The frequency-dependent Sternheimer equation in TDDFT

Size: px
Start display at page:

Download "The frequency-dependent Sternheimer equation in TDDFT"

Transcription

1 The frequency-dependent Sternheimer equation in TDDFT A new look into an old equation Miguel A. L. Marques 1 Centre for Computational Physics, University of Coimbra, Portugal 2 European Theoretical Spectroscopy Facility July 19, 2007 Gordon Conference M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

2 Homarus Why are lobsters BLUE? M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

3 Homarus Why are lobsters BLUE? Homarus gammarus (European lobster) M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

4 Astaxanthin (AXT) The red comes from the molecule astaxanthin, a cousin of beta carotene, which gives carrots their orange color and is a source of vitamin A. Astaxanthin, which looks red because it absorbs blue light, also colors shrimp shells and salmon flesh. The blue pigment in lobster shells also comes from crustacyanin, which is astaxanthin clumped together with a protein. (New York Times) M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

5 Molecule CIS TDDFT ZINDO/S Exp AXT AXTH AXT-His+ 623 AXT-His 473 AXT in α-crustacyanin: 632 nm B. Durbeej and L. A. Eriksson, Phys. Chem. Chem. Phys. 8, 4053 (2006). M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

6 Outline 1 Introduction - the Sternheimer equation 2 Some results Hyperpolarizabilities van der Waals coefficients 3 Visualizing Electronic Excitations 4 Outlook resonant Raman scattering M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

7 Outline Introduction - the Sternheimer equation 1 Introduction - the Sternheimer equation 2 Some results Hyperpolarizabilities van der Waals coefficients 3 Visualizing Electronic Excitations 4 Outlook resonant Raman scattering M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

8 Introduction - the Sternheimer equation Spectroscopy Spectroscopy: From the latin spectrum an appearance, an apparition, from spectare, to behold + the greek skopein to view. c unoccupied states v occupied states Examples: UV/Vis, IR, X-ray, Dichroism, NMR, Raman, etc. M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

9 Introduction - the Sternheimer equation Linear Response Time propagation Dyson equation i ϕ j(r, t) t Casida s equation where = ] [ v KS[n](r, t) ϕ j (r, t), (1) χ = χ 0 + χ 0 [v + f xc ] χ ˆRF q = Ω 2 qf q, R q,q = (ε aσ ε iσ ) 2 δ qq + 2 ε aσ ε iσ K q,q (ω n ) ε a σ ε i σ. Superoperators and Lanczos methods P 1 (ω L) 1 Q 1 = 1 ω a 1 + b 2 1 ω a 2 + c2 M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

10 Introduction - the Sternheimer equation The Sternheimer Equation Hartree-Fock: Coupled Hartree-Fock method DFT: Density functional perturbation theory M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

11 Introduction - the Sternheimer equation The Sternheimer Equation - Frequency with { } H (0) ɛ m ± ω + iη ψ (1) m (r, ±ω) = P c H (1) (±ω)ψ (0) m (r) H (1) (ω) = V (r) + m d 3 r n(1) (r, ω) r r + d 3 r f xc (r, r ) n (1) (r, ω) and occ. { [ ] n (1) (r, ω) = ψ (0) [ ] (1) m (r) ψ m (r, ω) + ψ (1) } (0) m (r, ω) ψ m (r) M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

12 Introduction - the Sternheimer equation The Sternheimer Equation - Frequency with { } H (0) ɛ m ± ω + iη ψ (1) m (r, ±ω) = P c H (1) (±ω)ψ (0) m (r) H (1) (ω) = V (r) + m d 3 r n(1) (r, ω) r r + d 3 r f xc (r, r ) n (1) (r, ω) and occ. { [ ] n (1) (r, ω) = ψ (0) [ ] (1) m (r) ψ m (r, ω) + ψ (1) } (0) m (r, ω) ψ m (r) Main advantages: (Non-)Linear system of equations solvable by standard methods Only the occupied states enter the equation Scaling is N 2, where N is the number of atoms Disadvantages: It is hard to converge close to a resonance M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

13 Introduction - the Sternheimer equation The Sternheimer Equation - Perturbations Different perturbations are possible: Electric V (r) = r i (e.g., polarizabilities, absorption, florescence...) Magnetic V (r) = L i (e.g., susceptibilities, NMR...) Atomic Displacements V (r) = v(r) R i (e.g., phonons...) σ (arb. units) Energy (ev) x y z M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

14 Introduction - the Sternheimer equation Code development - octopus Comput. Phys. Commun. 151, (2003) Phys. Stat. Sol. B 243, (2006) M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

15 Outline Some results 1 Introduction - the Sternheimer equation 2 Some results Hyperpolarizabilities van der Waals coefficients 3 Visualizing Electronic Excitations 4 Outlook resonant Raman scattering M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

16 First test: SHG Some results Hyperpolarizabilities Second harmonic generation of paranitroaniline: β( 2ω, ω, ω) β ( 2ω;ω,ω) [a.u.] exp. solv. This work β ( 2ω;ω,ω) [a.u.] exp. solv. exp. gas This work LDA/ALDA LB94/ALDA B3LYP CCSD ω [ev] ω [ev] JCP 126, (2007) M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

17 Optical Rectification Some results Hyperpolarizabilities Optical rectification of H 2 O: β(0, ω, ω) β (0;ω, ω) [a.u.] ω [ev] JCP 126, (2007) M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

18 Some results Van der Waals coefficients van der Waals coefficients Non-retarded regime Casimir-Polder formula ( E = C 6 /R 6 ): C AB 6 = 3 π Retarded regime ( E = K /R 7 ): 0 du α (A) (iu) α (B) (iu), K AB = 23c 8π 2 α(a) (0) α (B) (0) The polarizability is calculated from α ij (iu) = d 3 r n (1) j (r, iu)r i M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

19 Some results Alternative Time Propagation van der Waals coefficients Apply explicitly the perturbation: δv ext (r, t) = x j κδ(t t 0 ) The dynamic polarizability reads, at imaginary frequencies: α ij (iu) = 1 dt d 3 r x i δn(r, t)e ut κ M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

20 Some results Alternative Time Propagation van der Waals coefficients Apply explicitly the perturbation: δv ext (r, t) = x j κδ(t t 0 ) The dynamic polarizability reads, at imaginary frequencies: α ij (iu) = 1 dt d 3 r x i δn(r, t)e ut κ It turns out: Both Sternheimer and time-propagation have the same scaling Only a few frequencies are needed in the Sternheimer approach, but... 2 or 3 fs are sufficient for the time-propagation In the end, the pre-factor is very similar M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

21 Some results van der Waals coefficients C 6 - Polycyclic Aromatic Hydrocarbons C 6 AB (a.u./10 3 ) N A x N B C 6 /N α 2 /N 2 C 6 /N α 2 /N 2 M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

22 Some results C 6 - The characteristic frequency van der Waals coefficients London approximation α(iu) = α(0) 1 + (u/ω 1 ) 2 which leads to C 6 = 3ω 1 4 α2 (0) ω 1 = 0.34 IP (Ha) ω 1 (Ha) ω 1 (a.u.) Number of Si atoms M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

23 Some results C 3 Surface-cluster interaction van der Waals coefficients For a surface-cluster interaction, E = C 3 /R 3, where C 3 = 1 4π 0 du α(iu) ɛ(iu) 1 ɛ(iu) + 1 C 3 /N Si (a.u.) RPA TDLDA α/q 2 α + β ω 2 /q Number of Si atoms M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

24 Outline Visualizing Electronic Excitations 1 Introduction - the Sternheimer equation 2 Some results Hyperpolarizabilities van der Waals coefficients 3 Visualizing Electronic Excitations 4 Outlook resonant Raman scattering M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

25 Visualizing Electronic Excitations Visualizing Electronic Excitations We can look at, e.g., How to visualize and interpret electron bonds? Electronic density Quite featureless One-particle wave-functions Not uniquely defined Usually extend over large regions Electron localization function Bonds and lone-pairs are evident M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

26 Visualizing Electronic Excitations The time-dependent ELF The time-dependent electron localization function is defined as f elf = [ ] 2 C(r,t) C uni (r,t) For a Slater determinant: C det = N ϕ i (r, t) 2 1 [ n(r, t)] 2 [j(r, t)]2 4 n(r, t) n(r, t) i=1 M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

27 Visualizing Electronic Excitations TDELF C 2 H 2 in a strong laser field Laser: ω = 17 ev, T = 8 fs, I = Wcm 2 Phys. Rev. A (Rap. Comm.) 71, (2005) M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

28 Visualizing Electronic Excitations TDELF H + + OH H 2 O 0 fs 3.0 fs 6.0 fs 9.7 fs 13.3 fs 15.7 fs 18.1 fs 20.6 fs 23 fs 24.8 fs 27.2 fs 30.4 fs M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

29 Visualizing Electronic Excitations TDELF linear response The first order variation of the ELF is [ ψ (1) ψ (0) + ψ (0) ψ (1)] C (1) (r) = i 1 ρ (0) 2 ρ (0) ρ (1) + 1 ρ (0) 2 [ 4 ] ρ (0) 2 ρ(1) + 2 j(0) j (1) ρ (0) And the normalization: [ ρ(1) j (0) ] 2 [ ] ρ (0) 2 We obtain C (1) 0 = 6π 2 [ ρ (0)] 2/3 ρ (1) ( [ ] f (1) ELF = 2 f (0) 2 C (0) ELF C (0) 0 C (1) C (0) C(0) C (0) 0 C (1) ) 0 C (0) 0 M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

30 Visualizing Electronic Excitations LRELF An example, acrolein x y z σ(ω) [Å 2 ] ω [ev] M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

31 Visualizing Electronic Excitations LRELF An example, acrolein 5.64 ev 5.91 ev 6.14 ev M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

32 Visualizing Electronic Excitations LRELF Another example, pyrrole σ(ω) [Å 2 ] x 7 y z ω [ev] M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

33 Visualizing Electronic Excitations LRELF Another example, pyrrole 5.43 ev (y) 6.10 ev (z) 7.18 ev (x) M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

34 Outline Outlook resonant Raman scattering 1 Introduction - the Sternheimer equation 2 Some results Hyperpolarizabilities van der Waals coefficients 3 Visualizing Electronic Excitations 4 Outlook resonant Raman scattering M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

35 Outlook resonant Raman scattering Outlook Raman scattering I In non-resonant Stokes Raman spectra, the peak intensities are given by I ν ei A ν e j 1 ω ν (n ν + 1) where A ν lm = kγ 3 E E l E m u kγ w ν kγ Mγ (2) Often, the same expression is used to interpret resonant scattering! M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

36 Outlook resonant Raman scattering Outlook Raman scattering II Perturb the Hamiltonian: How to do resonant Raman correctly? H = H 0 + V E cos(ω E t) + V I cos(ω I t) Then the third derivative becomes: ( ) β(ω I + ω E ; ω I, ω E ) ψ 0 ˆp δψ(ω I + ω E ) + δψ( ω E ) ˆp δψ(ω I ) To recover the non-resonant expression, just put ω I = ω E = 0. M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

37 Outlook resonant Raman scattering Outlook Raman scattering III The perturbed wave-functions are solutions of the equations: Frequency: ɛ k ± ω E Frequency: ɛ k ± ω I (H 0 ɛ k ± ω E ) δψ(±ω E ) = V E 2 ψ0 (3) (H 0 ɛ k ± ω I ) δψ(±ω I ) = V I 2 ψ0, (4) Frequency: ɛ k + σ E ω E + σ I ω I with (σ i = ±, σ E = ±) (H 0 ɛ k + σ I ω I + σ E ω E ) δψ(σ I ω I + σ E ω E ) = V I 2 δψ(σ Eω E ) V E 2 δψ(σ Iω I ) M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

38 Outlook resonant Raman scattering Collaborators Xavier Andrade San Sebastián, Spain Alberto Castro Berlin, Germany Angel Rubio San Sebastián, Spain Hardy Gross Berlin, Germany Silvana Botti Paris, France M. A. L. Marques (Coimbra) The ω-sternheimer equation Gordon / 35

The frequency-dependent Sternheimer equation in TDDFT

The frequency-dependent Sternheimer equation in TDDFT The frequency-dependent Sternheimer equation in TDDFT A new look into an old equation Miguel A. L. Marques 1 Centre for Computational Physics, University of Coimbra, Portugal 2 LPMCN, Université Claude

More information

Linear-response excitations. Silvana Botti

Linear-response excitations. Silvana Botti from finite to extended systems 1 LSI, CNRS-CEA-École Polytechnique, Palaiseau, France 2 LPMCN, CNRS-Université Lyon 1, France 3 European Theoretical Spectroscopy Facility September 3, 2008 Benasque, TDDFT

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute for Microstructure Physics OUTLINE LECTURE I Phenomena to be described by TDDFT LECTURE II Review of ground-state DFT LECTURE

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute for Microstructure Physics OUTLINE LECTURE I Phenomena to be described by TDDFT Some generalities on functional theories LECTURE

More information

Non-linear optics, k p perturbation theory, and the Sternheimer equation

Non-linear optics, k p perturbation theory, and the Sternheimer equation Non-linear optics, k p perturbation theory, and the Sternheimer equation David A. Strubbe Department of Materials Science and Engineering Massachusetts Institute of Technology, Cambridge, MA Formerly Department

More information

Time-Dependent Density-Functional Theory

Time-Dependent Density-Functional Theory Summer School on First Principles Calculations for Condensed Matter and Nanoscience August 21 September 3, 2005 Santa Barbara, California Time-Dependent Density-Functional Theory X. Gonze, Université Catholique

More information

Time Dependent Density Functional Theory. Francesco Sottile

Time Dependent Density Functional Theory. Francesco Sottile An Introduction Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF) Belfast, 29 Jun 2007 Outline 1 Introduction: why TD-DFT? 2 (Just)

More information

Untangling Excitation Energy Transfer for the LHC-II complex from Full First-Principles Calculations.

Untangling Excitation Energy Transfer for the LHC-II complex from Full First-Principles Calculations. Untangling Excitation Energy Transfer for the from Full First-Principles Calculations. Joaquim Jornet-Somoza, Joseba Alberdi-Rodríguez, Bruce Milne, Xavier Andrade, Miguel A. L. Marques, Fernando Nogueira,

More information

Linear response theory and TDDFT

Linear response theory and TDDFT Linear response theory and TDDFT Claudio Attaccalite http://abineel.grenoble.cnrs.fr/ CECAM Yambo School 2013 (Lausanne) Motivations: +- hν Absorption Spectroscopy Many Body Effects!!! Motivations(II):Absorption

More information

Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.!

Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.! Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.! How can one give a rigorous mathematical meaning to chemical

More information

Ab initio phonon calculations in mixed systems

Ab initio phonon calculations in mixed systems Ab initio phonon calculations in mixed systems Andrei Postnikov apostnik@uos.de Outline: Experiment vs. ab initio theory Ways of theory: linear response and frozen phonon approaches Applications: Be x

More information

Time Dependent Density Functional Theory. Francesco Sottile

Time Dependent Density Functional Theory. Francesco Sottile Applications, limitations and... new frontiers Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF) Vienna, 19 January 2007 /55 Outline

More information

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby Advanced Electronic Structure Theory Density functional theory Dr Fred Manby fred.manby@bris.ac.uk http://www.chm.bris.ac.uk/pt/manby/ 6 Strengths of DFT DFT is one of many theories used by (computational)

More information

Time-dependent density functional theory (TDDFT)

Time-dependent density functional theory (TDDFT) 04/05/16 Hands-on workshop and Humboldt-Kolleg: Density-Functional Theory and Beyond - Basic Principles and Modern Insights Isfahan University of Technology, Isfahan, Iran, May 2 to 13, 2016 Time-dependent

More information

Time-dependent density functional theory (TDDFT)

Time-dependent density functional theory (TDDFT) Advanced Workshop on High-Performance & High-Throughput Materials Simulations using Quantum ESPRESSO ICTP, Trieste, Italy, January 16 to 27, 2017 Time-dependent density functional theory (TDDFT) Ralph

More information

TDDFT II. Alberto Castro

TDDFT II. Alberto Castro Problem set Alberto Castro Institute for Biocomputation and Physics of Complex Systems (BIFI) and Zaragoza Scientific Center for Advanced Modeling (ZCAM), University of Zaragoza, Spain ELK Summit, Lausanne

More information

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride Dimer Philip Straughn Abstract Charge transfer between Na and Cl ions is an important problem in physical chemistry. However,

More information

Time-dependent density functional theory : direct computation of excitation energies

Time-dependent density functional theory : direct computation of excitation energies CECAM Tutorial Electronic excitations and spectroscopies : Theory and Codes Lyon 007 Time-dependent density functional theory : direct computation of excitation energies X. Gonze Université Catholique

More information

MD simulation: output

MD simulation: output Properties MD simulation: output Trajectory of atoms positions: e. g. diffusion, mass transport velocities: e. g. v-v autocorrelation spectrum Energies temperature displacement fluctuations Mean square

More information

Neutral Electronic Excitations:

Neutral Electronic Excitations: Neutral Electronic Excitations: a Many-body approach to the optical absorption spectra Claudio Attaccalite http://abineel.grenoble.cnrs.fr/ Second Les Houches school in computational physics: ab-initio

More information

TDDFT in Chemistry and Biochemistry III

TDDFT in Chemistry and Biochemistry III TDDFT in Chemistry and Biochemistry III Dmitrij Rappoport Department of Chemistry and Chemical Biology Harvard University TDDFT Winter School Benasque, January 2010 Dmitrij Rappoport (Harvard U.) TDDFT

More information

Linear response time-dependent density functional theory

Linear response time-dependent density functional theory Linear response time-dependent density functional theory Emmanuel Fromager Laboratoire de Chimie Quantique, Université de Strasbourg, France fromagere@unistra.fr Emmanuel Fromager (UdS) Cours RFCT, Strasbourg,

More information

Key concepts in Density Functional Theory (II) Silvana Botti

Key concepts in Density Functional Theory (II) Silvana Botti Kohn-Sham scheme, band structure and optical spectra European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address:

More information

Many-Body Perturbation Theory. Lucia Reining, Fabien Bruneval

Many-Body Perturbation Theory. Lucia Reining, Fabien Bruneval , Fabien Bruneval Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF) Belfast, 27.6.2007 Outline 1 Reminder 2 Perturbation Theory

More information

Theoretical Photochemistry WiSe 2017/18

Theoretical Photochemistry WiSe 2017/18 Theoretical Photochemistry WiSe 2017/18 Lecture 7 Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ Theoretical Photochemistry 1 Topics 1. Photophysical

More information

CHEM 261 Notes Nov 22, 2017 REVIEW:

CHEM 261 Notes Nov 22, 2017 REVIEW: 155 CEM 261 Notes Nov 22, 2017 REVIEW: Recall how we can show the energy levels of the atomic orbitals of C. If the C is sp 2 hybridized, two of the 2p orbitals combine with the 2s orbital to form two

More information

Plan of the lectures

Plan of the lectures Plan of the lectures 1. Introductory remarks on metallic nanostructures Relevant quantities and typical physical parameters Applications. Linear electron response: Mie theory and generalizations 3. Nonlinear

More information

Spectroscopy of nanostructures: from optics to transport

Spectroscopy of nanostructures: from optics to transport Spectroscopy of nanostructures: from optics to transport Angel Rubio NanoBio Spectroscopy Group, Dpto. Física de Materiales, Universidad del País Vasco, Centro Mixto CSIC UPV/EHU and DIPC Edificio Korta,

More information

Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients

Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients 1/10 Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients Julien Toulouse 1,2, Elisa Rebolini 1, Tim Gould 3, John F. Dobson 3, Prasenjit Seal

More information

Key concepts in Density Functional Theory (I) Silvana Botti

Key concepts in Density Functional Theory (I) Silvana Botti From the many body problem to the Kohn-Sham scheme European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre

More information

Chiroptical Spectroscopy

Chiroptical Spectroscopy Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 3: (Crash course in) Theory of optical activity Masters Level Class (181 041) Mondays, 8.15-9.45 am, NC 02/99 Wednesdays, 10.15-11.45

More information

Calculations of X-ray Spectra in Real-space and Real-time

Calculations of X-ray Spectra in Real-space and Real-time X-Ray Science in the 21st Century Calculations of X-ray Spectra in Real-space and Real-time J. J. Rehr, F. Vila, Y. Takimoto Department of Physics University of Washington Seattle, WA USA Time (s) KITP,

More information

Density Functional Theory for Superconductors

Density Functional Theory for Superconductors Density Functional Theory for Superconductors M. A. L. Marques marques@tddft.org IMPMC Université Pierre et Marie Curie, Paris VI GDR-DFT05, 18-05-2005, Cap d Agde M. A. L. Marques (IMPMC) DFT for superconductors

More information

Microscopic-Macroscopic connection. Silvana Botti

Microscopic-Macroscopic connection. Silvana Botti relating experiment and theory European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre for Computational

More information

Photoabsorption Spectra of Si n and Si n O (n 5)

Photoabsorption Spectra of Si n and Si n O (n 5) Commun. Theor. Phys. (Beijing, China) 51 (2009) pp. 751 755 c Chinese Physical Society and IOP Publishing Ltd Vol. 51, No. 4, April 15, 2009 Photoabsorption Spectra of Si n and Si n O (n 5) AN Fang-Fang,

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

Quantum Electrodynamical TDDFT: From basic theorems to approximate functionals

Quantum Electrodynamical TDDFT: From basic theorems to approximate functionals Quantum Electrodynamical TDDFT: From basic theorems to approximate functionals Ilya Tokatly NanoBio Spectroscopy Group - UPV/EHU San Sebastiàn - Spain IKERBASQUE, Basque Foundation for Science - Bilbao

More information

NONLINEAR OPTICS. Ch. 1 INTRODUCTION TO NONLINEAR OPTICS

NONLINEAR OPTICS. Ch. 1 INTRODUCTION TO NONLINEAR OPTICS NONLINEAR OPTICS Ch. 1 INTRODUCTION TO NONLINEAR OPTICS Nonlinear regime - Order of magnitude Origin of the nonlinearities - Induced Dipole and Polarization - Description of the classical anharmonic oscillator

More information

Max Planck Institute for Microstructure Physics Theory Department

Max Planck Institute for Microstructure Physics Theory Department Max Planck Institute for Microstructure Physics Theory Department ANALYSIS AND CONTROL OF ELECTRON DYNAMICS K. Krieger, M. Hellgren, M. Odashima, D. Nitsche, A. Castañeda Medina In the mid eighties, Runge

More information

Role of van der Waals Interactions in Physics, Chemistry, and Biology

Role of van der Waals Interactions in Physics, Chemistry, and Biology Role of van der Waals Interactions in Physics, Chemistry, and Biology How can we describe vdw forces in materials accurately? Failure of DFT Approximations for (Long-Range) Van der Waals Interactions 1

More information

Exact exchange (spin current) density-functional methods for magnetic properties, spin-orbit effects, and excited states

Exact exchange (spin current) density-functional methods for magnetic properties, spin-orbit effects, and excited states Exact exchange (spin current) density-functional methods for magnetic properties, spin-orbit effects, and excited states DFT with orbital-dependent functionals A. Görling Universität Erlangen-Nürnberg

More information

Ab-initio modeling of opto-electronic properties of molecules in solvents and in proximity to a semiconductor nanoparticle

Ab-initio modeling of opto-electronic properties of molecules in solvents and in proximity to a semiconductor nanoparticle Ab-initio modeling of opto-electronic properties of molecules in solvents and in proximity to a semiconductor nanoparticle Alain Delgado (a,b), Stefano Corni (b), Carlo Andrea Rozzi (b) Stefano Pittalis

More information

Linear response to an electric field: absorption and energy-loss Independent particle, Local fields effects, and Time-Dependent DFT

Linear response to an electric field: absorption and energy-loss Independent particle, Local fields effects, and Time-Dependent DFT Linear response to an electric field: absorption and energy-loss Independent particle, Local fields effects, and Time-Dependent DFT D. Sangalli Motivations: probe your system Scattering of Transmission

More information

Rabi oscillations within TDDFT: the example of the 2 site Hubbard model

Rabi oscillations within TDDFT: the example of the 2 site Hubbard model Rabi oscillations within TDDFT: the example of the 2 site Hubbard model Johanna I. Fuks, H. Appel, Mehdi,I.V. Tokatly, A. Rubio Donostia- San Sebastian University of Basque Country (UPV) Outline Rabi oscillations

More information

NMR and IR spectra & vibrational analysis

NMR and IR spectra & vibrational analysis Lab 5: NMR and IR spectra & vibrational analysis A brief theoretical background 1 Some of the available chemical quantum methods for calculating NMR chemical shifts are based on the Hartree-Fock self-consistent

More information

TDDFT Explorations in Phase-Space. Neepa T. Maitra Hunter College and the Graduate Center of the City University of New York

TDDFT Explorations in Phase-Space. Neepa T. Maitra Hunter College and the Graduate Center of the City University of New York TDDFT Explorations in Phase-Space Neepa T. Maitra Hunter College and the Graduate Center of the City University of New York TDDFT in Phase-Space Outline Why phase-space DFT? Some motivating examples and

More information

12. Quantum-classical theory of linear and non-linear spectroscopy

12. Quantum-classical theory of linear and non-linear spectroscopy 12. Quantum-classical theory of linear and non-linear spectroscopy In the quantum-classical formalism, we treat the electric field classically as in eq. 10-17 or Appendix B. The electric field becomes

More information

Introduction to the OCTOPUS code

Introduction to the OCTOPUS code Introduction to the OCTOPUS code Esa Räsänen Nanoscience Center, University of Jyväskylä, Finland www.tddft.org Brief history Origins in the fixed nucleus code of Bertsch and Yabana [1] and in the real

More information

Models for Time-Dependent Phenomena

Models for Time-Dependent Phenomena Models for Time-Dependent Phenomena I. Phenomena in laser-matter interaction: atoms II. Phenomena in laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein p.1 Outline Phenomena

More information

Two-Component Ehrenfest Dynamics. Li Research Group. University of Washington, Seattle

Two-Component Ehrenfest Dynamics. Li Research Group. University of Washington, Seattle Two-Component Ehrenfest Dynamics Li Research Group University of Washington, Seattle Outline Quantum Electronic Dynamics Background Decay of Coherent-Exciton Time-Dependent Two-Component HF/DFT Theory

More information

IV. Calculations of X-ray Spectra in Real-space and Real-time. J. J. Rehr

IV. Calculations of X-ray Spectra in Real-space and Real-time. J. J. Rehr TIMES Lecture Series SLAC-Stanford U March 2, 2017 IV. Calculations of X-ray Spectra in Real-space and Real-time J. J. Rehr Calculations of X-ray Spectra in Real-space and Real-time Goal: Real-space, real

More information

DFT calculations of NMR indirect spin spin coupling constants

DFT calculations of NMR indirect spin spin coupling constants DFT calculations of NMR indirect spin spin coupling constants Dalton program system Program capabilities Density functional theory Kohn Sham theory LDA, GGA and hybrid theories Indirect NMR spin spin coupling

More information

Electric properties of molecules

Electric properties of molecules Electric properties of molecules For a molecule in a uniform electric fielde the Hamiltonian has the form: Ĥ(E) = Ĥ + E ˆµ x where we assume that the field is directed along the x axis and ˆµ x is the

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute of Microstructure Physics Halle (Saale) OUTLINE Phenomena to be described by TDDFT Basic theorems of TDDFT Approximate xc functionals:

More information

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley

More information

Introduction to spin and spin-dependent phenomenon

Introduction to spin and spin-dependent phenomenon Introduction to spin and spin-dependent phenomenon Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. May 16th, 2007

More information

New Frontiers in Nuclear Structure Theory

New Frontiers in Nuclear Structure Theory New Frontiers in Nuclear Structure Theory From Realistic Interactions to the Nuclear Chart Robert Roth Institut für Kernphysik Technical University Darmstadt Overview Motivation Nucleon-Nucleon Interactions

More information

[ ( )] + ρ VIII. NONLINEAR OPTICS -- QUANTUM PICTURE: 45 THE INTERACTION OF RADIATION AND MATTER: QUANTUM THEORY PAGE 88

[ ( )] + ρ VIII. NONLINEAR OPTICS -- QUANTUM PICTURE: 45 THE INTERACTION OF RADIATION AND MATTER: QUANTUM THEORY PAGE 88 THE INTERACTION OF RADIATION AND MATTER: QUANTUM THEORY PAGE 88 VIII. NONLINEAR OPTICS -- QUANTUM PICTURE: 45 A QUANTUM MECHANICAL VIEW OF THE BASICS OF N ONLINEAR OPTICS 46 In what follows we draw on

More information

The Self Interaction Correction revisited

The Self Interaction Correction revisited The Self Interaction Correction revisited Explicit dynamics of clusters and molecules under irradiation Spectroscopic accuracy at low energy SIC problem : one electron interacts with its own mean-field!

More information

Electronic Structure: Density Functional Theory

Electronic Structure: Density Functional Theory Electronic Structure: Density Functional Theory S. Kurth, M. A. L. Marques, and E. K. U. Gross Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany (Dated:

More information

2 Quantization of the Electromagnetic Field

2 Quantization of the Electromagnetic Field 2 Quantization of the Electromagnetic Field 2.1 Basics Starting point of the quantization of the electromagnetic field are Maxwell s equations in the vacuum (source free): where B = µ 0 H, D = ε 0 E, µ

More information

Correlated Light-Matter Interactions in Cavity Quantum Electrodynamics

Correlated Light-Matter Interactions in Cavity Quantum Electrodynamics Correlated in Cavity Quantum Electrodynamics [1] Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin [2] NanoBio Spectroscopy group and ETSF, Universidad del País Vasco, San Sebastián, Spain DPG Frühjahrstagung

More information

Theoretical spectroscopy

Theoretical spectroscopy Theoretical spectroscopy from basic developments to real-world applications M. A. L. Marques http://www.tddft.org/bmg/ 1 LPMCN, CNRS-Université Lyon 1, France 2 European Theoretical Spectroscopy Facility

More information

Optical Spectroscopy 1 1. Absorption spectroscopy (UV/vis)

Optical Spectroscopy 1 1. Absorption spectroscopy (UV/vis) Optical Spectroscopy 1 1. Absorption spectroscopy (UV/vis) 2 2. Circular dichroism (optical activity) CD / ORD 3 3. Fluorescence spectroscopy and energy transfer Electromagnetic Spectrum Electronic Molecular

More information

Application of IR Raman Spectroscopy

Application of IR Raman Spectroscopy Application of IR Raman Spectroscopy 3 IR regions Structure and Functional Group Absorption IR Reflection IR Photoacoustic IR IR Emission Micro 10-1 Mid-IR Mid-IR absorption Samples Placed in cell (salt)

More information

TDDFT as a tool in biophysics

TDDFT as a tool in biophysics TDDFT as a tool in biophysics The primary event in vision Robert Send Universität Karlsruhe 09.09.08 Robert Send TDDFT as a tool in biophysics 09.09.08 1 / 28 Outline 1 Human vision 2 The methods 3 The

More information

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Notations

More information

Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC

Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC Sergey V. Churakov sergey.churakov@psi.ch Paul Scherrer Institute Switzerland Cement Phase Composition C-S-H H Solid Solution Model

More information

Advanced Vitreous State The Physical Properties of Glass

Advanced Vitreous State The Physical Properties of Glass Advanced Vitreous State The Physical Properties of Glass Active Optical Properties of Glass Lecture 21: Nonlinear Optics in Glass-Applications Denise Krol Department of Applied Science University of California,

More information

The GW Approximation. Manish Jain 1. July 8, Department of Physics Indian Institute of Science Bangalore 1/36

The GW Approximation. Manish Jain 1. July 8, Department of Physics Indian Institute of Science Bangalore 1/36 1/36 The GW Approximation Manish Jain 1 Department of Physics Indian Institute of Science Bangalore July 8, 2014 Ground-state properties 2/36 Properties that are intrinsic to a system with all its electrons

More information

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine An Introduction to Quantum Chemistry and Potential Energy Surfaces Benjamin G. Levine This Week s Lecture Potential energy surfaces What are they? What are they good for? How do we use them to solve chemical

More information

Spectroscopic Selection Rules

Spectroscopic Selection Rules E 0 v = 0 v = 1 v = 2 v = 4 v = 3 For a vibrational fundamental (Δv = ±1), the transition will have nonzero intensity in either the infrared or Raman spectrum if the appropriate transition moment is nonzero.

More information

Predictive Computing for Solids and Liquids

Predictive Computing for Solids and Liquids Predictive Computing for Solids and Liquids So Hirata Department of Chemistry May 214 Blue Waters Symposium 1 Schrödinger equation for a water molecule 1-particle, 3-dimensional partial differential equation

More information

/2Mα 2 α + V n (R)] χ (R) = E υ χ υ (R)

/2Mα 2 α + V n (R)] χ (R) = E υ χ υ (R) Spectroscopy: Engel Chapter 18 XIV 67 Vibrational Spectroscopy (Typically IR and Raman) Born-Oppenheimer approx. separate electron-nuclear Assume elect-nuclear motion separate, full wave fct. ψ (r,r) =

More information

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy Chemistry 43 Lecture 7 Vibrational Spectroscopy NC State University The Dipole Moment Expansion The permanent dipole moment of a molecule oscillates about an equilibrium value as the molecule vibrates.

More information

Optimized Effective Potential method for non-collinear Spin-DFT: view to spindynamics

Optimized Effective Potential method for non-collinear Spin-DFT: view to spindynamics Optimized Effective Potential method for non-collinear Spin-DFT: view to spindynamics S. Sharma and E. K. U. Gross nstitut für Theoretische Physik, FU Berlin Fritz-Haber nstitut, Berlin 21 Sept 2006 Synopsis

More information

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9)

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) XIV 67 Vibrational Spectroscopy (Typical for IR and Raman) Born-Oppenheimer separate electron-nuclear motion ψ (rr) = χ υ (R) φ el (r,r) -- product

More information

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy Lecture 6: Physical Methods II UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy Physical Methods used in bioinorganic chemistry X ray crystallography X ray absorption (XAS)

More information

Chapter 6. Electronic spectra and HOMO-LUMO studies on Nickel, copper substituted Phthalocyanine for solar cell applications

Chapter 6. Electronic spectra and HOMO-LUMO studies on Nickel, copper substituted Phthalocyanine for solar cell applications Chapter 6 Electronic spectra and HOMO-LUMO studies on Nickel, copper substituted Phthalocyanine for solar cell applications 6.1 Structures of Ni, Cu substituted Phthalocyanine Almost all of the metals

More information

Many electrons: Density functional theory Part II. Bedřich Velický VI.

Many electrons: Density functional theory Part II. Bedřich Velický VI. Many electrons: Density functional theory Part II. Bedřich Velický velicky@karlov.mff.cuni.cz VI. NEVF 514 Surface Physics Winter Term 013-014 Troja 1 st November 013 This class is the second devoted to

More information

Supporting Information

Supporting Information Supporting Information Thiocyanate Anchors for Salt-like Iron(II) Complexes on Au(111): Promises and Caveats Philipp Stock, a,b Andreas Erbe, b Gerald Hörner, a Manfred Buck, c Hervé Ménard, d and Andreas

More information

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij ) MO Calculation for a Diatomic Molecule Introduction The properties of any molecular system can in principle be found by looking at the solutions to the corresponding time independent Schrodinger equation

More information

Applications of the O(N 3 ) Hedin s GW. Peter Koval, Dietrich Foerster, Daniel Sanchéz-Portal

Applications of the O(N 3 ) Hedin s GW. Peter Koval, Dietrich Foerster, Daniel Sanchéz-Portal Applications of the O(N 3 ) Hedin s GW Peter Koval, Dietrich Foerster, Daniel Sanchéz-Portal Bilbao 14/04/2011 Outline Parameter calculations (+view on the methods) DOS, HOMO & LUMO HPC features Conclusion

More information

Optomechanically induced transparency of x-rays via optical control: Supplementary Information

Optomechanically induced transparency of x-rays via optical control: Supplementary Information Optomechanically induced transparency of x-rays via optical control: Supplementary Information Wen-Te Liao 1, and Adriana Pálffy 1 1 Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg,

More information

Time-dependent Density Functional Theory

Time-dependent Density Functional Theory Time-dependent Density Functional Theory Miguel A. L. Marques and E. K. U. Gross 1 Introduction Time-dependent density-functional theory (TDDFT) extends the basic ideas of ground-state density-functional

More information

Supporting Information

Supporting Information Supporting Information The Journal of Physical Chemistry A Determination of Binding Strengths of a Host-Guest Complex Using Resonance Raman Scattering Edward H. Witlicki, Stinne W. Hansen, Martin Christensen,

More information

X-Ray Spectroscopy at LCLS

X-Ray Spectroscopy at LCLS LCLS proposal preparation workshop for experiments at XPP, June 21, 2008, SLAC, Menlo Park, CA ħω ħω e - X-Ray Spectroscopy at LCLS Uwe Bergmann SSRL Stanford Linear Accelerator Center bergmann@slac.stanford.edu

More information

Polarizabilities. Patrick Norman

Polarizabilities. Patrick Norman Polarizabilities Patrick Norman Division of Theoretical Chemistry and Biology School of Biotechnology KTH Royal Institute of Technology Stockholm, Sweden A perspective on nonresonant and resonant electronic

More information

f xc Advanced TDDFT PDF Created with deskpdf PDF Writer - Trial :: II. Frequency-Dependent Kernels: Double Excitations

f xc Advanced TDDFT PDF Created with deskpdf PDF Writer - Trial ::   II. Frequency-Dependent Kernels: Double Excitations Advanced TDDFT II. Frequency-Dependent Kernels: Double Excitations f xc Neepa T. Maitra Hunter College and the Graduate Center of the City University of New York First, quick recall of how we get excitations

More information

What is spectroscopy?

What is spectroscopy? Absorption Spectrum What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. With light, you aren t looking directly

More information

All electron optimized effective potential method for solids

All electron optimized effective potential method for solids All electron optimized effective potential method for solids Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. 22

More information

Modeling of Transport and Gain in Quantum Cascade Lasers

Modeling of Transport and Gain in Quantum Cascade Lasers Modeling of Transport and Gain in Quantum Cascade Lasers Andreas Wacker in collaboration with: M.P. Pereira Jr., NMRC, Cork p.1 Introduction p.2 The Challenge: Intersubband Lasing tunneling Kazarinov and

More information

Chemistry, Physics and the Born- Oppenheimer Approximation

Chemistry, Physics and the Born- Oppenheimer Approximation Chemistry, Physics and the Born- Oppenheimer Approximation Hendrik J. Monkhorst Quantum Theory Project University of Florida Gainesville, FL 32611-8435 Outline 1. Structure of Matter 2. Shell Models 3.

More information

André Schleife Department of Materials Science and Engineering

André Schleife Department of Materials Science and Engineering André Schleife Department of Materials Science and Engineering Yesterday you (should have) learned this: http://upload.wikimedia.org/wikipedia/commons/e/ea/ Simple_Harmonic_Motion_Orbit.gif 1. deterministic

More information

Light and Matter. Thursday, 8/31/2006 Physics 158 Peter Beyersdorf. Document info

Light and Matter. Thursday, 8/31/2006 Physics 158 Peter Beyersdorf. Document info Light and Matter Thursday, 8/31/2006 Physics 158 Peter Beyersdorf Document info 3. 1 1 Class Outline Common materials used in optics Index of refraction absorption Classical model of light absorption Light

More information

Introduction to Nonlinear Optics

Introduction to Nonlinear Optics Introduction to Nonlinear Optics Prof. Cleber R. Mendonca http://www.fotonica.ifsc.usp.br Outline Linear optics Introduction to nonlinear optics Second order nonlinearities Third order nonlinearities Two-photon

More information

A microscopic approach to nuclear dynamics. Cédric Simenel CEA/Saclay, France

A microscopic approach to nuclear dynamics. Cédric Simenel CEA/Saclay, France A microscopic approach to nuclear dynamics Cédric Simenel CEA/Saclay, France Introduction Quantum dynamics of complex systems (nuclei, molecules, BEC, atomic clusters...) Collectivity: from vibrations

More information

Ultra-fast response of nano-carbons under dynamical strong electric field

Ultra-fast response of nano-carbons under dynamical strong electric field Ultra-fast response of nano-carbons under dynamical strong electric field Yoshiyuki Miyamoto NEC Nano Electronics Res. Labs. Acknowledgements Dr. Nakamura (RIST, Tokyo) Prof. Tománek (Michigan Univ.) Prof.

More information

Time-dependent density functional theory

Time-dependent density functional theory Annual Review of Physical Chemistry 2004 1056-8700/97/0610-00 Time-dependent density functional theory M. A. L. Marques and E.K. U. Gross Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute of Microstructure Physics Halle (Saale) OUTLINE Phenomena to be described by TDDFT: Matter in weak and strong laser fields Basic

More information