical parameters Applications. Linear electron response: Mie theory and generalizations 3. Nonlinear

More information

DFT calculations of NMR indirect spin spin coupling constants

DFT calculations of NMR indirect spin spin coupling constants DFT calculations of NMR indirect spin spin coupling constants Dalton program system Program capabilities Density functional theory Kohn Sham theory LDA, GGA and hybrid theories Indirect NMR spin spin coupling

More information

Exact exchange (spin current) density-functional methods for magnetic properties, spin-orbit effects, and excited states

Exact exchange (spin current) density-functional methods for magnetic properties, spin-orbit effects, and excited states Exact exchange (spin current) density-functional methods for magnetic properties, spin-orbit effects, and excited states DFT with orbital-dependent functionals A. Görling Universität Erlangen-Nürnberg

More information

Advanced TDDFT II. Double Excitations in TDDFT

Advanced TDDFT II. Double Excitations in TDDFT Advanced TDDFT II. Double Excitations in TDDFT f xc Neepa T. Maitra Hunter College and the Graduate Center of the City University of New York First, quick recall of how we get excitations in TDDFT: Linear

More information

Many electrons: Density functional theory Part II. Bedřich Velický VI.

Many electrons: Density functional theory Part II. Bedřich Velický VI. Many electrons: Density functional theory Part II. Bedřich Velický velicky@karlov.mff.cuni.cz VI. NEVF 514 Surface Physics Winter Term 013-014 Troja 1 st November 013 This class is the second devoted to

More information

Photoelectronic properties of chalcopyrites for photovoltaic conversion:

Photoelectronic properties of chalcopyrites for photovoltaic conversion: Photoelectronic properties of chalcopyrites for photovoltaic conversion: self-consistent GW calculations Silvana Botti 1 LSI, CNRS-CEA-École Polytechnique, Palaiseau, France 2 LPMCN, CNRS-Université Lyon

More information

Introduction to spin and spin-dependent phenomenon

Introduction to spin and spin-dependent phenomenon Introduction to spin and spin-dependent phenomenon Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. May 16th, 2007

More information

Spectroscopy of nanostructures: from optics to transport

Spectroscopy of nanostructures: from optics to transport Spectroscopy of nanostructures: from optics to transport Angel Rubio NanoBio Spectroscopy Group, Dpto. Física de Materiales, Universidad del País Vasco, Centro Mixto CSIC UPV/EHU and DIPC Edificio Korta,

More information

IV. Calculations of X-ray Spectra in Real-space and Real-time. J. J. Rehr

IV. Calculations of X-ray Spectra in Real-space and Real-time. J. J. Rehr TIMES Lecture Series SLAC-Stanford U March 2, 2017 IV. Calculations of X-ray Spectra in Real-space and Real-time J. J. Rehr Calculations of X-ray Spectra in Real-space and Real-time Goal: Real-space, real

More information

Ab-initio modeling of opto-electronic properties of molecules in solvents and in proximity to a semiconductor nanoparticle

Ab-initio modeling of opto-electronic properties of molecules in solvents and in proximity to a semiconductor nanoparticle Ab-initio modeling of opto-electronic properties of molecules in solvents and in proximity to a semiconductor nanoparticle Alain Delgado (a,b), Stefano Corni (b), Carlo Andrea Rozzi (b) Stefano Pittalis

More information

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Notations

More information

The GW Approximation. Manish Jain 1. July 8, Department of Physics Indian Institute of Science Bangalore 1/36

The GW Approximation. Manish Jain 1. July 8, Department of Physics Indian Institute of Science Bangalore 1/36 1/36 The GW Approximation Manish Jain 1 Department of Physics Indian Institute of Science Bangalore July 8, 2014 Ground-state properties 2/36 Properties that are intrinsic to a system with all its electrons

More information

Time-Dependent Density Functional Perturbation Theory New algorithms with applications to molecular spectra

Time-Dependent Density Functional Perturbation Theory New algorithms with applications to molecular spectra Scuola Internazionale Superiore di Studi Avanzati - ma per seguir virtute e conoscenza - Time-Dependent Density Functional Perturbation Theory New algorithms with applications to molecular spectra Thesis

More information

2. TranSIESTA 1. SIESTA. DFT In a Nutshell. Introduction to SIESTA. Boundary Conditions: Open systems. Greens functions and charge density

2. TranSIESTA 1. SIESTA. DFT In a Nutshell. Introduction to SIESTA. Boundary Conditions: Open systems. Greens functions and charge density 1. SIESTA DFT In a Nutshell Introduction to SIESTA Atomic Orbitals Capabilities Resources 2. TranSIESTA Transport in the Nanoscale - motivation Boundary Conditions: Open systems Greens functions and charge

More information

Chiroptical Spectroscopy

Chiroptical Spectroscopy Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 3: (Crash course in) Theory of optical activity Masters Level Class (181 041) Mondays, 8.15-9.45 am, NC 02/99 Wednesdays, 10.15-11.45

More information

MD simulation: output

MD simulation: output Properties MD simulation: output Trajectory of atoms positions: e. g. diffusion, mass transport velocities: e. g. v-v autocorrelation spectrum Energies temperature displacement fluctuations Mean square

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

Role of van der Waals Interactions in Physics, Chemistry, and Biology

Role of van der Waals Interactions in Physics, Chemistry, and Biology Role of van der Waals Interactions in Physics, Chemistry, and Biology How can we describe vdw forces in materials accurately? Failure of DFT Approximations for (Long-Range) Van der Waals Interactions 1

More information

Range-separated density-functional theory with long-range random phase approximation

Range-separated density-functional theory with long-range random phase approximation Range-separated density-functional theory with long-range random phase approximation Julien Toulouse 1 Wuming Zhu 1, Andreas Savin 1, János Ángyán2 1 Laboratoire de Chimie Théorique, UPMC Univ Paris 6

More information

TDDFT Explorations in Phase-Space. Neepa T. Maitra Hunter College and the Graduate Center of the City University of New York

TDDFT Explorations in Phase-Space. Neepa T. Maitra Hunter College and the Graduate Center of the City University of New York TDDFT Explorations in Phase-Space Neepa T. Maitra Hunter College and the Graduate Center of the City University of New York TDDFT in Phase-Space Outline Why phase-space DFT? Some motivating examples and

More information

Exchange-Correlation Functional

Exchange-Correlation Functional Exchange-Correlation Functional Aiichiro Nakano Collaboratory for Advanced Computing & Simulations Depts. of Computer Science, Physics & Astronomy, Chemical Engineering & Materials Science, and Biological

More information

Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation

Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation Julien Toulouse 1 I. Gerber 2, G. Jansen 3, A. Savin 1, W. Zhu 1, J. Ángyán 4 1 Laboratoire de Chimie Théorique,

More information

Electronic Electr onic and and La t La t t ice ice Polar a i r zat za ion n Effe f c e t c s on the the Band Band Structur

Electronic Electr onic and and La t La t t ice ice Polar a i r zat za ion n Effe f c e t c s on the the Band Band Structur Electronic and Lattice Polarization Effects on the Band Structure of Delafossite Transparent Conductive Oxides Fabio Trani 1 IDEA Virtual Lab (In Silico Development for emerging applications) Scuola Normale

More information

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley

More information

Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.!

Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.! Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.! How can one give a rigorous mathematical meaning to chemical

More information

Atomic-orbital based real-time TDDFT for circular dichroism spectroscopy. Joshua Goings and Xiaosong Li Wednesday, March 16, 4:05pm

Atomic-orbital based real-time TDDFT for circular dichroism spectroscopy. Joshua Goings and Xiaosong Li Wednesday, March 16, 4:05pm Atomic-orbital based real-time TDDFT for circular dichroism spectroscopy Joshua Goings and Xiaosong Li Wednesday, March 16, 4:05pm Natural circular dichroism Differential absorption of circularly polarized

More information

Orbital dependent correlation potentials in ab initio density functional theory

Orbital dependent correlation potentials in ab initio density functional theory Orbital dependent correlation potentials in ab initio density functional theory noniterative - one step - calculations Ireneusz Grabowski Institute of Physics Nicolaus Copernicus University Toruń, Poland

More information

Theoretical Photochemistry WiSe 2017/18

Theoretical Photochemistry WiSe 2017/18 Theoretical Photochemistry WiSe 2017/18 Lecture 7 Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ Theoretical Photochemistry 1 Topics 1. Photophysical

More information

Introduction to the OCTOPUS code

Introduction to the OCTOPUS code Introduction to the OCTOPUS code Esa Räsänen Nanoscience Center, University of Jyväskylä, Finland www.tddft.org Brief history Origins in the fixed nucleus code of Bertsch and Yabana [1] and in the real

More information

NMR and IR spectra & vibrational analysis

NMR and IR spectra & vibrational analysis Lab 5: NMR and IR spectra & vibrational analysis A brief theoretical background 1 Some of the available chemical quantum methods for calculating NMR chemical shifts are based on the Hartree-Fock self-consistent

More information

Combining density-functional theory and many-body methods

Combining density-functional theory and many-body methods Combining density-functional theory and many-body methods Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Vrije Universiteit Amsterdam, Netherlands November 2017 Outline 2/23 1

More information

Time-dependent density functional theory

Time-dependent density functional theory Annual Review of Physical Chemistry 2004 1056-8700/97/0610-00 Time-dependent density functional theory M. A. L. Marques and E.K. U. Gross Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee

More information

Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC

Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC Sergey V. Churakov sergey.churakov@psi.ch Paul Scherrer Institute Switzerland Cement Phase Composition C-S-H H Solid Solution Model

More information

GW quasiparticle energies

GW quasiparticle energies Chapter 4 GW quasiparticle energies Density functional theory provides a good description of ground state properties by mapping the problem of interacting electrons onto a KS system of independent particles

More information

Electronic Structure: Density Functional Theory

Electronic Structure: Density Functional Theory Electronic Structure: Density Functional Theory S. Kurth, M. A. L. Marques, and E. K. U. Gross Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany (Dated:

More information

Non-adiabatic dynamics with external laser fields

Non-adiabatic dynamics with external laser fields January 18, 21 1 MQCD Mixed Quantum-Classical Dynamics Quantum Dynamics with Trajectories 2 Radiation Field Interaction Hamiltonian 3 NAC NAC in DFT 4 NAC computation Sternheimer Implementation Nearly

More information

Orbital functionals derived from variational functionals of the Green function

Orbital functionals derived from variational functionals of the Green function Orbital functionals derived from variational functionals of the Green function Nils Erik Dahlen Robert van Leeuwen Rijksuniversiteit Groningen Ulf von Barth Lund University Outline 1. Deriving orbital

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute of Microstructure Physics Halle (Saale) OUTLINE Phenomena to be described by TDDFT Basic theorems of TDDFT Approximate xc functionals:

More information

All electron optimized effective potential method for solids

All electron optimized effective potential method for solids All electron optimized effective potential method for solids Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. 22

More information

Claudia Ambrosch-Draxl, University of Leoben, Austria Chair of Atomistic Modelling and Design of Materials

Claudia Ambrosch-Draxl, University of Leoben, Austria Chair of Atomistic Modelling and Design of Materials Excited state properties p within WIEN2k Claudia Ambrosch-Draxl, University of Leoben, Austria Chair of Atomistic Modelling and Design of Materials Beyond the ground state Basics about light scattering

More information

André Schleife Department of Materials Science and Engineering

André Schleife Department of Materials Science and Engineering André Schleife Department of Materials Science and Engineering Yesterday you (should have) learned this: http://upload.wikimedia.org/wikipedia/commons/e/ea/ Simple_Harmonic_Motion_Orbit.gif 1. deterministic

More information

Polarizable Continuum Model Implementation in the Octopus code

Polarizable Continuum Model Implementation in the Octopus code Polarizable Continuum Model Implementation in the Octopus code Alain Delgado, Carlo Andrea Rozzi, Stefano Corni S3 Center, CNR Institute of Nanoscience, Modena, Italy. Outline 1- The basics of the Polarizable

More information

Excitation Dynamics in Quantum Dots. Oleg Prezhdo U. Washington, Seattle

Excitation Dynamics in Quantum Dots. Oleg Prezhdo U. Washington, Seattle Excitation Dynamics in Quantum Dots Oleg Prezhdo U. Washington, Seattle Warwick August 27, 2009 Outline Time-Domain Density Functional Theory & Nonadiabatic Molecular Dynamics Quantum backreaction, surface

More information

arxiv: v1 [cond-mat.mes-hall] 13 Jul 2010

arxiv: v1 [cond-mat.mes-hall] 13 Jul 2010 Photo-absorption spectra of small hydrogenated silicon clusters using the time-dependent density functional theory arxiv:1007.2038v1 [cond-mat.mes-hall] 13 Jul 2010 Juzar Thingna, 1,2 R. Prasad, 2, and

More information

Optimized Effective Potential method for non-collinear Spin-DFT: view to spindynamics

Optimized Effective Potential method for non-collinear Spin-DFT: view to spindynamics Optimized Effective Potential method for non-collinear Spin-DFT: view to spindynamics S. Sharma and E. K. U. Gross nstitut für Theoretische Physik, FU Berlin Fritz-Haber nstitut, Berlin 21 Sept 2006 Synopsis

More information

Introduction to density-functional theory. Emmanuel Fromager

Introduction to density-functional theory. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Institut

More information

Time-dependent quantum transport using TDDFT

Time-dependent quantum transport using TDDFT Stefan Kurth 1. Universidad del País Vasco UPV/EHU, San Sebastián, Spain 2. IKERBASQUE, Basque Foundation for Science, Bilbao, Spain 3. European Theoretical Spectroscopy Facility (ETSF), www.etsf.eu Outline

More information

Real space investigation of local field effects on surfaces

Real space investigation of local field effects on surfaces Real space investigation of local field effects on surfaces Nicolas Tancogne-Dejean, Valérie Véniard Laboratoire des Solides Irradiés,Ecole Polytechnique, CNRS, CEA/DSM European Theoretical Spectroscopy

More information

Optical properties of nanostructures from time-dependent density functional theory

Optical properties of nanostructures from time-dependent density functional theory Optical properties of nanostructures from time-dependent density functional theory Alberto Castro Departamento de Física Teórica, Universidad de Valladolid, E-47011 Valladolid (Spain) and Donostia International

More information

Update on linear-response TDDFPT codes

Update on linear-response TDDFPT codes 1/15 Update on linear-response TDDFPT codes Iurii Timrov SISSA Scuola Internazionale Superiore di Studi Avantazi, Trieste, Italy QUANTUM ESPRESSO developers meeting 14 January 2015 2/15 Outline 1. Absorption

More information

Advanced TDDFT II. II. Frequency-Dependent Kernels: Double Excitations. f xc

Advanced TDDFT II. II. Frequency-Dependent Kernels: Double Excitations. f xc Advanced TDDFT II II. Frequency-Dependent Kernels: Double Excitations f xc Neepa T. Maitra Hunter College and the Graduate Center of the City University of New York Plan -- Double-Excitations in TDDFT

More information

Cite This: ACS Photonics 2018, 5,

Cite This: ACS Photonics 2018, 5, This is an open access article published under a Creative Commons Attribution (CC-BY License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source

More information

Time-dependent linear response theory: exact and approximate formulations. Emmanuel Fromager

Time-dependent linear response theory: exact and approximate formulations. Emmanuel Fromager June 215 ISTPC 215 summer school, Aussois, France Page 1 Time-dependent linear response theory: exact and approximate formulations Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie

More information

8 SCIENTIFIC HIGHLIGHT OF THE MONTH: Octopus: a tool for the application of time-dependent density functional theory

8 SCIENTIFIC HIGHLIGHT OF THE MONTH: Octopus: a tool for the application of time-dependent density functional theory 8 SCIENTIFIC HIGHLIGHT OF THE MONTH: Octopus: a tool for the application of time-dependent density functional theory octopus: a tool for the application of time-dependent density functional theory Alberto

More information

Adaptively Compressed Polarizability Operator

Adaptively Compressed Polarizability Operator Adaptively Compressed Polarizability Operator For Accelerating Large Scale ab initio Phonon Calculations Ze Xu 1 Lin Lin 2 Lexing Ying 3 1,2 UC Berkeley 3 ICME, Stanford University BASCD, December 3rd

More information

GW Many-Body Theory for Electronic Structure. Rex Godby

GW Many-Body Theory for Electronic Structure. Rex Godby GW Many-Body Theory for Electronic Structure Rex Godby Outline Lecture 1 (Monday) Introduction to MBPT The GW approximation (non-sc and SC) Implementation of GW Spectral properties Lecture 2 (Tuesday)

More information

The Self Interaction Correction revisited

The Self Interaction Correction revisited The Self Interaction Correction revisited Explicit dynamics of clusters and molecules under irradiation Spectroscopic accuracy at low energy SIC problem : one electron interacts with its own mean-field!

More information

Introduction to the calculation of molecular properties by response theory

Introduction to the calculation of molecular properties by response theory Introduction to the calculation of molecular properties by response theory Julien Toulouse Laboratoire de Chimie Théorique Université Pierre et Marie Curie et CNRS, 75005 Paris, France julien.toulouse@upmc.fr

More information

Linear response to an electric field: absorption and energy-loss Independent particle, Local fields effects, and Time-Dependent DFT

Linear response to an electric field: absorption and energy-loss Independent particle, Local fields effects, and Time-Dependent DFT Linear response to an electric field: absorption and energy-loss Independent particle, Local fields effects, and Time-Dependent DFT D. Sangalli Motivations: probe your system Scattering of Transmission

More information

Notes on Density Functional Theory

Notes on Density Functional Theory Notes on Density Functional Theory Rocco Martinazzo E-mail: rocco.martinazzo@unimi.it Contents 1 Introduction 1 Density Functional Theory 7 3 The Kohn-Sham approach 11 1 Introduction We consider here a

More information

Oslo node. Highly accurate calculations benchmarking and extrapolations

Oslo node. Highly accurate calculations benchmarking and extrapolations Oslo node Highly accurate calculations benchmarking and extrapolations Torgeir Ruden, with A. Halkier, P. Jørgensen, J. Olsen, W. Klopper, J. Gauss, P. Taylor Explicitly correlated methods Pål Dahle, collaboration

More information

A new generation of density-functional methods based on the adiabatic-connection fluctuation-dissipation theorem

A new generation of density-functional methods based on the adiabatic-connection fluctuation-dissipation theorem A new generation of density-functional methods based on the adiabatic-connection fluctuation-dissipation theorem Andreas Görling, Patrick Bleiziffer, Daniel Schmidtel, and Andreas Heßelmann Lehrstuhl für

More information

Two-Component Ehrenfest Dynamics. Li Research Group. University of Washington, Seattle

Two-Component Ehrenfest Dynamics. Li Research Group. University of Washington, Seattle Two-Component Ehrenfest Dynamics Li Research Group University of Washington, Seattle Outline Quantum Electronic Dynamics Background Decay of Coherent-Exciton Time-Dependent Two-Component HF/DFT Theory

More information