Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 Supporting Information The Journal of Physical Chemistry A Determination of Binding Strengths of a Host-Guest Complex Using Resonance Raman Scattering Edward H. Witlicki, Stinne W. Hansen, Martin Christensen, Thomas S. Hansen, Sune D. Nygaard, Jan O. Jeppesen, Eric W. Wong, Lasse Jensen, Amar H. Flood Table of Contents S1. Determination of the Spectral and the Resonance Raman Enhancement Factors S2. Computational Details and Results S3. Calculated Absolute and Relative Experimental Raman Intensities of TTF and CBPQT 4+ S4. Experimental and Calculated Spectra ( cm 1 ) S5. Selected Normal Modes S6. Coordinates of the Optimized Geometries S7. References S1

2 S1. Determination of the Spectral and the Resonance Raman Enhancement Factors The spectral enhancement factors (SEFs) were calculated using the final solutions of the titration (MeCN) containing the complex compared to a 34 mm solution (MeCN) of CBPQT 4+ or a 11 mm solution (MeCN) of TTF by reference to the MeCN solvent bands. The background counts were subtracted from the signal counts for each vibrational band of interest, including those of the solvent. Each of the Raman band intensities obtained from the sample at 100% complexation was then normalized to that of a solvent band chosen for its proximal frequency in order to minimize self-absorption effects. The SEFs were obtained by taking the ratio of the concentration and solvent-scaled, resonance-enhanced Raman bands at the end of the titration to those of the normal Raman bands of the 34 mm CBPQT 4+ solution (for CBPQT 4+ -based vibrations in the complex) or the 11 mm TTF solution (for TTF-based vibrations in the complex). Resonance Raman enhancement factors (RREFs) were calculated from spectra of the same solution (5 mm CBPQT 4+, 10 mm TTF, MeCN, 298 K) using two different excitation wavelengths (785 and nm) and with the same set of optics, obviating the need to normalize to concentration and solid angle. The background subtracted signal counts were normalized to irradiation time and laser power before taking the ratio of resonantly-enhanced (785 nm excitation) to normal Raman (514.5 nm excitation) signal intensity. S2. Computational Details and Results All calculations presented in this work have been done using a local version of the Amsterdam Density Functional (ADF) program package. S1 The Becke-Perdew (BP86) XC-potential and a triple-ζ-polarized Slater type (TZP) basis set from the ADF basis set library have been used. The 1s core has been kept frozen for C, N, and O atoms, and the 1s-2p core for S. The vibrational frequencies and normal modes were calculated within the harmonic approximation. We have successfully used this functional and basis set in earlier studies of RRS spectra. S2 The binding energy of the complex is analyzed using the extended transition state method developed by Ziegler and Rauk. S3 Basis set superposition errors (BSSE) have not been accounted for, but is expected to be small for weakly interaction systems with the TZP basis set. Full geometry optimization, excitation energies and frequency calculations have been performed prior to the polarizability calculations. The polarizability derivatives are then calculated by numerical 3-point differentiation with respect to the normal mode displacements as described in detail in Ref. S4. This allows us to selectively study the Raman intensities of the normal modes associated with the frequency range cm 1. The electronic polarizability both on and off resonance is calculated by including the finite lifetime of the electronic excited states in the timedependent density functional theory (TDDFT) calculation. S4 The finite lifetime is included phenomenologically using a common damping parameter which describes relaxation and dephasing of the excited state. A value of Γ = Hartree (~800 cm 1 ) was used, which is what we have found previously to be reasonable for other molecules. S4 Absolute Raman intensities are presented here as the differential Raman scattering cross section (dσ/dω) as S2

3 (1) where ν in and ν p are the frequency of the incident light and of the p'th vibrational mode, respectively, and T = 298 K. and are the isotropic and anisotropic polarizability derivatives with respect to vibrational mode p. For the normal Raman spectra the polarizability derivatives needed in eq (1) were calculated at zero frequency; however a wavelength of nm was assumed for calculations of the Raman differential cross section. The charge-transfer (CT) transition for the complex was calculated using TDDFT to be at ev, which severely underestimate the experimental result of ev. To match the experimental situation in which the excitation is on the blue side of the CT maximum, we calculated the resonance Raman spectra at ev, slightly blue of the CT transition. However, in the calculations of the cross-sections we used a wavelength of 850 nm. To assist with the vibrational assignment of the normal modes of the complex we calculate the overlap between the normal modes of the complex (i) and those of the free TTF and CBPQT 4+ (jth modes). The overlap (O ij ) is calculated as the normalized scalar product of the normal modes (2) where and are the mass weighted Cartesian normal modes for the complex and the uncomplexed units, respectively. The contribution of each normal mode is then calculated as the square of the overlap. Before calculating the overlap the molecules are aligned in space using the quaternion method as described in ref. [S5]. Table S1. Percentage contributions of the normal modes of TTF (D 2h ) and CBPQT 4+ to the normal modes of the complex calculated using eq.(2). TTF* and CBPQT 4+ * indicate normal modes calculated from the individual molecules based on the structure they adopt within the complex. CBPQT TTF CBPQT % 63% % % 73% % CBPQT 4+ * TTF CBPQT % 86% % % 83% % S3

4 TTF (D 2h ) TTF CBPQT % 78% TTF* 1537 TTF CBPQT % In one trivial example, the CBPQT 4+ -based 1602 cm 1 band of the complex corresponds to (a) 92% of the 1613 cm 1 band of the geometry-optimized free CBPQT 4+, or (b) 97% of the 1615 cm 1 band of the CBPQT 4+ excised from the complex. This is trivial because the normal mode description remains relatively unchanged following the changes in structure, conformation and symmetry upon complexation. S3. Calculated Absolute and Relative Experimental Raman Intensities of TTF and CBPQT 4+ The calculated absolute Raman cross sections indicate that the CBPQT 4+ is a stronger scatterer than TTF. On the basis of comparison between the intensities of the two strongest bands of CBPQT 4+ (1613 cm 1 ) and TTF (1508 cm 1 ), the ratio is six. Experimentally, the ratio was determined by reference to MeCN solvent bands using the same bands to be a factor of two-fold more intense for CBPQT 4+. S4. Experimental and Calculated RRS Spectra ( cm 1 ) S4

5 Notes: Experimental (left) and calculated (right) Raman spectra for TTF (green; expt: solid state; calc: gas phase, D 2h ), CBPQT 4+ (blue; expt: 4PF 6 salt in solid state; calc: gas phase) and the TTF CBPQT 4+ complex (black; expt: 11.5 mm, MeCN; calc: gas phase). All experimental spectra were obtained at room temperature. S.5 Selected Normal Modes S5

6 S6

7 S6. Coordinates of the Optimized Geometries Table S2. Cartesian coordinates of TTF in Ångstrom using TZP/BP86. TTF X Y Z S C S C C C S C C S H H H H Table S3. Cartesian coordinates of CBPQT 4+ in Ångstrom using TZP/BP86. CBPQT 4+ X Y Z C C C N S7

8 C C C C C C C C C C N C C C C C H H H H H H H H H H H H H H H H C C C C C C H N H H C C H C C H C S8

9 H C H H N H H C C C C H C H C H H H H Table S4. Cartesian coordinates of TTF CBPQT 4+ in Ångstrom using TZP/BP86. TTF CBPQT 4+ X Y Z C C C C C C C N C C C C C C C C N C C C C C C S9

10 C C C C N C C C C C C C C N C C C S C S C C C S C C S H H H H H H H H H H H H H H H H H H H H H H S10

11 H H H H H H H H H H H H H H S7. References (S1) (a) te Velde, G.; Bickelhaupt, F. M.; van Gisbergen, S. J. A.; Fonseca Guerra, C.; Baerends, E. J.; Snijders, J. G.; Ziegler, T. J. Comput. Chem 2001, 22, (b) ADF, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, Local modified version. (S2) (a) Jensen, L.; Zhao, L.; Autschbach, J.; Schatz, G. C. J. Chem. Phys. 2005, 123, (b) Jensen, L.; Schatz, G. C. J. Phys. Chem. A, 2006, 110, (S3) (a) Zeigler, T.; Rauk, A. Theor. Chim. Acta 1977, 46, (b) Ziegler, T.; Rauk, A. Inorg. Chem. 1979, 18, (c) Ziegler, T.; Rauk, A. Inorg. Chem. 1979, 18, (S4) Reiher, M.; Neugebauer, J.; Hess, B. A. Z. Phys. Chem. 2003, 217, (S5) Heisterberg, D. J. 1990, A program to superimpose atoms of two molecules by the quaternion method. S11

Supporting information for: Simulating Ensemble-Averaged. Surface-Enhanced Raman Scattering

Supporting information for: Simulating Ensemble-Averaged. Surface-Enhanced Raman Scattering Supporting information for: Simulating Ensemble-Averaged Surface-Enhanced Raman Scattering Dhabih V. Chulhai, Xing Chen, and Lasse Jensen Department of Chemistry, The Pennsylvania State University, 104

More information

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry Supporting Information for

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry Supporting Information for Supporting Information for Structural Characterisation and Elucidation of the Electronic Structure of the Mononuclear Pt(III) Complex [Pt([9]aneS 3 ) 2 ] 3+ ([9]aneS 3 = 1,4,7-trithiacyclononane) Emma

More information

Density Functional Theory (DFT) modelling of C60 and

Density Functional Theory (DFT) modelling of C60 and ISPUB.COM The Internet Journal of Nanotechnology Volume 3 Number 1 Density Functional Theory (DFT) modelling of C60 and N@C60 N Kuganathan Citation N Kuganathan. Density Functional Theory (DFT) modelling

More information

Electronic quantum effect on hydrogen bond geometry in. water dimer

Electronic quantum effect on hydrogen bond geometry in. water dimer Electronic quantum effect on hydrogen bond geometry in water dimer Danhui Li 1,2, Zhiyuan Zhang 1,2 Wanrun Jiang 1,2 Depeng Zhang 1,2 Yu Zhu 1,2 and Zhigang Wang 1,2* 1 Institute of Atomic and Molecular

More information

Application of IR Raman Spectroscopy

Application of IR Raman Spectroscopy Application of IR Raman Spectroscopy 3 IR regions Structure and Functional Group Absorption IR Reflection IR Photoacoustic IR IR Emission Micro 10-1 Mid-IR Mid-IR absorption Samples Placed in cell (salt)

More information

Near- and Deep-Ultraviolet Resonance Raman Spectroscopy of Pyrazine-Al 4 Complex and Al 3 -Pyrazine-Al 3 Junction

Near- and Deep-Ultraviolet Resonance Raman Spectroscopy of Pyrazine-Al 4 Complex and Al 3 -Pyrazine-Al 3 Junction 19328 J. Phys. Chem. C 2009, 113, 19328 19334 Near- and Deep-Ultraviolet Resonance Raman Spectroscopy of Pyrazine-Al 4 Complex and Al 3 -Pyrazine-Al 3 Junction Mengtao Sun,*, Shunping Zhang, Yurui Fang,

More information

Formation and characterization of a. molecule-metal-molecule bridge in real space SUPPORTING INFORMATION

Formation and characterization of a. molecule-metal-molecule bridge in real space SUPPORTING INFORMATION Formation and characterization of a molecule-metal-molecule bridge in real space SUPPORTING INFORMATION Florian Albrecht,, Mathias Neu, Christina Quest, Ingmar Swart,, and Jascha Repp Institute of Experimental

More information

Supporting Information for: Nanoscale Chemical Imaging of a Dynamic Molecular Phase. Boundary with Ultrahigh Vacuum Tip-Enhanced Raman.

Supporting Information for: Nanoscale Chemical Imaging of a Dynamic Molecular Phase. Boundary with Ultrahigh Vacuum Tip-Enhanced Raman. Supporting Information for: Nanoscale Chemical Imaging of a Dynamic Molecular Phase Boundary with Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy Nan Jiang,,,* Naihao Chiang, Lindsey R. Madison, Eric

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/323/5913/492/dc1 Supporting Online Material for Complementary Active Sites Cause Size-Selective Reactivity of Aluminum Cluster Anions with Water Patrick J. Roach, W.

More information

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering Raman Spectroscopy What happens when light falls on a material? Transmission Reflection Absorption Luminescence Elastic Scattering Inelastic Scattering Raman, Fluorescence and IR Scattering Absorption

More information

Cluster-π electronic interaction in a superatomic Au 13 cluster bearing σ-bonded acetylide ligands

Cluster-π electronic interaction in a superatomic Au 13 cluster bearing σ-bonded acetylide ligands Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 SUPPORTING INFORMATION Cluster-π electronic interaction in a superatomic Au 13 cluster

More information

Supplementary Figures Supplementary Figure 1. ATR-IR spectra of 2 (top) and 2D (bottom).

Supplementary Figures Supplementary Figure 1. ATR-IR spectra of 2 (top) and 2D (bottom). Supplementary Figures Supplementary Figure 1. ATR-IR spectra of 2 (top) and 2D (bottom). Supplementary Figure 2. ATR-IR spectra of 3 (top) and 3D (bottom). 1 Supplementary Figure 3. ATR-IR spectra of 5

More information

Lecture 10. Lidar Effective Cross-Section vs. Convolution

Lecture 10. Lidar Effective Cross-Section vs. Convolution Lecture 10. Lidar Effective Cross-Section vs. Convolution q Introduction q Convolution in Lineshape Determination -- Voigt Lineshape (Lorentzian Gaussian) q Effective Cross Section for Single Isotope --

More information

Anisotropic valence\core x-ray fluorescence from a Rh en 3 Mn N CN 5 "H 2 O single crystal: Experimental results and density functional calculations

Anisotropic valence\core x-ray fluorescence from a Rh en 3 Mn N CN 5 H 2 O single crystal: Experimental results and density functional calculations JOURNAL OF CHEMICAL PHYSICS VOLUME 116, NUMBER 5 1 FEBRUARY 2002 Anisotropic valence\core x-ray fluorescence from a Rh en 3 Mn N CN 5 "H 2 O single crystal: Experimental results and density functional

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Synthesis and Properties of the THF Solvates of Extremely Soluble Bis(2,4,6-trimethylphenyl)calcium and Tris(2,6-dimethoxyphenyl)dicalcium

More information

Magnetic Properties: NMR, EPR, Susceptibility

Magnetic Properties: NMR, EPR, Susceptibility Magnetic Properties: NMR, EPR, Susceptibility Part 3: Selected 5f 2 systems Jochen Autschbach, University at Buffalo, jochena@buffalo.edu J. Autschbach Magnetic Properties 1 Acknowledgments: Funding: Current

More information

Supporting information for: Simulating Third-Order Nonlinear Optical. Properties Using Damped Cubic Response. Theory within Time-Dependent Density

Supporting information for: Simulating Third-Order Nonlinear Optical. Properties Using Damped Cubic Response. Theory within Time-Dependent Density Supporting information for: Simulating Third-Order Nonlinear Optical Properties Using Damped Cubic Response Theory within Time-Dependent Density Functional Theory Zhongwei Hu, Jochen Autschbach, and Lasse

More information

PECULIARITIES OF THE SERS SPECTRA OF THE HYDROQUINONE MOLECULE ADSORBED ON TITANIUM DIOXID

PECULIARITIES OF THE SERS SPECTRA OF THE HYDROQUINONE MOLECULE ADSORBED ON TITANIUM DIOXID PECULIARITIES OF THE SERS SPECTRA OF THE HYDROQUINONE MOLECULE ADSORBED ON TITANIUM DIOXID A.M. Polubotko *, V.P. Chelibanov** *A.F. Ioffe Physico-Technical Institute Russian Academy of Sciences, Politechnicheskaya

More information

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh RAMAN SPECTROSCOPY Scattering Mid-IR and NIR require absorption of radiation from a ground level to an excited state, requires matching of radiation from source with difference in energy states. Raman

More information

Supplementary information

Supplementary information Supplementary information Vibrational coherence transfer in an electronically decoupled molecular dyad F. Schweighöfer 1, L. Dworak 1, M. Braun 1, M. Zastrow 2, J. Wahl 1, I. Burghardt 1, K. Rück-Braun

More information

Supporting Information

Supporting Information Supporting Information Interface-Induced Affinity Sieving in Nanoporous Graphenes for Liquid-Phase Mixtures Yanan Hou, Zhijun Xu, Xiaoning Yang * State Key Laboratory of Material-Orientated Chemical Engineering,

More information

A56. Raman Spektroscopy. Jan Publisher: Institute of Physical Chemistry

A56. Raman Spektroscopy. Jan Publisher: Institute of Physical Chemistry Physikalische-Chemisches Praktikum für Anfänger A56 Raman Spektroscopy Jan. 2017 Publisher: Institute of Physical Chemistry 1 Objectives 1. Take the Raman spectra of CO 2 (s), CS 2 (l), C 6 H 6 (l) and

More information

Ligand-Field Excited States of Metal Hexacarbonyls

Ligand-Field Excited States of Metal Hexacarbonyls Inorg. Chem. 2005, 44, 2454 2458 Patrick Hummel, Jonas Oxgaard, William A. Goddard III, and Harry B. Gray* California Institute of Technology, Mail Code 39-74, Pasadena, California 925 Received December

More information

Supplementary Note 1 Cleanliness during FM-TERS measurement Initial cleanliness of the whole system (before TERS measurement) can be assured using

Supplementary Note 1 Cleanliness during FM-TERS measurement Initial cleanliness of the whole system (before TERS measurement) can be assured using Supplementary Note 1 Cleanliness during FM-TERS measurement Initial cleanliness of the whole system (before TERS measurement) can be assured using the protocol in the Methods sections concerning tip and

More information

Answers to questions on exam in laser-based combustion diagnostics on March 10, 2006

Answers to questions on exam in laser-based combustion diagnostics on March 10, 2006 Answers to questions on exam in laser-based combustion diagnostics on March 10, 2006 1. Examples of advantages and disadvantages with laser-based combustion diagnostic techniques: + Nonintrusive + High

More information

Study of Phase Transitions by Means of Raman Scattering

Study of Phase Transitions by Means of Raman Scattering Study of Phase Transitions by Means of Raman Scattering M. Mahbubur Rahman Department of Physics & Physical Oceanography Memorial University, Canada Outlines Introduction Advantages of Raman spectroscopy?

More information

Calculation of torsional and rotational Raman spectra of hydrogen peroxide

Calculation of torsional and rotational Raman spectra of hydrogen peroxide See discussions, stats, and author profiles for this publication at: https://wwwresearchgatenet/publication/3631480 Calculation of torsional and rotational Raman spectra of hydrogen peroxide ARTICLE in

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

What is spectroscopy?

What is spectroscopy? Absorption Spectrum What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. With light, you aren t looking directly

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supporting information Resonant Raman Spectra of Molecules with Diradical Character:

More information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013 Electronic Supplementary Information (ESI) available: Experimental Materials and syntheses ReS 2 and MoS 2 were prepared from Re and Mo annealed in H 2 atmosphere and commercially available sulfur powder,

More information

Comparison of frozen-density embedding and discrete reaction field solvent models for molecular propertiesw

Comparison of frozen-density embedding and discrete reaction field solvent models for molecular propertiesw PAPER www.rsc.org/pccp Physical Chemistry Chemical Physics Comparison of frozen-density embedding and discrete reaction field solvent models for molecular propertiesw Christoph R. Jacob,* a Johannes Neugebauer,

More information

Lecture 3: Light absorbance

Lecture 3: Light absorbance Lecture 3: Light absorbance Perturbation Response 1 Light in Chemistry Light Response 0-3 Absorbance spectrum of benzene 2 Absorption Visible Light in Chemistry S 2 S 1 Fluorescence http://www.microscopyu.com

More information

Adiabatic connection for near degenerate excited states

Adiabatic connection for near degenerate excited states PHYSICAL REVIEW A 69, 052510 (2004) Adiabatic connection for near degenerate excited states Fan Zhang Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, New Jersey

More information

Rotational Raman Spectroscopy

Rotational Raman Spectroscopy Rotational Raman Spectroscopy If EM radiation falls upon an atom or molecule, it may be absorbed if the energy of the radiation corresponds to the separation of two energy levels of the atoms or molecules.

More information

Density-functional generalized-gradient and hybrid calculations of electromagnetic properties using Slater basis sets

Density-functional generalized-gradient and hybrid calculations of electromagnetic properties using Slater basis sets JOURNAL OF CHEMICAL PHYSICS VOLUME 120, NUMBER 16 22 APRIL 2004 ARTICLES Density-functional generalized-gradient and hybrid calculations of electromagnetic properties using Slater basis sets Mark A. Watson,

More information

Ligand Field Analyses of Tris(biuret)chromium(III) Chloride and Hexaureachromium(III) Bromide

Ligand Field Analyses of Tris(biuret)chromium(III) Chloride and Hexaureachromium(III) Bromide Ligand Field Analyses of Tris(biuret)chromium(III) Chloride Bull. Korean Chem. Soc. 1999, Vol. 0, No. 8 93 Ligand Field Analyses of Tris(biuret)chromium(III) Chloride and Hexaureachromium(III) Bromide

More information

Raman spectroscopy of phthalocyanines and their sulfonated derivatives

Raman spectroscopy of phthalocyanines and their sulfonated derivatives Journal of Molecular Structure 744 747 (2005) 481 485 www.elsevier.com/locate/molstruc Raman spectroscopy of phthalocyanines and their sulfonated derivatives B. Brożek-Płuska*, I. Szymczyk, H. Abramczyk

More information

Modern Optical Spectroscopy

Modern Optical Spectroscopy Modern Optical Spectroscopy With Exercises and Examples from Biophysics and Biochemistry von William W Parson 1. Auflage Springer-Verlag Berlin Heidelberg 2006 Verlag C.H. Beck im Internet: www.beck.de

More information

Supporting information for the manuscript. Excited state structural evolution during charge-transfer reactions in Betaine-30

Supporting information for the manuscript. Excited state structural evolution during charge-transfer reactions in Betaine-30 Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supporting information for the manuscript Excited state structural evolution during

More information

A very brief history of the study of light

A very brief history of the study of light 1. Sir Isaac Newton 1672: A very brief history of the study of light Showed that the component colors of the visible portion of white light can be separated through a prism, which acts to bend the light

More information

Electron scattering in large water clusters from photoelectron imaging with high harmonic radiation

Electron scattering in large water clusters from photoelectron imaging with high harmonic radiation Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2018 PCCP- Electronic Supplementary Information Electron scattering in large water clusters

More information

Spectroscopic Selection Rules

Spectroscopic Selection Rules E 0 v = 0 v = 1 v = 2 v = 4 v = 3 For a vibrational fundamental (Δv = ±1), the transition will have nonzero intensity in either the infrared or Raman spectrum if the appropriate transition moment is nonzero.

More information

Propensity of Different AgBr Surfaces for Photoinduced Silver Cluster Formation: A Molecular Orbital Analysis

Propensity of Different AgBr Surfaces for Photoinduced Silver Cluster Formation: A Molecular Orbital Analysis 8184 J. Phys. Chem. A 2003, 107, 8184-8190 Propensity of Different AgBr Surfaces for Photoinduced Silver Cluster Formation: A Molecular Orbital Analysis Pradeep Gutta and Roald Hoffmann* Department of

More information

Supplemental Material

Supplemental Material This journal is The Owner Societies 1 Supplemental Material Significant Role of DNA Backbone in Mediating the Transition Origin of Electronic Excitations of B-DNA Implication from Long Range Corrected

More information

Molecular Symmetry. Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals

Molecular Symmetry. Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals Molecular Symmetry Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals - A molecule has a symmetry element if it is unchanged by a particular symmetry operation

More information

Supplementary information for. plasmonic nanorods interacting with J-aggregates.

Supplementary information for. plasmonic nanorods interacting with J-aggregates. Supplementary information for Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. by Gülis Zengin, Göran Johansson, Peter Johansson, Tomasz J. Antosiewicz,

More information

Resonance Raman measurements utilizing a deep UV source

Resonance Raman measurements utilizing a deep UV source Resonance Raman measurements utilizing a deep UV source Adam Willitsford a, C. Todd Chadwick b, Hans Hallen b, and C. Russell Philbrick a a The Pennsylvania State University, Department of Electrical Engineering,

More information

The new diphosphanylphosphido complexes of Tungsten(VI) and Molybdenum(VI). Their synthesis, structures and properties. SUPPLEMENTARY MATERIALS

The new diphosphanylphosphido complexes of Tungsten(VI) and Molybdenum(VI). Their synthesis, structures and properties. SUPPLEMENTARY MATERIALS Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 The new diphosphanylphosphido complexes of Tungsten(VI) and Molybdenum(VI). Their synthesis,

More information

[Electronic Supplementary Information]

[Electronic Supplementary Information] [Electronic Supplementary Information] Tuning the Interparticle Distance in Nanoparticle Assemblies in Suspension via DNA-Triplex Formation: Correlation Between Plasmonic and Surface-enhanced Raman Scattering

More information

1. Transition dipole moment

1. Transition dipole moment 1. Transition dipole moment You have measured absorption spectra of aqueous (n=1.33) solutions of two different chromophores (A and B). The concentrations of the solutions were the same. The absorption

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

Alignment characterization of single-wall carbon nanotubes by Raman scattering

Alignment characterization of single-wall carbon nanotubes by Raman scattering Physics Letters A 313 (2003) 302 306 www.elsevier.com/locate/pla Alignment characterization of single-wall carbon nanotubes by Raman scattering Pijun Liu, Liyue Liu, Yafei Zhang Key Laboratory for Thin

More information

V( x) = V( 0) + dv. V( x) = 1 2

V( x) = V( 0) + dv. V( x) = 1 2 Spectroscopy 1: rotational and vibrational spectra The vibrations of diatomic molecules Molecular vibrations Consider a typical potential energy curve for a diatomic molecule. In regions close to R e (at

More information

A Dense Grid of Reference Iodine Lines for Optical Frequency Calibration in the Range nm

A Dense Grid of Reference Iodine Lines for Optical Frequency Calibration in the Range nm Journal of Molecular Spectroscopy 201, 256 266 (2000) doi:10.1006/jmsp.2000.8085, available online at http://www.idealibrary.com on A Dense Grid of Reference Iodine Lines for Optical Frequency Calibration

More information

Supporting Information

Supporting Information Supporting Information Molecular Orbital Gating Surface-Enhanced Raman Scattering Chenyang Guo, 1, Xing Chen, 2, Song-Yuan Ding, 3, Dirk Mayer, 4 Qingling Wang, 1 Zhikai Zhao, 1,5 Lifa Ni, 1,6 Haitao Liu,

More information

Supporting Information Computational Part

Supporting Information Computational Part Supporting Information Computational Part Ruthenium-Catalyzed Alkyne trans-hydrometalation: Mechanistic Insights and Preparative Implications Dragoş Adrian Roşca, Karin Radkowski, Larry M. Wolf, Minal

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 26 Aug 2003

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 26 Aug 2003 Circular dichroism simulated spectra of chiral gold nanoclusters: A dipole approximation arxiv:cond-mat/0308552v1 [cond-mat.mtrl-sci] 26 Aug 2003 Carlos E. Román-Velázquez, 1 Cecilia Noguez, 2, and Ignacio

More information

MOLECULAR SPECTROSCOPY

MOLECULAR SPECTROSCOPY MOLECULAR SPECTROSCOPY First Edition Jeanne L. McHale University of Idaho PRENTICE HALL, Upper Saddle River, New Jersey 07458 CONTENTS PREFACE xiii 1 INTRODUCTION AND REVIEW 1 1.1 Historical Perspective

More information

Headspace Raman Spectroscopy

Headspace Raman Spectroscopy ELECTRONICALLY REPRINTED FROM SEPTEMBER 2014 Molecular Spectroscopy Workbench Raman Spectroscopy We examine vapor-phase Raman spectroscopy through the acquisition of spectra from gas molecules confined

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Chiral atomically thin films Cheol-Joo Kim, A. Sánchez-Castillo, Zack Ziegler, Yui Ogawa, Cecilia Noguez and Jiwoong Park List of Supplementary Items Aligned Crystalline Orientation of Graphene Reliability

More information

Supporting information

Supporting information Supporting information Toward a Janus Cluster: Regiospecific Decarboxylation of Ag 44 (4- MBA) 30 @Ag Nanoparticles Indranath Chakraborty, Anirban Som, Tuhina Adit Maark, Biswajit Mondal, Depanjan Sarkar

More information

Aqeel Mohsin Ali. Molecular Physics Group, Department of Physics, College of Science, University of Basrah, Basrah, Iraq

Aqeel Mohsin Ali. Molecular Physics Group, Department of Physics, College of Science, University of Basrah, Basrah, Iraq Journal of Physical Science, Vol. 23(2), 85 90, 2012 Theoretical Investigation for Neon Doping Effect on the Electronic Structure and Optical Properties of Rutile TiO 2 for Photocatalytic Applications

More information

Electron Dynamiχ MPRG Fritz-Haber-Institut der Max-Planck-Gesellschaft

Electron Dynamiχ MPRG Fritz-Haber-Institut der Max-Planck-Gesellschaft Electron Dynamiχ MPRG Fritz-Haber-Institut der Max-Planck-Gesellschaft How exciting! 2016 Berlin, 3-6 August laura.foglia@elettra.eu 1 Current research challenges V Light Harvesting Light Emission Energy

More information

12. Spectral diffusion

12. Spectral diffusion 1. Spectral diffusion 1.1. Spectral diffusion, Two-Level Systems Until now, we have supposed that the optical transition frequency of each single molecule is a constant (except when we considered its variation

More information

Fig. 1: Raman spectra of graphite and graphene. N indicates the number of layers of graphene. Ref. [1]

Fig. 1: Raman spectra of graphite and graphene. N indicates the number of layers of graphene. Ref. [1] Vibrational Properties of Graphene and Nanotubes: The Radial Breathing and High Energy Modes Presented for the Selected Topics Seminar by Pierce Munnelly 09/06/11 Supervised by Sebastian Heeg Abstract

More information

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Electronic supplementary information Strategy to Enhance Solid-State Fluorescence and

More information

INFRARED SPECTROSCOPY OF C 6 D 6 Rg n (n = 1, 2)

INFRARED SPECTROSCOPY OF C 6 D 6 Rg n (n = 1, 2) INFRARED SPECTROSCOPY OF C 6 D 6 Rg n (n = 1, 2) J George, M Yousefi, M Razaei, B McKellar, N M Ahmadi University of Calgary June 19, 2014 OUTLINE BACKGROUND Prior Investigations on Benzene-Noble gas complexes

More information

Supporting Information for the Paper Entitled Revealing the. thermodynamic driving force for ligand-based reductions in

Supporting Information for the Paper Entitled Revealing the. thermodynamic driving force for ligand-based reductions in Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2015 Supporting Information for the Paper Entitled Revealing the thermodynamic driving force

More information

Supporting Online Material. Highly Sensitive Plasmonic Silver Nanorods

Supporting Online Material. Highly Sensitive Plasmonic Silver Nanorods Supporting Online Material Highly Sensitive Plasmonic Silver Nanorods Arpad Jakab, Christina Rosman, Yuriy Khalavka, Jan Becker, Andreas Trügler+, Ulrich Hohenester+, and Carsten Sönnichsen * MAINZ graduate

More information

Tetrathiafulvalene radical cation (TTF +. ) Charge Transfer aggregates included in PMMA matrix, a Resonance Raman Study

Tetrathiafulvalene radical cation (TTF +. ) Charge Transfer aggregates included in PMMA matrix, a Resonance Raman Study Tetrathiafulvalene radical cation (TTF +. ) Charge Transfer aggregates included in PMMA matrix, a Resonance Raman Study B. F. Scremin 1 1-IOM CNR, Institute Officina dei Materiali of the National Research

More information

Supplementary Information. SERS Detection of Ricin B-Chain via N-Acetyl-Galactosamine Glycopolymers

Supplementary Information. SERS Detection of Ricin B-Chain via N-Acetyl-Galactosamine Glycopolymers Supplementary Information SERS Detection of Ricin B-Chain via N-Acetyl-Galactosamine Glycopolymers Victoria M. Szlag a, Matthew J. Styles a, Lindsey R. Madison b, Antonio R. Campos a, Bharat Wagh a, Dustin

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy Spectroscopy in Inorganic Chemistry Vibrational energy levels in a diatomic molecule f = k r r V = ½kX 2 Force constant r Displacement from equilibrium point 2 X= r=r-r eq V = ½kX 2 Fundamental Vibrational

More information

ORIGINAL PAPER. Mariusz P. Mitoraj & Rafał Kurczab & Marek Boczar & Artur Michalak

ORIGINAL PAPER. Mariusz P. Mitoraj & Rafał Kurczab & Marek Boczar & Artur Michalak J Mol Model (2010) 16:1789 1795 DOI 10.1007/s00894-010-0740-6 ORIGINAL PAPER Theoretical description of hydrogen bonding in oxalic acid dimer and trimer based on the combined extended-transition-state

More information

ETS-NOCV decomposition of the reaction force for double-proton transfer in formamide-derived systems

ETS-NOCV decomposition of the reaction force for double-proton transfer in formamide-derived systems Journal of Molecular Modeling (2018) 24: 27 https://doi.org/10.1007/s00894-017-3564-9 ORIGINAL PAPER ETS-NOCV decomposition of the reaction force for double-proton transfer in formamide-derived systems

More information

WANG Bingwu, XU Guangxian & CHEN Zhida

WANG Bingwu, XU Guangxian & CHEN Zhida Science in China Ser. B Chemistry 2004 Vol.47 No.2 91 97 91 Study on the covalence of Cu and chemical bonding in an inorganic fullerene-like molecule, [CuCl] 20 [Cp*FeP 5 ] 12 [Cu-(CH 3 CN) 2 Cl ] 5, by

More information

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter CHEM6416 Theory of Molecular Spectroscopy 2013Jan22 1 1. Spectroscopy frequency dependence of the interaction of light with matter 1.1. Absorption (excitation), emission, diffraction, scattering, refraction

More information

A Fluorescent Anionic MOF with Zn 4 (trz) 2 Chain for Highly Selective Visual Sensing of Contaminants: Cr(III) Ion and TNP

A Fluorescent Anionic MOF with Zn 4 (trz) 2 Chain for Highly Selective Visual Sensing of Contaminants: Cr(III) Ion and TNP Supporting Information for A Fluorescent Anionic MOF with 4 (trz) 2 Chain for Highly Selective Visual Sensing of Contaminants: Cr(III) Ion and TNP Xiao-Xia Jia, Ru-Xin Yao*, Fu-Qiang Zhang and Xian-Ming

More information

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Richard Miles and Arthur Dogariu Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Workshop on Oxygen Plasma Kinetics Sept 20, 2016 Financial support: ONR and MetroLaser

More information

Implementation and evaluation of data analysis strategies for time-resolved optical spectroscopy

Implementation and evaluation of data analysis strategies for time-resolved optical spectroscopy Supporting information Implementation and evaluation of data analysis strategies for time-resolved optical spectroscopy Chavdar Slavov, Helvi Hartmann, Josef Wachtveitl Institute of Physical and Theoretical

More information

Defect-based Photonic Crystal Cavity for Silicon Laser

Defect-based Photonic Crystal Cavity for Silicon Laser Defect-based Photonic Crystal Cavity for Silicon Laser Final Term Paper for Nonlinear Optics PHYC/ECE 568 Arezou Khoshakhlagh Instructor: Prof. M. Sheikh-Bahae University of New Mexico karezou@unm.edu

More information

Observation of quadrupole helix chirality and its domain structure in DyFe 3 (BO 3 ) 4

Observation of quadrupole helix chirality and its domain structure in DyFe 3 (BO 3 ) 4 Observation of quadrupole helix chirality and its domain structure in DyFe 3 (BO 3 ) 4 T. Usui, Y. Tanaka, H. Nakajima, M. Taguchi, A. Chainani, M. Oura, S. Shin, N. Katayama, H. Sawa, Y. Wakabayashi,

More information

Raman Spectra of Amorphous Silicon

Raman Spectra of Amorphous Silicon Chapter 6 Raman Spectra of Amorphous Silicon In 1985, Beeman, Tsu and Thorpe established an almost linear relation between the Raman transverse-optic (TO) peak width Ɣ and the spread in mean bond angle

More information

Vibrational Spectra of Chloroform, Freon-11 and Selected Isotopomers in the THz Frequency Region

Vibrational Spectra of Chloroform, Freon-11 and Selected Isotopomers in the THz Frequency Region Vibrational Spectra of Chloroform, Freon-11 and Selected Isotopomers in the THz Frequency Region Christa Haase, Jinjun Liu, Frédéric Merkt, Laboratorium für physikalische Chemie, ETH Zürich current address:

More information

Molecular Dynamics Simulation of In Title to Professor Tohru Takenaka On the Retirement) Author(s) Oobatake, Motohisa; Machida, Katsun

Molecular Dynamics Simulation of In Title to Professor Tohru Takenaka On the Retirement) Author(s) Oobatake, Motohisa; Machida, Katsun Molecular Dynamics Simulation of In Title Spectra of Liquid Methane (Commemor to Professor Tohru Takenaka On the Retirement) Author(s) Oobatake, Motohisa; Machida, Katsun Citation Bulletin of the Institute

More information

Spectroscopy tools for PAT applications in the Pharmaceutical Industry

Spectroscopy tools for PAT applications in the Pharmaceutical Industry Spectroscopy tools for PAT applications in the Pharmaceutical Industry Claude Didierjean Sr. Technology and Applications Consultant Real Time Analytics Mettler Toledo AutoChem, Inc. claude.didierjean@mt.com

More information

Electronic Spectra of Complexes

Electronic Spectra of Complexes Electronic Spectra of Complexes Interpret electronic spectra of coordination compounds Correlate with bonding Orbital filling and electronic transitions Electron-electron repulsion Application of MO theory

More information

Current density functional theory for optical spectra Boeij, P.L. de; Kootstra, F.; Berger, Johannes; Leeuwen, R. van; Snijders, J.G.

Current density functional theory for optical spectra Boeij, P.L. de; Kootstra, F.; Berger, Johannes; Leeuwen, R. van; Snijders, J.G. University of Groningen Current density functional theory for optical spectra Boeij, P.L. de; Kootstra, F.; Berger, Johannes; Leeuwen, R. van; Snijders, J.G. Published in: The Journal of Chemical Physics

More information

INPUT DESCRIPTION FOR SQM version 2.0

INPUT DESCRIPTION FOR SQM version 2.0 INPUT DESCRIPTION FOR SQM version 2.0 INTRODUCTION SQM is an add-on module for the PQS program which scales force constants to produce a Scaled Quantum Mechanical (SQM) Force Field. This can correct for

More information

Supporting Information

Supporting Information Supporting Information Synthesis of 1,2,3-tripnictolide anions by reaction of group 15 Zintl ions with acetylene. Isolation of [E 3 C 2 H 2 ] (E = P, As) and preliminary reactivity studies. Robert S. P.

More information

Density-functional-theory response-property calculations with accurate exchange-correlation potentials

Density-functional-theory response-property calculations with accurate exchange-correlation potentials PHYSICAL REVIEW A VOLUME 57, NUMBER 4 APRIL 1998 Density-functional-theory response-property calculations with accurate exchange-correlation potentials S. J. A. van Gisbergen, 1 F. Kootstra, 2 P. R. T.

More information

The frequency-dependent Sternheimer equation in TDDFT

The frequency-dependent Sternheimer equation in TDDFT The frequency-dependent Sternheimer equation in TDDFT A new look into an old equation Miguel A. L. Marques 1 Centre for Computational Physics, University of Coimbra, Portugal 2 European Theoretical Spectroscopy

More information

requency generation spectroscopy Rahul N

requency generation spectroscopy Rahul N requency generation spectroscopy Rahul N 2-11-2013 Sum frequency generation spectroscopy Sum frequency generation spectroscopy (SFG) is a technique used to analyze surfaces and interfaces. SFG was first

More information

Theoretical simulation of nonlinear spectroscopy in the liquid phase La Cour Jansen, Thomas

Theoretical simulation of nonlinear spectroscopy in the liquid phase La Cour Jansen, Thomas University of Groningen Theoretical simulation of nonlinear spectroscopy in the liquid phase La Cour Jansen, Thomas IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF)

More information

Quantum chemical studies on the structures of some heterocyclic azo disperse dyes

Quantum chemical studies on the structures of some heterocyclic azo disperse dyes Quantum chemical studies on the structures of some heterocyclic azo disperse dyes Nesrin Tokay, a* Zeynel Seferoğlu, b Cemil Öğretir, c and Nermin Ertan b a Hacettepe University, Faculty of Science, Chemistry

More information

A quantum chemical approach to the design of chiral negative index materials

A quantum chemical approach to the design of chiral negative index materials A quantum chemical approach to the design of chiral negative index materials Alexander Baev 1, Marek Samoc 1, Paras N. Prasad 1*, Mykhaylo Krykunov 2, and Jochen Autschbach 2 1 The Institute for Lasers,

More information

Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons

Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons Department of Chemistry Physical Chemistry Göteborg University KEN140 Spektroskopi Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons WARNING! The laser gives a pulsed very energetic and

More information

Citation Laser Chemistry, 1999, v. 19 n. 1-4, p Creative Commons: Attribution 3.0 Hong Kong License

Citation Laser Chemistry, 1999, v. 19 n. 1-4, p Creative Commons: Attribution 3.0 Hong Kong License Title Short-time photodissociation dynamics of 1-chloro-2-iodoethane from resonance Raman spectroscopy Author(s) Zheng, X; Phillips, DL Citation Laser Chemistry, 1999, v. 19 n. 1-4, p. 71-74 Issued Date

More information

DOWNLOAD OR READ : INFRARED AND RAMAN SPECTROSCOPY CONCEPTS AND APPLICATIONS PDF EBOOK EPUB MOBI

DOWNLOAD OR READ : INFRARED AND RAMAN SPECTROSCOPY CONCEPTS AND APPLICATIONS PDF EBOOK EPUB MOBI DOWNLOAD OR READ : INFRARED AND RAMAN SPECTROSCOPY CONCEPTS AND APPLICATIONS PDF EBOOK EPUB MOBI Page 1 Page 2 infrared and raman spectroscopy concepts and applications infrared and raman spectroscopy

More information