Introduction to the OCTOPUS code

Size: px
Start display at page:

Download "Introduction to the OCTOPUS code"

Transcription

1 Introduction to the OCTOPUS code Esa Räsänen Nanoscience Center, University of Jyväskylä, Finland

2

3 Brief history Origins in the fixed nucleus code of Bertsch and Yabana [1] and in the real space code of Rubio, Blase, and Louie [2] Major re writing by Alberto Castro and Miguel Marques in Fortran 95 and C [3,4]. [1] G. F. Bertsch and K. Yabana, Time dependent local density approximation in real time, Phys. Rev. B 54, 4484 (1996) [2] A. Rubio, X. Blase, and S. G. Louie, Ab Initio Photoabsorption Spectra and Structures of Small Semiconductor and Metal Clusters, Phys. Rev. Lett. 77, 247 (1996) [3] M. A. L. Marques, A. Castro, G. F. Bertsch, and A. Rubio, octopus: a first principles tool for excited electron ion dynamics, Comput. Phys. Commun. 151, (2003) [4] A. Castro, H. Appel, M. Oliveira, C. A. Rozzi, X. Andrade, F. Lorenzen, M.A.L. Marques, E. K. U. Gross, and A. Rubio, octopus: a tool for the application of time dependent density functional theory, Phys. Stat. Sol. (b) 243, 2465 (2006)

4 Features Theoretical base: DFT and TDDFT Focus on finite systems (periodic systems in progress) Real space grid presentation (numerical mesh) Auxiliary basis sets (e.g., atomic orbitals) used when necessary Possibility for adaptive grids and multigrids Pseudopotentials 3D / 2D / 1D Parallel scalability ~ lines of Fortran, C, and Perl Licenced under GNU developers welcome!

5 Target problems Linear response of molecules and clusters Non linear response to high intensity electromagnetic fields Ground and excited state properties of low dimensional systems Photo induced reactions of molecules (e.g., photo dissociation) Optimal control theory Electronic transport (under development)

6 Pseudopotentials density of valence electrons effects of core electrons included in the external potential Options: Troullier Martins / Hartwigsen Goedecker Hutter Real space grid Partial differential equations > infinite degrees of freedom Reduction to a finite number: Function represented by its value over a set of points Uniform or adaptive point distribution in a finite box Grid points play the role of (non variational) "basis functions"

7 Boundary conditions Functions in finite systems go to zero => functions imposed to be zero at the border of the box => box has to be large enough to contain the functions Box shape should be optimized to minimize the number of points Options: minimum box (sphere around each atom) sphere cylinder rectangle arbitrary

8 Differential operations Finite difference approach Derivative in a point calculated from a sum over neighboring points Coefficients depend on the points used (stencil) More points > more precision Stencil options: star star + off diagonal cube

9 Integration Trapezoidal rule Eigensolver Options: Lanczos method iterative conjugate gradient algorithm (default) imaginary time propagation (in development)

10 Density mixing scheme: or, alternatively, mixing of the potentials (EXX) linear mixing good for "tough" situations Broyden mixing (default) D. D. Johnson, Modified Broyden s method for accelerating convergence in self consistent calculations, Phys. Rev. B 38, (1988)

11 Parallelization In domains: each processor handles points in regions in space points in the boundaries must be copied to other nodes integrals performed locally and summed over all domains efficient and well scalable scheme In states: each processor handles a group of states efficient scheme for time propagation Current status of scalability: hundreds of processors

12 Selection of exchange correlation functionals lda_c_pz_mod (10000): LDA: Perdew & Zunger gga_x_pbe (101): GGA: Perdew, Burke & Ernzerhof gga_x_pbe_r (102): GGA: Perdew, Burke & Ernzerhof (revised) gga_x_b86 (103): GGA: Becke 86 Xalpha,beta,gamma gga_x_b86_r (104): GGA: Becke 86 Xalpha,beta,gamma reoptimized gga_x_b86_mgc (105): GGA: Becke 86 Xalpha,beta,gamma gga_x_b88 (106): GGA: Becke 88 gga_x_g96 (107): GGA: Gill 96 gga_x_pw86 (108): GGA: Perdew & Wang 86 gga_x_pw91 (109): GGA: Perdew & Wang 91 lda_c_ob_pz (11000): LDA: Ortiz & Ballone (PZ-type parametrization) gga_x_optx (110): GGA: Handy & Cohen OPTX 01 gga_x_dk87_r1 (111): GGA: depristo & Kress 87 (version R1) gga_x_dk87_r2 (112): GGA: depristo & Kress 87 (version R2) gga_x_lg93 (113): GGA: Lacks & Gordon 93 gga_x_ft97_a (114): GGA: Filatov & Thiel 97 (version A) gga_x_ft97_b (115): GGA: Filatov & Thiel 97 (version B) gga_x_pbe_sol (116): GGA: Perdew, Burke & Ernzerhof (solids) gga_x_rpbe (117): GGA: Hammer, Hansen & Norskov (PBE-like) gga_x_wc (118): GGA: Wu & Cohen gga_x_mpw91 (119): GGA: Modified form of PW91 by Adamo & Barone lda_c_pw (12000): LDA: Perdew & Wang gga_x_am05 (120): GGA: Armiento & Mattsson 05 exchange gga_x_pbea (121): GGA: Madsen 07 (PBE-like) gga_x_mpbe (122): GGA: Adamo & Barone modification to PBE gga_x_xpbe (123): GGA: xpbe reparametrization by Xu & Goddard gga_x_2d_b86_mgc (124): GGA: Becke 86 MGC for 2D systems gga_c_pbe (130000): GGA: Perdew, Burke & Ernzerhof correlation lda_c_pw_mod (13000): LDA: Perdew & Wang gga_c_lyp (131000): GGA: Lee, Yang, & Parr gga_c_p86 (132000): GGA: Perdew 86 gga_c_pbe_sol (133000): GGA: Perdew, Burke & Ernzerhof correlation gga_c_pw91 (134000): GGA: Perdew & Wang 91 gga_c_am05 (135000): GGA: Armiento & Mattsson 05 correlation gga_c_xpbe (136000): GGA: xpbe reparametrization by Xu & Goddard gga_c_lm (137000): GGA: Langreth and Mehl correlation lda_c_ob_pw (14000): LDA: Ortiz & Ballone (PW-type parametrization) lda_c_2d_amgb (15000): LDA: Attacalite et al functional for the 2D electron gas lda_c_2d_prm08 (16000): LDA: Pittalis, Rasanen & Marques correlation in 2D gga_xc_lb (160): GGA: van Leeuwen & Baerends (xc) gga_xc_hcth_93 (161): GGA: HCTH fit to 93 molecules (xc) gga_xc_hcth_120 (162): GGA: HCTH fit to 120 molecules (xc) gga_xc_hcth_147 (163): GGA: HCTH fit to 147 molecules (xc) gga_xc_hcth_407 (164): GGA: HCTH fit to 407 molecules (xc) gga_xc_edf1 (165): GGA: Empirical functional from Adamson, Gill, & Pople gga_xc_xlyp (166): GGA: Empirical functional from Xu & Goddard lda_c_vbh (17000): LDA: von Barth & Hedin lda_x_2d (19): LDA: Slater exchange lda_x (1): LDA: Slater exchange lda_c_wigner (2000): LDA: Wigner parametrization mgga_x_lta (201): MGGA: Local tau approximation of Ernzerhof & Scuseria mgga_x_tpss (202): MGGA: Perdew, Tao, Staroverov & Scuseria exchange mgga_x_m06l (203): MGGA: Zhao, Truhlar exchange mgga_x_gvt4 (204): MGGA: GVT4 from Van Voorhis and Scuseria mgga_x_tau_hcth (205): MGGA: tau-hcth from Boese and Handy lda_xc_teter93 (20): LDA: Teter 93 pade parametrization mgga_c_tpss (231000): MGGA: Perdew, Tao, Staroverov & Scuseria correlation mgga_c_vsxc (232000): MGGA: VSxc from Van Voorhis and Scuseria (correlation part) lda_c_rpa (3000): LDA: Random Phase Approximation lda_c_hl (4000): LDA: Hedin & Lundqvist hyb_gga_xc_b3pw91 (401000): Hybrid (GGA): the first hybrid by Becke hyb_gga_xc_b3lyp (402000): Hybrid (GGA): The (in)famous B3LYP hyb_gga_xc_b3p86 (403000): Hybrid (GGA): Perdew 86 hybrid similar to B3PW91 hyb_gga_xc_o3lyp (404000): Hybrid (GGA): Hybrid using the optx functional hyb_gga_xc_pbeh (406000): Hybrid (GGA): aka PBE0 or PBE1PBE hyb_gga_xc_x3lyp (411000): Hybrid (GGA): maybe the best hybrid around hyb_gga_xc_b1wc (412000): Hybrid (GGA): Becke 1-parameter mixture of WC and EXX lda_c_gl (5000): LDA: Gunnarson & Lundqvist lda_c_xalpha (6000): LDA: Slater s Xalpha lda_c_vwn (7000): LDA: Vosko, Wilk, & Nussair lda_c_vwn_rpa (8000): LDA: Vosko, Wilk, & Nussair (fit to the RPA correlation energy) lda_c_pz (9000): LDA: Perdew & Zunger oep_x (901): OEP: Exact exchange

13 Articles published with Octopus Developer team Alberto Castro and Danilo Nitsche (Berlin) Miguel Marques (Lyon) Xavier Andrade and A. Rubio (San Sebastian) Micael Oliveira and Fernando Nogueira (Coimbra) Carlo Rozzi (Modena) Heiko Appel (San Diego) David Strubbe (Berkeley)

14 Example (ground state) run: Benzene molecule CalculationMode = gs Units = ev_angstrom radius = 5 spacing = 0.15 Output = wfs + density + elf + potential OutputHow = dx XYZCoordinates = "benzene.xyz" benzene.xyz: 12 C C C C C C H H H H H H Geometry of benzene (in Angstrom)

15 Useful ground state variable: Electron localization function (ELF) Motivation: How to visualize and how to give rigorous mathematical meanings to chemical bonds (single / double / triple)? Note: For this purpose, the density is not useful, nor the (Kohn Sham) orbitals.

16 Useful ingredients of ELF 1st order reduced density matrix: whose diagonal is the spin density diagonal of the 2nd order reduced density matrix: which gives the pair probability density probability of finding one electron at and another electron at

17 like spin conditional pair probability function probability of finding one spin electron at is another spin electron at, knowing that there coordinate transformation & spherical average probability of finding one spin electron at distance s from knowing that there is another spin electron at,

18 Taylor expansion measure of localization probability of finding a second like spin electron very near the reference electron if this probability is low then the reference electron must be very localized Define a useful visualization of localization Note: ELF is dimensionless and 3DEG = 3D uniform electron gas A.D. Becke, K.E. Edgecombe, JCP 92, 5397 (1990)

19 Within DFT (or within any single determinantal wave function): A.D. Becke, K.E. Edgecombe, JCP 92, 5397 (1990) ELF can be made time dependent within TDDFT (similar expression) T. Burnus, M. Marques, and E. K. U. Gross, PRA 71, (2005) ELF can be generalized to two dimensional systems E. R., A. Castro, and E. K. U. Gross, PRB 77, (2008)

20 ELF: Example A. Savin, R. Nesper, S. Wengert, and T. F. Fässler, Angew. Chem. Int. Ed. 36, 1808 (1997)

21 Time dependent ELF: Example TD ELF for the excitation of acetylene by a laser pulse. T. Burnus, M. Marques, and E. K. U. Gross, PRA 71, (2005)

22 Two dimensional ELF: Examples Density and ELF of 2D harmonic quantum dots Density and ELF of 2D harmonic four minima quantum dot molecules E. R., A. Castro, and E. K. U. Gross, PRB 77, (2008)

Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.!

Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.! Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.! How can one give a rigorous mathematical meaning to chemical

More information

Advanced Quantum Chemistry III: Part 3. Haruyuki Nakano. Kyushu University

Advanced Quantum Chemistry III: Part 3. Haruyuki Nakano. Kyushu University Advanced Quantum Chemistry III: Part 3 Haruyuki Nakano Kyushu University 2013 Winter Term 1. Hartree-Fock theory Density Functional Theory 2. Hohenberg-Kohn theorem 3. Kohn-Sham method 4. Exchange-correlation

More information

Functionals in DFT. Miguel A. L. Marques. Les Houches Universite Claude Bernard Lyon 1 and CNRS, France Theoretical Spectroscopy Facility

Functionals in DFT. Miguel A. L. Marques. Les Houches Universite Claude Bernard Lyon 1 and CNRS, France Theoretical Spectroscopy Facility Functionals in DFT Miguel A. L. Marques 1 LPMCN, Universite Claude Bernard Lyon 1 and CNRS, France Theoretical Spectroscopy Facility 2 European Les Houches 2012 M. A. L. Marques (Lyon) XC functionals Les

More information

Computer Laboratory DFT and Frequencies

Computer Laboratory DFT and Frequencies Computer Laboratory DFT and Frequencies 1. DFT KEYWORDS FOR DFT METHODS Names for the various pure DFT models are given by combining the names for the exchange and correlation functionals. In some cases,

More information

How to generate a pseudopotential with non-linear core corrections

How to generate a pseudopotential with non-linear core corrections How to generate a pseudopotential with non-linear core corrections 14 12 AE core charge AE valence charge PS core charge PS valence charge 10 8 6 4 2 Objectives 0 0 0.5 1 1.5 2 2.5 3 Check whether the

More information

Orbital currents in the Colle-Salvetti correlation energy functional and the degeneracy problem. Abstract

Orbital currents in the Colle-Salvetti correlation energy functional and the degeneracy problem. Abstract Orbital currents in the Colle-Salvetti correlation energy functional and the degeneracy problem S. Pittalis 1, S. Kurth 1, S. Sharma 1,2 and E.K.U. Gross 1 1 Institut für Theoretische Physik, Freie Universität

More information

Photoabsorption Spectra of Si n and Si n O (n 5)

Photoabsorption Spectra of Si n and Si n O (n 5) Commun. Theor. Phys. (Beijing, China) 51 (2009) pp. 751 755 c Chinese Physical Society and IOP Publishing Ltd Vol. 51, No. 4, April 15, 2009 Photoabsorption Spectra of Si n and Si n O (n 5) AN Fang-Fang,

More information

CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 19122

CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 19122 CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 191 THANKS TO MANY COLLABORATORS, INCLUDING SY VOSKO DAVID LANGRETH ALEX

More information

The LDA-1/2 method in exciting

The LDA-1/2 method in exciting http://exciting-code.org The LDA-1/2 method in exciting Ronaldo Rodrigues Pelá Humboldt Universität zu Berlin Instituto Tecnológico de Aeronáutica Outline DFT-1/2 Exchange-correlation functionals Exact

More information

Teoría del Funcional de la Densidad (Density Functional Theory)

Teoría del Funcional de la Densidad (Density Functional Theory) Teoría del Funcional de la Densidad (Density Functional Theory) Motivation: limitations of the standard approach based on the wave function. The electronic density n(r) as the key variable: Functionals

More information

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley

More information

Density functional theory in the solid state

Density functional theory in the solid state Density functional theory in the solid state Ari P Seitsonen IMPMC, CNRS & Universités 6 et 7 Paris, IPGP Department of Applied Physics, Helsinki University of Technology Physikalisch-Chemisches Institut

More information

Generalized generalized gradient approximation: An improved density-functional theory for accurate orbital eigenvalues

Generalized generalized gradient approximation: An improved density-functional theory for accurate orbital eigenvalues PHYSICAL REVIEW B VOLUME 55, NUMBER 24 15 JUNE 1997-II Generalized generalized gradient approximation: An improved density-functional theory for accurate orbital eigenvalues Xinlei Hua, Xiaojie Chen, and

More information

Density Func,onal Theory (Chapter 6, Jensen)

Density Func,onal Theory (Chapter 6, Jensen) Chem 580: DFT Density Func,onal Theory (Chapter 6, Jensen) Hohenberg- Kohn Theorem (Phys. Rev., 136,B864 (1964)): For molecules with a non degenerate ground state, the ground state molecular energy and

More information

Comparison of exchange-correlation functionals: from LDA to GGA and beyond

Comparison of exchange-correlation functionals: from LDA to GGA and beyond Comparison of ehange-correlation functionals: from LDA to GGA and beyond Martin Fuchs Fritz-Haber-Institut der MPG, Berlin, Germany Density-Functional Theory Calculations for Modeling Materials and Bio-Molecular

More information

DFT: Exchange-Correlation

DFT: Exchange-Correlation DFT: Local functionals, exact exchange and other post-dft methods Stewart Clark University of Outline Introduction What is exchange and correlation? Quick tour of XC functionals (Semi-)local: LDA, PBE,

More information

THE JOURNAL OF CHEMICAL PHYSICS 127,

THE JOURNAL OF CHEMICAL PHYSICS 127, THE JOUNAL OF CHEMICAL PHYSICS 127, 214103 2007 Avoiding singularity problems associated with meta-gga generalized gradient approximation exchange and correlation functionals containing the kinetic energy

More information

Max Planck Institute for Microstructure Physics Theory Department

Max Planck Institute for Microstructure Physics Theory Department Max Planck Institute for Microstructure Physics Theory Department ANALYSIS AND CONTROL OF ELECTRON DYNAMICS K. Krieger, M. Hellgren, M. Odashima, D. Nitsche, A. Castañeda Medina In the mid eighties, Runge

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

arxiv: v2 [cond-mat.mtrl-sci] 28 Jun 2012

arxiv: v2 [cond-mat.mtrl-sci] 28 Jun 2012 Libxc: a library of exchange and correlation functionals for density functional theory Miguel A. L. Marques Université de Lyon, F-69000 Lyon, France and LPMCN, CNRS, UMR 5586, Université Lyon 1, F-69622

More information

Fourteen Easy Lessons in Density Functional Theory

Fourteen Easy Lessons in Density Functional Theory Fourteen Easy Lessons in Density Functional Theory JOHN P. PERDEW, ADRIENN RUSINSKY Department of Physics and Quantum Theory Group, Tulane University, New Orleans, LA 70118 Received 1 April 2010; accepted

More information

Key concepts in Density Functional Theory (I) Silvana Botti

Key concepts in Density Functional Theory (I) Silvana Botti From the many body problem to the Kohn-Sham scheme European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre

More information

DFT calculations of NMR indirect spin spin coupling constants

DFT calculations of NMR indirect spin spin coupling constants DFT calculations of NMR indirect spin spin coupling constants Dalton program system Program capabilities Density functional theory Kohn Sham theory LDA, GGA and hybrid theories Indirect NMR spin spin coupling

More information

Basics of DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA

Basics of DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA Basics of DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA October 10-19th, 2012 Kieron (UC Irvine) Basics of DFT Lausanne12 1

More information

The frequency-dependent Sternheimer equation in TDDFT

The frequency-dependent Sternheimer equation in TDDFT The frequency-dependent Sternheimer equation in TDDFT A new look into an old equation Miguel A. L. Marques 1 Centre for Computational Physics, University of Coimbra, Portugal 2 LPMCN, Université Claude

More information

Non-linear optics, k p perturbation theory, and the Sternheimer equation

Non-linear optics, k p perturbation theory, and the Sternheimer equation Non-linear optics, k p perturbation theory, and the Sternheimer equation David A. Strubbe Department of Materials Science and Engineering Massachusetts Institute of Technology, Cambridge, MA Formerly Department

More information

ABC of ground-state DFT

ABC of ground-state DFT ABC of ground-state DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA January 5-9th, 2014 Kieron (UC Irvine) ABC of ground-state

More information

Institut Néel Institut Laue Langevin. Introduction to electronic structure calculations

Institut Néel Institut Laue Langevin. Introduction to electronic structure calculations Institut Néel Institut Laue Langevin Introduction to electronic structure calculations 1 Institut Néel - 25 rue des Martyrs - Grenoble - France 2 Institut Laue Langevin - 71 avenue des Martyrs - Grenoble

More information

Density Functional Theory. Martin Lüders Daresbury Laboratory

Density Functional Theory. Martin Lüders Daresbury Laboratory Density Functional Theory Martin Lüders Daresbury Laboratory Ab initio Calculations Hamiltonian: (without external fields, non-relativistic) impossible to solve exactly!! Electrons Nuclei Electron-Nuclei

More information

Density Functional Theory for Electrons in Materials

Density Functional Theory for Electrons in Materials Density Functional Theory for Electrons in Materials Richard M. Martin Department of Physics and Materials Research Laboratory University of Illinois at Urbana-Champaign 1 Density Functional Theory for

More information

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride Dimer Philip Straughn Abstract Charge transfer between Na and Cl ions is an important problem in physical chemistry. However,

More information

3/23/2010 More basics of DFT Kieron Burke and friends UC Irvine Physics and Chemistry References for ground-state DFT ABC of DFT, by KB and Rudy Magyar, http://dft.uci.edu A Primer in Density Functional

More information

The frequency-dependent Sternheimer equation in TDDFT

The frequency-dependent Sternheimer equation in TDDFT The frequency-dependent Sternheimer equation in TDDFT A new look into an old equation Miguel A. L. Marques 1 Centre for Computational Physics, University of Coimbra, Portugal 2 European Theoretical Spectroscopy

More information

Explaining the apparent arbitrariness of the LDA-1/2 self-energy. correction method applied to purely covalent systems

Explaining the apparent arbitrariness of the LDA-1/2 self-energy. correction method applied to purely covalent systems Explaining the apparent arbitrariness of the LDA-1/2 self-energy correction method applied to purely covalent systems Kan-Hao Xue, 1,2 Leonardo R. C. Fonseca, 3 and Xiang-Shui Miao 1,2 1 School of Optical

More information

Short Course on Density Functional Theory and Applications III. Implementations

Short Course on Density Functional Theory and Applications III. Implementations Short Course on Density Functional Theory and Applications III. Implementations Samuel B. Trickey Sept. 2008 Quantum Theory Project Dept. of Physics and Dept. of Chemistry trickey@qtp.ufl.edu KS E xc and

More information

A FRESH LOOK AT THE BAND-GAP PROBLEM IN DENSITY FUNCTIONAL THEORY

A FRESH LOOK AT THE BAND-GAP PROBLEM IN DENSITY FUNCTIONAL THEORY A FRESH LOOK AT THE BAND-GAP PROBLEM IN DENSITY FUNCTIONAL THEORY JOHN P. PERDEW PHYSICS & CHEMISTRY, TEMPLE UNIVERSITY PHILADELPHIA, PENNSYLVANIA, USA SUPPORTED BY THE U.S. DEPARTMENT OF ENERGY, EFRC

More information

Adiabatic connection for near degenerate excited states

Adiabatic connection for near degenerate excited states PHYSICAL REVIEW A 69, 052510 (2004) Adiabatic connection for near degenerate excited states Fan Zhang Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, New Jersey

More information

Untangling Excitation Energy Transfer for the LHC-II complex from Full First-Principles Calculations.

Untangling Excitation Energy Transfer for the LHC-II complex from Full First-Principles Calculations. Untangling Excitation Energy Transfer for the from Full First-Principles Calculations. Joaquim Jornet-Somoza, Joseba Alberdi-Rodríguez, Bruce Milne, Xavier Andrade, Miguel A. L. Marques, Fernando Nogueira,

More information

DFT: Exchange-Correlation

DFT: Exchange-Correlation DFT: Exchange-Correlation Local functionals, exact exchange and other post-dft methods Paul Tulip Centre for Materials Physics Department of Physics University of Durham Outline Introduction What is exchange

More information

Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory.

Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory. Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory. Walter Kohn receiving his Nobel Prize from His Majesty the King at the Stockholm

More information

Time-Dependent Density-Functional Theory

Time-Dependent Density-Functional Theory Summer School on First Principles Calculations for Condensed Matter and Nanoscience August 21 September 3, 2005 Santa Barbara, California Time-Dependent Density-Functional Theory X. Gonze, Université Catholique

More information

Density Functional Theory (DFT) modelling of C60 and

Density Functional Theory (DFT) modelling of C60 and ISPUB.COM The Internet Journal of Nanotechnology Volume 3 Number 1 Density Functional Theory (DFT) modelling of C60 and N@C60 N Kuganathan Citation N Kuganathan. Density Functional Theory (DFT) modelling

More information

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY A TUTORIAL FOR PHYSICAL SCIENTISTS WHO MAY OR MAY NOT HATE EQUATIONS AND PROOFS REFERENCES

More information

ABC of ground-state DFT

ABC of ground-state DFT ABC of ground-state DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA July 31, 2014 Kieron (UC Irvine) ABC of ground-state DFT HoW

More information

arxiv: v1 [cond-mat.mes-hall] 13 Jul 2010

arxiv: v1 [cond-mat.mes-hall] 13 Jul 2010 Photo-absorption spectra of small hydrogenated silicon clusters using the time-dependent density functional theory arxiv:1007.2038v1 [cond-mat.mes-hall] 13 Jul 2010 Juzar Thingna, 1,2 R. Prasad, 2, and

More information

AB INITIO MODELING OF ALKALI METAL CHALCOGENIDES USING SOGGA THEORY

AB INITIO MODELING OF ALKALI METAL CHALCOGENIDES USING SOGGA THEORY Int. J. Chem. Sci.: 13(4), 215, 163-1638 ISSN 972-768X www.sadgurupublications.com AB INITIO MODELING OF ALALI METAL CHALCOGENIDES USING SOGGA THEORY HITESH CHANDRA SWARNAR and GUNJAN ARORA a,* Department

More information

Orbital Density Dependent Functionals

Orbital Density Dependent Functionals Orbital Density Dependent Functionals S. Kluepfel1, P. Kluepfel1, Hildur Guðmundsdóttir1 and Hannes Jónsson1,2 1. Univ. of Iceland; 2. Aalto University Outline: Problems with GGA approximation (PBE, RPBE,...)

More information

Excited state dynamics of nanostructures and extended systems within TDDFT

Excited state dynamics of nanostructures and extended systems within TDDFT Excited state dynamics of nanostructures and extended systems within TDDFT Angel Rubio Dpto. de Física de Materiales, Universidad del País Vasco, Donostia International Physics Center (DIPC), and Centro

More information

Oslo node. Highly accurate calculations benchmarking and extrapolations

Oslo node. Highly accurate calculations benchmarking and extrapolations Oslo node Highly accurate calculations benchmarking and extrapolations Torgeir Ruden, with A. Halkier, P. Jørgensen, J. Olsen, W. Klopper, J. Gauss, P. Taylor Explicitly correlated methods Pål Dahle, collaboration

More information

Introduction to DFT and its Application to Defects in Semiconductors

Introduction to DFT and its Application to Defects in Semiconductors Introduction to DFT and its Application to Defects in Semiconductors Noa Marom Physics and Engineering Physics Tulane University New Orleans The Future: Computer-Aided Materials Design Can access the space

More information

The Augmented Spherical Wave Method

The Augmented Spherical Wave Method Introduction Institut für Physik, Universität Augsburg Electronic Structure in a Nutshell Outline 1 Fundamentals Generations 2 Outline 1 Fundamentals Generations 2 Outline Fundamentals Generations 1 Fundamentals

More information

The role of the basis set: Assessing density functional theory

The role of the basis set: Assessing density functional theory JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 6 8 AUGUST 2003 The role of the basis set: Assessing density functional theory A. Daniel Boese and Jan M. L. Martin Department of Organic Chemistry, Weizmann

More information

Adiabatic connection from accurate wave-function calculations

Adiabatic connection from accurate wave-function calculations JOURNAL OF CHEMICAL PHYSICS VOLUME 112, NUMBER 12 22 MARCH 2000 Adiabatic connection from accurate wave-function calculations Derek Frydel and William M. Terilla Department of Chemistry, Rutgers University,

More information

Comparison of DFT Methods for Molecular Orbital Eigenvalue Calculations

Comparison of DFT Methods for Molecular Orbital Eigenvalue Calculations 1554 J. Phys. Chem. A 2007, 111, 1554-1561 Comparison of DFT Methods for Molecular Orbital Eigenvalue Calculations Gang Zhang and Charles B. Musgrave* Department of Chemical Engineering, Stanford UniVersity,

More information

Pseudopotentials for hybrid density functionals and SCAN

Pseudopotentials for hybrid density functionals and SCAN Pseudopotentials for hybrid density functionals and SCAN Jing Yang, Liang Z. Tan, Julian Gebhardt, and Andrew M. Rappe Department of Chemistry University of Pennsylvania Why do we need pseudopotentials?

More information

University of Chinese Academy of Sciences, Beijing , People s Republic of China,

University of Chinese Academy of Sciences, Beijing , People s Republic of China, SiC 2 Siligraphene and Nanotubes: Novel Donor Materials in Excitonic Solar Cell Liu-Jiang Zhou,, Yong-Fan Zhang, Li-Ming Wu *, State Key Laboratory of Structural Chemistry, Fujian Institute of Research

More information

Algorithms and Computational Aspects of DFT Calculations

Algorithms and Computational Aspects of DFT Calculations Algorithms and Computational Aspects of DFT Calculations Part I Juan Meza and Chao Yang High Performance Computing Research Lawrence Berkeley National Laboratory IMA Tutorial Mathematical and Computational

More information

Rodhwan Salem D.S Idkhil (Magister of Physics/ Faculty of Sciences/ Brawijaya University, Malang, Indonesia)

Rodhwan Salem D.S Idkhil (Magister of Physics/ Faculty of Sciences/ Brawijaya University, Malang, Indonesia) IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 7, Issue 1 Ver. III (Jan.-Feb. 2015), PP 11-17 www.iosrjournals.org Study Electronic And Mechanical Properties Of Carbon, Silicon, And

More information

Orbital dependent correlation potentials in ab initio density functional theory

Orbital dependent correlation potentials in ab initio density functional theory Orbital dependent correlation potentials in ab initio density functional theory noniterative - one step - calculations Ireneusz Grabowski Institute of Physics Nicolaus Copernicus University Toruń, Poland

More information

Short-range exchange and correlation energy density functionals: Beyond the local-density approximation

Short-range exchange and correlation energy density functionals: Beyond the local-density approximation THE JOURNAL OF CHEMICAL PHYSICS 122, 014110 2005 Short-range exchange and correlation energy density functionals: Beyond the local-density approximation Julien Toulouse, François Colonna, and Andreas Savin

More information

Computational Nanoscience

Computational Nanoscience Computational Nanoscience Applications for Molecules, Clusters, and Solids KALMÄN VARGA AND JOSEPH A. DRISCOLL Vanderbilt University, Tennessee Щ CAMBRIDGE HP UNIVERSITY PRESS Preface Part I One-dimensional

More information

Intermediate DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA

Intermediate DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA Intermediate DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA October 10-19th, 2012 Kieron (UC Irvine) Intermediate DFT Lausanne12

More information

The effect of the Perdew-Zunger self-interaction correction to density functionals on the energetics of small molecules

The effect of the Perdew-Zunger self-interaction correction to density functionals on the energetics of small molecules The effect of the Perdew-Zunger self-interaction correction to density functionals on the energetics of small molecules Simon Klüpfel, 1, a) Peter Klüpfel, 2 and Hannes Jónsson 2 1) Science Institute of

More information

XYZ of ground-state DFT

XYZ of ground-state DFT XYZ of ground-state DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA January 5-9th, 2014 Kieron (UC Irvine) XYZ of ground-state

More information

Fast and accurate Coulomb calculation with Gaussian functions

Fast and accurate Coulomb calculation with Gaussian functions Fast and accurate Coulomb calculation with Gaussian functions László Füsti-Molnár and Jing Kong Q-CHEM Inc., Pittsburgh, Pennysylvania 15213 THE JOURNAL OF CHEMICAL PHYSICS 122, 074108 2005 Received 8

More information

Methods for van der Waals Interactions

Methods for van der Waals Interactions Methods for van der Waals Interactions Alexandre Tkatchenko Theory Department, Fritz Haber Institut der MPG Berlin, Germany tkatchen@fhi berlin.mpg.de Haber Institute FHI DFT and Beyond Workshop, Jul.

More information

Why the Generalized Gradient Approximation Works and How to Go Beyond It

Why the Generalized Gradient Approximation Works and How to Go Beyond It Why the Generalized Gradient Approximation Works ow to Go Beyond It KIERON BURKE, JON P. PERDEW, AND MATTIAS ERNZEROF Department of Physics Quantum Theory Group, Tulane University, New Orleans, Louisiana

More information

GW Many-Body Theory for Electronic Structure. Rex Godby

GW Many-Body Theory for Electronic Structure. Rex Godby GW Many-Body Theory for Electronic Structure Rex Godby Outline Lecture 1 (Monday) Introduction to MBPT The GW approximation (non-sc and SC) Implementation of GW Spectral properties Lecture 2 (Tuesday)

More information

Regional Self-Interaction Correction of Density Functional Theory

Regional Self-Interaction Correction of Density Functional Theory Regional Self-Interaction Correction of Density Functional Theory TAKAO TSUNEDA, MUNEAKI KAMIYA, KIMIHIKO HIRAO Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo,

More information

Basics of DFT. Kieron Burke and Lucas Wagner. Departments of Physics and Chemistry, University of California, Irvine, CA 92697, USA.

Basics of DFT. Kieron Burke and Lucas Wagner. Departments of Physics and Chemistry, University of California, Irvine, CA 92697, USA. Basics of DFT Kieron Burke and Lucas Wagner Departments of Physics and Chemistry, University of California, Irvine, CA 92697, USA Mar 15, 2011 Kieron (UC Irvine) Basics of DFT IPAM 1 / 61 Outline 1 General

More information

Note that if DFTTYP=NONE, an ab initio calculation will be performed, rather than density functional theory.

Note that if DFTTYP=NONE, an ab initio calculation will be performed, rather than density functional theory. Input Description $DFT 2-52 ========================================================== $DFT group (relevant if DFTTYP is chosen) (relevant if SCFTYP=RHF,UHF,ROHF) Note that if DFTTYP=NONE, an ab initio

More information

E x E x HF, while E c of DFT is approximated with the difference E c

E x E x HF, while E c of DFT is approximated with the difference E c Exchange and correlation energy in density functional theory: Comparison of accurate density functional theory quantities with traditional Hartree Fock based ones and generalized gradient approximations

More information

Numerical Study of Materials for Optical Properties Predictions for Materials Design

Numerical Study of Materials for Optical Properties Predictions for Materials Design Numerical Study of Materials for Optical Properties Predictions for Materials Design Sumitomo Chemical Co., Ltd. Tsukuba Research Laboratory Yasunari ZEMPO Masaya ISHIDA Nobuhiko AKINO Time dependent density

More information

arxiv: v1 [cond-mat.mtrl-sci] 23 Nov 2007

arxiv: v1 [cond-mat.mtrl-sci] 23 Nov 2007 Assessing the PBEsol density functional for metallic bulk and surface systems M. Ropo, K. Kokko arxiv:0711.3747v1 [cond-mat.mtrl-sci] 23 Nov 2007 Department of Physics, University of Turku, FIN-20014 Turku,

More information

Electron localisation in static and time-dependent one-dimensional model systems

Electron localisation in static and time-dependent one-dimensional model systems Electron localisation in static and time-dependent one-dimensional model systems T. R. Durrant 1, M. J. P. Hodgson 1, J. D. Ramsden 1, R. W. Godby 1 1 Department of Physics, University of York, and European

More information

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Fakultät für Mathematik und Naturwissenschaften - Lehrstuhl für Physikalische Chemie I / Theoretische Chemie An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Jan-Ole Joswig

More information

College of Science, Xi an University of Science and Technology, Xi an *Corresponding author

College of Science, Xi an University of Science and Technology, Xi an *Corresponding author 2016 International Conference on Advanced Manufacture Technology and Industrial Application (AMTIA 2016) ISBN: 978-1-60595-387-8 The Study of Coordination Adsorption Effect that CO Adsorption on 4H-SiC

More information

Polarizable Continuum Model Implementation in the Octopus code

Polarizable Continuum Model Implementation in the Octopus code Polarizable Continuum Model Implementation in the Octopus code Alain Delgado, Carlo Andrea Rozzi, Stefano Corni S3 Center, CNR Institute of Nanoscience, Modena, Italy. Outline 1- The basics of the Polarizable

More information

Open-Source Pseudopotential Interface/Unification Module (OPIUM): The Basic Ins and Outs of Operation

Open-Source Pseudopotential Interface/Unification Module (OPIUM): The Basic Ins and Outs of Operation Open-Source Pseudopotential Interface/Unification Module (OPIUM): The Basic Ins and Outs of Operation Irene K. Metz, Joseph W. Bennett and Sara E. Mason (Dated: May 31, 2018) Learning Objectives 1. Determine

More information

First- principles studies of spin-crossover molecules

First- principles studies of spin-crossover molecules Vallico di Sotto, 30 th July 2012 First- principles studies of spin-crossover molecules Andrea Droghetti and Stefano Sanvito School of Physics and CRANN, Trinity College Dublin Dario Alfe' London Centre

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Electronic Supplementary Information Rational modifications on champion porphyrin

More information

One-Electron Hamiltonians

One-Electron Hamiltonians One-Electron Hamiltonians Hartree-Fock and Density Func7onal Theory Christopher J. Cramer @ChemProfCramer 2017 MSSC, July 10, 2017 REVIEW A One-Slide Summary of Quantum Mechanics Fundamental Postulate:

More information

1 Density functional theory (DFT)

1 Density functional theory (DFT) 1 Density functional theory (DFT) 1.1 Introduction Density functional theory is an alternative to ab initio methods for solving the nonrelativistic, time-independent Schrödinger equation H Φ = E Φ. The

More information

5 Density Functional Theory

5 Density Functional Theory Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems. David C. Young Copyright ( 2001 John Wiley & Sons, Inc. ISBNs: 0-471-33368-9 (Hardback); 0-471-22065-5 (Electronic)

More information

Finite-Temperature Hartree-Fock Exchange and Exchange- Correlation Free Energy Functionals. Travis Sjostrom. IPAM 2012 Workshop IV

Finite-Temperature Hartree-Fock Exchange and Exchange- Correlation Free Energy Functionals. Travis Sjostrom. IPAM 2012 Workshop IV 1 of 45 Finite-Temperature Hartree-Fock Exchange and Exchange- Correlation Free Energy Functionals Travis Sjostrom Quantum Theory Project Depts. of Physics and Chemistry IPAM 2012 Workshop IV 2012 2 of

More information

Truong Ba Tai, Long Van Duong, Hung Tan Pham, Dang Thi Tuyet Mai and Minh Tho Nguyen*

Truong Ba Tai, Long Van Duong, Hung Tan Pham, Dang Thi Tuyet Mai and Minh Tho Nguyen* Supplementary Information: A Disk-Aromatic Bowl Cluster B 30 : Towards Formation of Boron Buckyballs Truong Ba Tai, Long Van Duong, Hung Tan Pham, Dang Thi Tuyet Mai and Minh Tho Nguyen* The file contains

More information

Understanding electron correlation energy through density functional theory

Understanding electron correlation energy through density functional theory 1 Understanding electron correlation energy through density functional theory by Teepanis Chachiyo, 1,2,* and Hathaithip Chachiyo 2 1 Department of Physics, Faculty of Science, Naresuan University, Phitsanulok

More information

Role of van der Waals Interactions in Physics, Chemistry, and Biology

Role of van der Waals Interactions in Physics, Chemistry, and Biology Role of van der Waals Interactions in Physics, Chemistry, and Biology How can we describe vdw forces in materials accurately? Failure of DFT Approximations for (Long-Range) Van der Waals Interactions 1

More information

PCCP PAPER. Assessment of asymptotically corrected model potentials for charge-transfer-like excitations in oligoacenes. I.

PCCP PAPER. Assessment of asymptotically corrected model potentials for charge-transfer-like excitations in oligoacenes. I. PCCP PAPER Cite this: Phys. Chem. Chem. Phys., 2014, 16, 21564 Assessment of asymptotically corrected model potentials for charge-transfer-like excitations in oligoacenes Wei-Tao Peng a and Jeng-Da Chai*

More information

Treating atomic anions with density functional theory

Treating atomic anions with density functional theory Accuracy of Electron Affinities of Atoms in Approximate Density Functional Theory Donghyung Lee,* Filipp Furche, and Kieron Burke Department of Chemistry, University of California, Irvine, California 92697

More information

Ab-initio modeling of opto-electronic properties of molecules in solvents and in proximity to a semiconductor nanoparticle

Ab-initio modeling of opto-electronic properties of molecules in solvents and in proximity to a semiconductor nanoparticle Ab-initio modeling of opto-electronic properties of molecules in solvents and in proximity to a semiconductor nanoparticle Alain Delgado (a,b), Stefano Corni (b), Carlo Andrea Rozzi (b) Stefano Pittalis

More information

Theoretical spectroscopy

Theoretical spectroscopy Theoretical spectroscopy from basic developments to real-world applications M. A. L. Marques http://www.tddft.org/bmg/ 1 LPMCN, CNRS-Université Lyon 1, France 2 European Theoretical Spectroscopy Facility

More information

TDDFT Explorations in Phase-Space. Neepa T. Maitra Hunter College and the Graduate Center of the City University of New York

TDDFT Explorations in Phase-Space. Neepa T. Maitra Hunter College and the Graduate Center of the City University of New York TDDFT Explorations in Phase-Space Neepa T. Maitra Hunter College and the Graduate Center of the City University of New York TDDFT in Phase-Space Outline Why phase-space DFT? Some motivating examples and

More information

Many electrons: Density functional theory Part II. Bedřich Velický VI.

Many electrons: Density functional theory Part II. Bedřich Velický VI. Many electrons: Density functional theory Part II. Bedřich Velický velicky@karlov.mff.cuni.cz VI. NEVF 514 Surface Physics Winter Term 013-014 Troja 1 st November 013 This class is the second devoted to

More information

Time-dependent density functional theory : direct computation of excitation energies

Time-dependent density functional theory : direct computation of excitation energies CECAM Tutorial Electronic excitations and spectroscopies : Theory and Codes Lyon 007 Time-dependent density functional theory : direct computation of excitation energies X. Gonze Université Catholique

More information

Quantum Monte Carlo Benchmarks Density Functionals: Si Defects

Quantum Monte Carlo Benchmarks Density Functionals: Si Defects Quantum Monte Carlo Benchmarks Density Functionals: Si Defects K P Driver, W D Parker, R G Hennig, J W Wilkins (OSU) C J Umrigar (Cornell), R Martin, E Batista, B Uberuaga (LANL), J Heyd, G Scuseria (Rice)

More information

Self-consistent implementation of meta-gga exchange-correlation functionals within the ONETEP linear-scaling DFT code

Self-consistent implementation of meta-gga exchange-correlation functionals within the ONETEP linear-scaling DFT code Self-consistent implementation of meta-gga exchange-correlation functionals within the ONETEP linear-scaling DFT code James C. Womack, Chris-Kriton Skylaris Chemistry, Faculty of Natural & Environmental

More information

Kohn Sham density functional theory [1 3] is. Role of the Exchange Correlation Energy: Nature s Glue STEFAN KURTH, JOHN P. PERDEW.

Kohn Sham density functional theory [1 3] is. Role of the Exchange Correlation Energy: Nature s Glue STEFAN KURTH, JOHN P. PERDEW. Role of the Exchange Correlation Energy: Nature s Glue STEFAN KURTH, JOHN P. PERDEW Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118 Received 11 March 1999;

More information

FULL POTENTIAL LINEARIZED AUGMENTED PLANE WAVE (FP-LAPW) IN THE FRAMEWORK OF DENSITY FUNCTIONAL THEORY

FULL POTENTIAL LINEARIZED AUGMENTED PLANE WAVE (FP-LAPW) IN THE FRAMEWORK OF DENSITY FUNCTIONAL THEORY FULL POTENTIAL LINEARIZED AUGMENTED PLANE WAVE (FP-LAPW) IN THE FRAMEWORK OF DENSITY FUNCTIONAL THEORY C.A. Madu and B.N Onwuagba Department of Physics, Federal University of Technology Owerri, Nigeria

More information