Time Dependent Density Functional Theory. Francesco Sottile

Size: px
Start display at page:

Download "Time Dependent Density Functional Theory. Francesco Sottile"

Transcription

1 An Introduction Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF) Belfast, 29 Jun 2007

2 Outline 1 Introduction: why TD-DFT? 2 (Just) A bit of Formalism TDDFT: the Foundation Linear Response Formalism 3 TDDFT in practice: The ALDA: Achievements and Shortcomings 4 Resources

3 Outline 1 Introduction: why TD-DFT? 2 (Just) A bit of Formalism TDDFT: the Foundation Linear Response Formalism 3 TDDFT in practice: The ALDA: Achievements and Shortcomings 4 Resources

4 Density Functional... Why? Basic ideas of DFT 1 Any observable of a quantum system can be obtained from the density of the system alone. 2 The density of an interacting-particles system can be calculated as the density of an auxiliary system of non-interacting particles. Importance of the density Example: atom of Nitrogen (7 electron) Ψ(r 1,.., r 7) 21 coordinates 10 entries/coordinate entries 8 bytes/entry bytes bytes/dvd DVDs

5 Density Functional... Why?

6 Density Functional... Why?

7 Density Functional... Why? Basic ideas of DFT 1 Any observable of a quantum system can be obtained from the density of the system alone. 2 The density of an interacting-particles system can be calculated as the density of an auxiliary system of non-interacting particles. Importance of the density Example: atom of Carbon (6 electron) Ψ(r 1,.., r 6) 18 coordinates 10 entries/coordinate entries 8 bytes/entry bytes bytes/dvd DVDs Importance of non-interacting The Kohn-Sham one-particle equations H i (r)ψ i (r) = ɛ i (r)ψ i (r)

8 Density Functional... Why? Basic ideas of DFT 1 Any observable of a quantum system can be obtained from the density of the system alone. 2 The density of an interacting-particles system can be calculated as the density of an auxiliary system of non-interacting particles. Importance of the density Example: atom of Carbon (6 electron) Ψ(r 1,.., r 6) 18 coordinates 10 entries/coordinate entries 8 bytes/entry bytes bytes/dvd DVDs Importance of non-interacting The Kohn-Sham one-particle equations H i (r)ψ i (r) = ɛ i (r)ψ i (r)

9 Density Functional... Successfull? S. Redner

10 Time Dependent DFT... Why? Large field of research concerned with many-electron systems in time-dependent fields Different Phenomena absorption spectra energy loss spectra photo-ionization high-harmonic generation photo-emission

11 Time Dependent DFT... Why? Large field of research concerned with many-electron systems in time-dependent fields Different Phenomena absorption spectra energy loss spectra photo-ionization high-harmonic generation photo-emission

12 Time Dependent DFT... Why? Large field of research concerned with many-electron systems in time-dependent fields Different Phenomena absorption spectra energy loss spectra photo-ionization high-harmonic generation photo-emission

13 Time Dependent DFT... Why? Large field of research concerned with many-electron systems in time-dependent fields Different Phenomena absorption spectra energy loss spectra photo-ionization high-harmonic generation photo-emission

14 Time Dependent DFT... Why? Large field of research concerned with many-electron systems in time-dependent fields Different Phenomena absorption spectra energy loss spectra photo-ionization high-harmonic generation photo-emission

15 Time Dependent DFT... Why? Large field of research concerned with many-electron systems in time-dependent fields Different Phenomena absorption spectra energy loss spectra photo-ionization high-harmonic generation photo-emission ω 5ω

16 Time Dependent DFT... Why? Large field of research concerned with many-electron systems in time-dependent fields Different Phenomena absorption spectra energy loss spectra photo-ionization high-harmonic generation photo-emission

17 Time Dependent DFT... Why? We need a time dependent theory TDDFT is a promising candidate

18 Outline 1 Introduction: why TD-DFT? 2 (Just) A bit of Formalism TDDFT: the Foundation Linear Response Formalism 3 TDDFT in practice: The ALDA: Achievements and Shortcomings 4 Resources

19 Outline 1 Introduction: why TD-DFT? 2 (Just) A bit of Formalism TDDFT: the Foundation Linear Response Formalism 3 TDDFT in practice: The ALDA: Achievements and Shortcomings 4 Resources

20 The name of the game: TDDFT DFT Hohenberg-Kohn theorem 1 The ground-state expectation value of any physical observable of a many-electrons system is a unique functional of the electron density n(r) ϕ 0 Ô ϕ 0 = O[n] P. Hohenberg and W. Kohn Phys.Rev. 136, B864 (1964) (Fermi, Slater) Runge-Gross theorem TDDFT The expectation value of any physical time-dependent observable of a many-electrons system is a unique functional of the time-dependent electron density n(r, t) and of the initial state ϕ 0 = ϕ(t = 0) ϕ(t) Ô(t) ϕ(t) = O[n, ϕ 0 ](t) E. Runge and E.K.U. Gross Phys.Rev.Lett. 52, 997 (1984) (Ando,Zangwill and Soven)

21 The name of the game: TDDFT DFT Hohenberg-Kohn theorem 1 The ground-state expectation value of any physical observable of a many-electrons system is a unique functional of the electron density n(r) ϕ 0 Ô ϕ 0 = O[n] P. Hohenberg and W. Kohn Phys.Rev. 136, B864 (1964) (Fermi, Slater) Runge-Gross theorem TDDFT The expectation value of any physical time-dependent observable of a many-electrons system is a unique functional of the time-dependent electron density n(r, t) and of the initial state ϕ 0 = ϕ(t = 0) ϕ(t) Ô(t) ϕ(t) = O[n, ϕ 0 ](t) E. Runge and E.K.U. Gross Phys.Rev.Lett. 52, 997 (1984) (Ando,Zangwill and Soven)

22 The name of the game: TDDFT Static problem DFT Second-order differential equation Boundary-value problem. Hϕ(r 1,.., r N ) = Eϕ(r 1,.., r N ) TDDFT Time-dependent problem First-order differential equation Initial-value problem H(t)ϕ(r 1,.., r N ; t) = ı t ϕ(r 1,.., r N ; t)

23 The name of the game: TDDFT Static problem DFT Second-order differential equation Boundary-value problem. Hϕ(r 1,.., r N ) = Eϕ(r 1,.., r N ) TDDFT Time-dependent problem First-order differential equation Initial-value problem H(t)ϕ(r 1,.., r N ; t) = ı t ϕ(r 1,.., r N ; t)

24 The name of the game: TDDFT Runge-Gross theorem The expectation value of any physical time-dependent observable of a many-electrons system is a unique functional of the time-dependent electron density n(r, t) and of the initial state ϕ 0 = ϕ(t = 0) ϕ(t) Ô(t) ϕ(t) = O[n, ϕ 0 ](t) E. Runge and E.K.U. Gross Phys.Rev.Lett. 52, 997 (1984)

25 The name of the game: TDDFT Runge-Gross theorem V ext (r, t) V ext(r, t) j(r, t) j (r, t) [n V ext ] [n V ext] n(r, t) n (r, t) n(r, t) V ext (r, t) + c(t) ϕe ic(t) ϕ(t) Ô(t) ϕ(t) = O[n, ϕ 0 ](t) What about infinite systems?

26 The name of the game: TDDFT Runge-Gross theorem V ext (r, t) V ext(r, t) j(r, t) j (r, t) [n V ext ] [n V ext] n(r, t) n (r, t) n(r, t) V ext (r, t) + c(t) ϕe ic(t) ϕ(t) Ô(t) ϕ(t) = O[n, ϕ 0 ](t) What about infinite systems?

27 The name of the game: TDDFT Runge-Gross theorem V ext (r, t) V ext(r, t) j(r, t) j (r, t) [n V ext ] [n V ext] n(r, t) n (r, t) n(r, t) V ext (r, t) + c(t) ϕe ic(t) ϕ(t) Ô(t) ϕ(t) = O[n, ϕ 0 ](t) What about infinite systems?

28 The name of the game: TDDFT Runge-Gross theorem V ext (r, t) V ext(r, t) j(r, t) j (r, t) [n V ext ] [n V ext] n(r, t) n (r, t) n(r, t) V ext (r, t) + c(t) ϕe ic(t) ϕ(t) Ô(t) ϕ(t) = O[n, ϕ 0 ](t) What about infinite systems?

29 The name of the game: TDDFT Runge-Gross theorem V ext (r, t) V ext(r, t) j(r, t) j (r, t) [n V ext ] [n V ext] n(r, t) n (r, t) n(r, t) V ext (r, t) + c(t) ϕe ic(t) ϕ(t) Ô(t) ϕ(t) = O[n, ϕ 0 ](t) What about infinite systems?

30 The name of the game: TDDFT Runge-Gross theorem V ext (r, t) V ext(r, t) j(r, t) j (r, t) [n V ext ] [n V ext] n(r, t) n (r, t) n(r, t) V ext (r, t) + c(t) ϕe ic(t) ϕ(t) Ô(t) ϕ(t) = O[n, ϕ 0 ](t) What about infinite systems?

31 The name of the game: TDDFT DFT Hohenberg-Kohn theorem 2 The total energy functional has a minimum, the ground-state energy E 0, corresponding to the ground-state density n 0. E[n] TDDFT Runge-Gross theorem - No minimum Time-dependent Schrödinger eq. (initial condition ϕ(t = 0) = ϕ 0 ), corresponds to a stationary point of the Hamiltonian action A = t1 t 0 dt ϕ(t) ı H(t) ϕ(t) t E 0 n 0 n

32 The name of the game: TDDFT DFT Hohenberg-Kohn theorem 2 The total energy functional has a minimum, the ground-state energy E 0, corresponding to the ground-state density n 0. E[n] TDDFT Runge-Gross theorem - No minimum Time-dependent Schrödinger eq. (initial condition ϕ(t = 0) = ϕ 0 ), corresponds to a stationary point of the Hamiltonian action A = t1 t 0 dt ϕ(t) ı H(t) ϕ(t) t H[t] E 0 n 0 n t 0 t 1 t

33 The name of the game: TDDFT DFT Kohn-Sham equations TDDFT Time-dependent Kohn-Sham equations» i + V tot (r) φ i (r) = ɛ i φ i (r) Z V tot (r) = V ext (r)+ dr v(r, r )n(r )+V xc ([n], r) δexc [n] V xc ([n], r) = δn(r)» V tot (r, t) φ i (r, t) = i t φ i (r, t) Z V tot (r, t) = V ext (r, t) + v(r, r )n(r, t)dr + V xc ([n]r, t) δaxc [n] V xc ([n], r, t) = δn(r, t) Unknown exchange-correlation potential. V xc functional of the density. Unknown exchange-correlation time-dependent potential. V xc functional of the density at all times and of the initial state.

34 The name of the game: TDDFT DFT Kohn-Sham equations TDDFT Time-dependent Kohn-Sham equations» i + V tot (r) φ i (r) = ɛ i φ i (r) Z V tot (r) = V ext (r)+ dr v(r, r )n(r )+V xc ([n], r) δexc [n] V xc ([n], r) = δn(r)» V tot (r, t) φ i (r, t) = i t φ i (r, t) Z V tot (r, t) = V ext (r, t) + v(r, r )n(r, t)dr + V xc ([n]r, t) δaxc [n] V xc ([n], r, t) = δn(r, t) Unknown exchange-correlation potential. V xc functional of the density. Unknown exchange-correlation time-dependent potential. V xc functional of the density at all times and of the initial state.

35 The name of the game: TDDFT Demonstrations, further readings, etc. R. van Leeuwen Int.J.Mod.Phys. B15, 1969 (2001) V xc ([n], r, t) = δa xc[n] δn(r, t) δv xc ([n], r, t) δn(r, t ) = δ 2 A xc [n] δn(r, t)δn(r, t ) Causality-Symmetry dilemma

36 The name of the game: TDDFT Demonstrations, further readings, etc. R. van Leeuwen Int.J.Mod.Phys. B15, 1969 (2001) V xc ([n], r, t) = δa xc[n] δn(r, t) δv xc ([n], r, t) δn(r, t ) = δ 2 A xc [n] δn(r, t)δn(r, t ) Causality-Symmetry dilemma

37 The name of the game: TDDFT Demonstrations, further readings, etc. R. van Leeuwen Int.J.Mod.Phys. B15, 1969 (2001) V xc ([n], r, t) = δa xc[n] δn(r, t) δv xc ([n], r, t) δn(r, t ) = δ 2 A xc [n] δn(r, t)δn(r, t ) Causality-Symmetry dilemma

38 The name of the game: TDDFT Demonstrations, further readings, etc. R. van Leeuwen Int.J.Mod.Phys. B15, 1969 (2001) V xc ([n], r, t) = δa xc[n] δn(r, t) δv xc ([n], r, t) δn(r, t ) = δ 2 A xc [n] δn(r, t)δn(r, t ) Causality-Symmetry dilemma

39 The name of the game: TDDFT DFT Hohenberg-Kohn theorem The ground-state expectation value of any physical observable of a many-electrons system is a unique functional of the electron density n(r) D ϕ 0 b O ϕ 0 E = O[n] Runge-Gross theorem TDDFT The expectation value of any physical time-dependent observable of a many-electrons system is a unique functional of the time-dependent electron density n(r) and of the initial state ϕ 0 = ϕ(t = 0) D ϕ(t) O(t) ϕ(t) b E = O[n, ϕ 0 ](t) Kohn-Sham equations» i + V tot(r) φ i (r) = ɛ i φ i (r) Kohn-Sham equations» V tot(r, t) φ i (r, t) = i t φ i (r, t)

40 First Approach: Time Evolution of KS equations [H KS (t)] φ i (r, t) = i t φ i(r, t) occ n(r, t) = φ i (r, t) 2 i φ(t) = Û(t, t 0)φ(t 0 ) U(t, t 0 ) = 1 i t t 0 dτh(τ)û(τ, t 0) A. Castro et al. J.Chem.Phys. 121, 3425 (2004)

41 First Approach: Time Evolution of KS equations [H KS (t)] φ i (r, t) = i t φ i(r, t) occ n(r, t) = φ i (r, t) 2 i φ(t) = Û(t, t 0)φ(t 0 ) U(t, t 0 ) = 1 i t t 0 dτh(τ)û(τ, t 0) A. Castro et al. J.Chem.Phys. 121, 3425 (2004)

42 First Approach: Time Evolution of KS equations [H KS (t)] φ i (r, t) = i t φ i(r, t) occ n(r, t) = φ i (r, t) 2 i φ(t) = Û(t, t 0)φ(t 0 ) U(t, t 0 ) = 1 i t t 0 dτh(τ)û(τ, t 0) A. Castro et al. J.Chem.Phys. 121, 3425 (2004)

43 First Approach: Time Evolution of KS equations Photo-absorption cross section σ σ(ω) = 4πω c Imα(ω) α(t) = drv ext (r, t)n(r, t) in dipole approximation (λ dimension of the system) σ zz (ω) = 4πω c Im α(ω) = 4πω c Im dr z n(r, ω)

44 First Approach: Time Evolution of KS equations Photo-absorption cross section σ: porphyrin

45 First Approach: Time Evolution of KS equations Other observables Multipoles M lm (t) = drr l Y lm (r)n(r, t) Angular momentum L z (t) = drφ i (r, t) ı (r ) z φ i (r, t) i

46 First Approach: Time Evolution of KS equations Advantages Direct application of KS equations Advantageous scaling Optimal scheme for finite systems All orders automatically included Shortcomings Difficulties in approximating the V xc [n](r, t) functional of the history of the density Real space not necessarily suitable for solids Does not explicitly take into account a small perturbation. Interesting quantities (excitation energies) are contained in the linear response function!

47 Outline 1 Introduction: why TD-DFT? 2 (Just) A bit of Formalism TDDFT: the Foundation Linear Response Formalism 3 TDDFT in practice: The ALDA: Achievements and Shortcomings 4 Resources

48 Linear Response Approach Polarizability interacting system δn = χδv ext non-interacting system δn n i = χ 0 δv tot

49 Linear Response Approach Polarizability interacting system δn = χδv ext non-interacting system Single-particle polarizability δn n i = χ 0 δv tot χ 0 = ij φ i (r)φ j (r)φ i (r )φ j (r ) ω (ɛ i ɛ j ) hartree, hartree-fock, dft, etc. G.D. Mahan Many Particle Physics (Plenum, New York, 1990)

50 Linear Response Approach Polarizability interacting system δn = χδv ext non-interacting system δn n i = χ 0 δv tot j unoccupied states χ 0 = ij φ i (r)φ j (r)φ i (r )φ j (r ) ω (ɛ i ɛ j ) i occupied states

51 Linear Response Approach Polarizability interacting system non-interacting system δn = χδv ext δn n i = χ 0 δv tot Density Functional Formalism δn = δn n i δv tot = δv ext + δv H + δv xc

52 Linear Response Approach Polarizability χδv ext = χ 0 (δv ext + δv H + δv xc ) ( χ = χ δv H + δv ) xc δv ext δv ext δv H = δv H δn = vχ δv ext δn δv ext δv xc = δv xc δn = f xc χ δv ext δn δv ext with f xc = exchange-correlation kernel

53 Linear Response Approach Polarizability χδv ext = χ 0 (δv ext + δv H + δv xc ) ( χ = χ δv H + δv ) xc δv ext δv ext δv H = δv H δn = vχ δv ext δn δv ext δv xc = δv xc δn = f xc χ δv ext δn δv ext with f xc = exchange-correlation kernel

54 Linear Response Approach Polarizability χδv ext = χ 0 (δv ext + δv H + δv xc ) ( χ = χ δv H + δv ) xc δv ext δv ext δv H = δv H δn = vχ δv ext δn δv ext δv xc = δv xc δn = f xc χ δv ext δn δv ext χ = χ 0 + χ 0 (v + f xc ) χ with f xc = exchange-correlation kernel

55 Linear Response Approach Polarizability χδv ext = χ 0 (δv ext + δv H + δv xc ) ( χ = χ δv H + δv ) xc δv ext δv ext δv H = δv H δn = vχ δv ext δn δv ext δv xc = δv xc δn = f xc χ δv ext δn δv ext χ = [ 1 χ 0 (v + f xc ) ] 1 χ 0 with f xc = exchange-correlation kernel

56 Linear Response Approach Polarizability χδv ext = χ 0 (δv ext + δv H + δv xc ) ( χ = χ δv H + δv ) xc δv ext δv ext δv H = δv H δn = vχ δv ext δn δv ext δv xc = δv xc δn = f xc χ δv ext δn δv ext χ = [ 1 χ 0 (v + f xc ) ] 1 χ 0 with f xc = exchange-correlation kernel

57 Linear Response Approach Polarizability χ in TDDFT 1 DFT ground-state calc. φ i, ɛ i [V xc ] 2 φ i, ɛ i χ 0 = ij 3 δv H δn δv xc δn = v = f xc 4 χ = χ 0 + χ 0 (v + f xc ) χ φ i (r)φ j (r)φ i (r )φ j (r ) ω (ɛ i ɛ j ) } variation of the potentials A comment { δvxc f xc = δn any other function

58 Linear Response Approach Polarizability χ in TDDFT 1 DFT ground-state calc. φ i, ɛ i [V xc ] 2 φ i, ɛ i χ 0 = ij 3 δv H δn δv xc δn = v = f xc 4 χ = χ 0 + χ 0 (v + f xc ) χ φ i (r)φ j (r)φ i (r )φ j (r ) ω (ɛ i ɛ j ) } variation of the potentials A comment { δvxc f xc = δn any other function

59 Linear Response Approach Polarizability χ in TDDFT 1 DFT ground-state calc. φ i, ɛ i [V xc ] 2 φ i, ɛ i χ 0 = ij 3 δv H δn δv xc δn = v = f xc 4 χ = χ 0 + χ 0 (v + f xc ) χ φ i (r)φ j (r)φ i (r )φ j (r ) ω (ɛ i ɛ j ) } variation of the potentials A comment { δvxc f xc = δn any other function

60 Linear Response Approach Polarizability χ in TDDFT 1 DFT ground-state calc. φ i, ɛ i [V xc ] 2 φ i, ɛ i χ 0 = ij 3 δv H δn δv xc δn = v = f xc 4 χ = χ 0 + χ 0 (v + f xc ) χ φ i (r)φ j (r)φ i (r )φ j (r ) ω (ɛ i ɛ j ) } variation of the potentials A comment { δvxc f xc = δn any other function

61 Linear Response Approach Polarizability χ in TDDFT 1 DFT ground-state calc. φ i, ɛ i [V xc ] 2 φ i, ɛ i χ 0 = ij 3 δv H δn δv xc δn = v = f xc 4 χ = χ 0 + χ 0 (v + f xc ) χ φ i (r)φ j (r)φ i (r )φ j (r ) ω (ɛ i ɛ j ) } variation of the potentials A comment { δvxc f xc = δn any other function

62 Linear Response Approach Polarizability χ in TDDFT 1 DFT ground-state calc. φ i, ɛ i [V xc ] 2 φ i, ɛ i χ 0 = ij 3 δv H δn δv xc δn = v = f xc 4 χ = χ 0 + χ 0 (v + f xc ) χ φ i (r)φ j (r)φ i (r )φ j (r ) ω (ɛ i ɛ j ) } variation of the potentials A comment { δvxc f xc = δn any other function

63 Finite systems Photo-absorption cross spectrum in Linear Response α(ω) = σ(ω) = 4πω c Imα(ω) drdr V ext (r, ω)δn(r, ω) σ zz (ω) = 4πω c Im drdr zχ(r, r, ω)z

64 Finite systems Photo-absorption cross spectrum in Linear Response α(ω) = σ(ω) = 4πω c Imα(ω) drdr V ext (r, ω)χ(r, r, ω)v ext (r, ω) σ zz (ω) = 4πω c Im drdr zχ(r, r, ω)z

65 Finite systems Photo-absorption cross spectrum in Linear Response α(ω) = σ(ω) = 4πω c Imα(ω) drdr V ext (r, ω)χ(r, r, ω)v ext (r, ω) σ zz (ω) = 4πω c Im drdr zχ(r, r, ω)z

66 Solids Reciprocal space χ 0 (r, r, ω) χ 0 GG (q, ω) G =reciprocal lattice vector q =momentum transfer of the perturbation

67 Solids Reciprocal space φvk e ı(q+g)r φ ck+q φck+q e ı(q+g )r φvk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη j unoccupied states i occupied states

68 Solids Reciprocal space φvk e ı(q+g)r φ ck+q φck+q e ı(q+g )r φvk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ ɛ 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω)

69 Solids Reciprocal space φvk e ı(q+g)r φ ck+q φck+q e ı(q+g )r φvk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ ɛ 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) ELS(q, ω) = Im { ɛ 1 00 (q, ω) } { } 1 ; Abs(ω) = lim Im q 0 ε 1 00 (q, ω) S.L.Adler, Phys.Rev 126, 413 (1962); N.Wiser Phys.Rev 129, 62 (1963)

70 Solids Reciprocal space φvk e ı(q+g)r φ ck+q φck+q e ı(q+g )r φvk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ ɛ 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) ELS(ω) = limim { ε 1 00 (q, ω) } { } 1 ; Abs(ω) = limim q 0 q 0 ε 1 00 (q, ω) S.L.Adler, Phys.Rev 126, 413 (1962); N.Wiser Phys.Rev 129, 62 (1963)

71 Solids Absorption and Energy Loss Spectra q 0 ELS(ω) = Im { { } 1 ε 1 00 (ω)} ; Abs(ω) = Im ε 1 00 (ω)

72 Solids Absorption and Energy Loss Spectra q 0 ELS(ω) = Im { { } 1 ε 1 00 (ω)} ; Abs(ω) = Im ε 1 00 (ω) ε 1 00 (ω) = 1 + v 0χ 00 (ω)

73 Solids Absorption and Energy Loss Spectra q 0 ELS(ω) = Im { ε 1 00 (ω)} ; Abs(ω) = Im ELS(ω) = v 0 Im { χ 00 (ω) } { ; Abs(ω) = v 0 Im { 1 ε 1 00 (ω) } 1 1+v 0 χ 00 (ω) }

74 Solids Absorption and Energy Loss Spectra q 0 ELS(ω) = Im { ε 1 00 (ω)} ; Abs(ω) = Im ELS(ω) = v 0 Im { χ 00 (ω) } { ; Abs(ω) = v 0 Im { 1 ε 1 00 (ω) 1 1+v 0 χ 00 (ω) ELS(ω) = v 0 Im { χ 00 (ω) } ; Abs(ω) = v 0 Im { χ 00 (ω) } } }

75 Solids Absorption and Energy Loss Spectra q 0 ELS(ω) = Im { ε 1 00 (ω)} ; Abs(ω) = Im ELS(ω) = v 0 Im { χ 00 (ω) } { ; Abs(ω) = v 0 Im { 1 ε 1 00 (ω) 1 1+v 0 χ 00 (ω) ELS(ω) = v 0 Im { χ 00 (ω) } ; Abs(ω) = v 0 Im { χ 00 (ω) } } } χ = χ 0 + χ 0 (v + f xc ) χ χ = χ 0 + χ 0 ( v + f xc ) χ { vg G 0 v G = 0 G = 0

76 Solids Absorption and Energy Loss Spectra q 0 ELS(ω) = Im { ε 1 00 (ω)} ; Abs(ω) = Im ELS(ω) = v 0 Im { χ 00 (ω) } { ; Abs(ω) = v 0 Im { 1 ε 1 00 (ω) 1 1+v 0 χ 00 (ω) ELS(ω) = v 0 Im { χ 00 (ω) } ; Abs(ω) = v 0 Im { χ 00 (ω) } } } Exerciseχ = χ 0 + χ 0 (v + f xc ) χ { } χ = 1 χ 0 + χ 0 ( v + f xc ) Im ε 1 = v { 0 Im { χ } vg G 0 v G = 0 G = 0

77 Solids Abs and ELS (q 0) differs only by v 0 ELS(ω) = Im { { } 1 ε 1 00 (ω)} ; Abs(ω) = Im ε 1 00 (ω) ELS(ω) = v 0 Im { χ 00 (ω) } ; Abs(ω) = v 0 Im { χ 00 (ω) } χ = χ 0 + χ 0 (v + f xc ) χ χ = χ 0 + χ 0 ( v + f xc ) χ { vg G 0 v G = microscopic components 0 G = 0

78 Solids Microscopic components v v = local field effects χ NLF = χ 0 + χ 0 ( vx + f xc ) χ NLF

79 Solids Microscopic components v v = local field effects χ NLF = χ 0 + χ 0 ( vx + f xc ) χ NLF Abs NLF = v 0 Im { χ NLF}

80 Solids Microscopic components v v = local field effects χ NLF = χ 0 + χ 0 ( vx + f xc ) χ NLF Abs NLF = v 0 Im { χ NLF} Abs NLF = Im {ε 00 }

81 Solids Microscopic components v v = local field effects χ NLF = χ 0 + χ 0 ( vx + f xc ) χ NLF Abs NLF = v 0 Im { χ NLF} Abs NLF = Im {ε 00 } { } 1 Abs = Im ε 1 00

82 Solids Microscopic components v v = local field effects χ NLF = χ 0 + χ 0 ( vx + f xc ) χ NLF Abs NLF = v 0 Im { χ NLF} Abs NLF = Im {ε 00 } Exercise { } 1 Abs = Im Abs NLF = v ε Im { χ NLF} = Im {ε 00 }

83 EELS of Graphite

84 Absorption of Silicon

85 Outline 1 Introduction: why TD-DFT? 2 (Just) A bit of Formalism TDDFT: the Foundation Linear Response Formalism 3 TDDFT in practice: The ALDA: Achievements and Shortcomings 4 Resources

86 TDDFT in practice Practical schema and approximations Ground-state calculation φ i, ɛ i [V xc LDA] χ 0 (q, ω) χ = χ 0 + χ 0 (v + f xc ) χ f xc = 0 RPA f ALDA xc (r, r ) = δvxc(r) δn(r ) δ(r r ) ALDA

87 Outline 1 Introduction: why TD-DFT? 2 (Just) A bit of Formalism TDDFT: the Foundation Linear Response Formalism 3 TDDFT in practice: The ALDA: Achievements and Shortcomings 4 Resources

88 ALDA: Achievements and Shortcomings Electron Energy Loss Spectrum of Graphite RPA vs EXP χ NLF = χ 0 + χ 0 v 0 χ NLF χ = χ 0 + χ 0 v χ ELS = v 0 Im { χ 00 } A.Marinopoulos et al. Phys.Rev.Lett 89, (2002)

89 ALDA: Achievements and Shortcomings Photo-absorption cross section of Benzene ALDA vs EXP Abs= 4πω c Im drzn(r, ω) K.Yabana and G.F.Bertsch Int.J.Mod.Phys.75, 55 (1999)

90 ALDA: Achievements and Shortcomings Inelastic X-ray scattering of Silicon ALDA vs RPA vs EXP S(q, ω)= 2 q 2 4π 2 e 2 n Imε 1 00 Weissker et al., PRL 97, (2006)

91 ALDA: Achievements and Shortcomings Absorption Spectrum of Silicon ALDA vs RPA vs EXP χ = χ 0 + χ 0 ( v + f ALDA xc ) χ Abs = v 0 Im { χ 00 }

92 ALDA: Achievements and Shortcomings Absorption Spectrum of Argon ALDA vs EXP χ = χ 0 + χ 0 ( v + f ALDA xc ) χ Abs = v 0 Im { χ 00 }

93 ALDA: Achievements and Shortcomings Good results Photo-absorption of small molecules ELS of solids Bad results Absorption of solids

94 ALDA: Achievements and Shortcomings Good results Photo-absorption of small molecules ELS of solids Bad results Absorption of solids Why?

95 ALDA: Achievements and Shortcomings Good results Photo-absorption of small molecules ELS of solids Bad results Absorption of solids Why? f ALDA xc is short-range f xc (q 0) 1 q 2

96 ALDA: Achievements and Shortcomings Absorption of Silicon f xc = α q 2 L.Reining et al. Phys.Rev.Lett. 88, (2002)

97

98 Outline 1 Introduction: why TD-DFT? 2 (Just) A bit of Formalism TDDFT: the Foundation Linear Response Formalism 3 TDDFT in practice: The ALDA: Achievements and Shortcomings 4 Resources

99 Resources Codes (more or less) available for TDDFT Octopus (Marques,Castro,Rubio) -(real space, real time) - mainly finite systems - GPL DP (Olevano,Reining,Sottile) - (reciprocal space, frequency domain) - solides and finite systems - open source for academics Self (Marini) - (reciprocal space, frequency domain) Fleszar code Rehr (core excitations) TDDFT (Bertsch) VASP, SIESTA, ADF, TURBOMOLE TD-DFPT (Baroni)

100 The DP code dp - Dielectric Properties Reciprocal space Frequency domain Planewave basis Optical absorption Loss Spectra (EELS,IXS) Different approximations (RPA, ALDA, NLDA, MT, etc.) Authors: Valerio Olevano, Lucia Reining, Contributors: Valérie Véniard, Eleonora Luppi non-linear Lucia Caramella Spin Silvana Botti kernel, Wannier functions Margherita Marsili Mapping-Theory kernel Christine Giorgetti metals

101 The DP code The algorithm ε 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω)

102 The DP code The algorithm ε 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ

103 The DP code The algorithm ε 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ φvk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη

104 The DP code The algorithm ε 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ χ 0 (q, ω) = φvk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk GG ω (ɛ ck+q ɛ vk ) + ıη vck φ vk e ı(q+g)r φ ck+q = drφ vk (r)eı(q+g)r φ ck+q (r)

105 The DP code The algorithm ε 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ χ 0 (q, ω) = φvk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk GG ω (ɛ ck+q ɛ vk ) + ıη vck φ vk e ı(q+g)r φ ck+q = drφ vk (r)eı(q+g)r φ ck+q (r)

106 The DP code The algorithm ε 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ χ 0 (q, ω) = φvk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk GG ω (ɛ ck+q ɛ vk ) + ıη vck φ vk e ı(q+g)r φ ck+q = drφ vk (r)eı(q+g)r φ ck+q (r)

107 The DP code The algorithm ε 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ χ 0 (q, ω) = φvk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk GG ω (ɛ ck+q ɛ vk ) + ıη vck φ vk e ı(q+g)r φ ck+q = drφ vk (r)eı(q+g)r φ ck+q (r)

108 The DP code The algorithm ε 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ χ 0 (q, ω) = φvk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk GG ω (ɛ ck+q ɛ vk ) + ıη vck φ vk e ı(q+g)r φ ck+q = drφ vk (r)eı(q+g)r φ ck+q (r)

109 The DP code The algorithm ε 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ χ 0 (q, ω) = φvk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk GG ω (ɛ ck+q ɛ vk ) + ıη vck φ vk e ı(q+g)r φ ck+q = drφ vk (r)eı(q+g)r φ ck+q (r)

110 The DP code The algorithm ε 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ χ 0 (q, ω) = φvk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk GG ω (ɛ ck+q ɛ vk ) + ıη vck φ vk e ı(q+g)r φ ck+q = drφ vk (r)eı(q+g)r φ ck+q (r)

111 TDDFT vs BSE scaling Scaling of TDDFT (DP) χ GG (q, ω)=χ 0 (q, GG ω)+χ0 (q, ω) [v xc GG G (q)+fg (q, ω)] χ G G G (q, ω)

112 TDDFT vs BSE scaling Scaling of TDDFT (DP) χ GG (q, ω)=χ 0 (q, GG ω)+χ0 (q, ω) [v xc GG G (q)+fg (q, ω)] χ G G G (q, ω) φ vk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη

113 TDDFT vs BSE scaling Scaling of TDDFT (DP) χ GG (q, ω)=χ 0 (q, GG ω)+χ0 (q, ω) [v xc GG G (q)+fg (q, ω)] χ G G G (q, ω) φ vk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη N t

114 TDDFT vs BSE scaling Scaling of TDDFT (DP) χ GG (q, ω)=χ 0 (q, GG ω)+χ0 (q, ω) [v xc GG G (q)+fg (q, ω)] χ G G G (q, ω) φ vk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη N t N G

115 TDDFT vs BSE scaling Scaling of TDDFT (DP) χ GG (q, ω)=χ 0 (q, GG ω)+χ0 (q, ω) [v xc GG G (q)+fg (q, ω)] χ G G G (q, ω) φ vk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη N t N G N G

116 TDDFT vs BSE scaling Scaling of TDDFT (DP) χ GG (q, ω)=χ 0 (q, GG ω)+χ0 (q, ω) [v xc GG G (q)+fg (q, ω)] χ G G G (q, ω) φ vk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη N t N G N G N ω

117 TDDFT vs BSE scaling Scaling of TDDFT (DP) χ GG (q, ω)=χ 0 (q, GG ω)+χ0 (q, ω) [v xc GG G (q)+fg (q, ω)] χ G G G (q, ω) φ vk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη N t N G N G N ω ; N t N r lnn r N ω

118 TDDFT vs BSE scaling Scaling of TDDFT (DP) χ GG (q, ω)=χ 0 (q, GG ω)+χ0 (q, ω) [v xc GG G (q)+fg (q, ω)] χ G G G (q, ω) φ vk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη N t N G N G N ω ; N t N r lnn r N ω Scaling N 4 at

119 TDDFT vs BSE scaling Scaling of BSE (EXC) H v c k vck Scaling N 2 t N r N 5 at

120 TDDFT vs BSE scaling Scaling of BSE (EXC) H v c k vck A v c k λ = A λ A vck λ Scaling N 2 t N r N 5 at Scaling N 3 t N 6 at

121 TDDFT Some References van Leeuwen, Int. J. Mod. Phys. B15, 1969 (2001) Gross and Kohn, Adv. Quantum Chem. 21, 255 (1990) Marques and Gross, Annu. Rev. Phys. Chem. 55, 427 (2004) Botti et al. Rep. Prog. Phys. 70, 357 (2007) Marques et al. eds. Time Dependent Density Functional Theory, Springer (2006)

Time Dependent Density Functional Theory. Francesco Sottile

Time Dependent Density Functional Theory. Francesco Sottile Applications, limitations and... new frontiers Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF) Vienna, 19 January 2007 /55 Outline

More information

Linear-response excitations. Silvana Botti

Linear-response excitations. Silvana Botti from finite to extended systems 1 LSI, CNRS-CEA-École Polytechnique, Palaiseau, France 2 LPMCN, CNRS-Université Lyon 1, France 3 European Theoretical Spectroscopy Facility September 3, 2008 Benasque, TDDFT

More information

Key concepts in Density Functional Theory (II) Silvana Botti

Key concepts in Density Functional Theory (II) Silvana Botti Kohn-Sham scheme, band structure and optical spectra European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address:

More information

The frequency-dependent Sternheimer equation in TDDFT

The frequency-dependent Sternheimer equation in TDDFT The frequency-dependent Sternheimer equation in TDDFT A new look into an old equation Miguel A. L. Marques 1 Centre for Computational Physics, University of Coimbra, Portugal 2 LPMCN, Université Claude

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute for Microstructure Physics OUTLINE LECTURE I Phenomena to be described by TDDFT Some generalities on functional theories LECTURE

More information

Key concepts in Density Functional Theory (I) Silvana Botti

Key concepts in Density Functional Theory (I) Silvana Botti From the many body problem to the Kohn-Sham scheme European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre

More information

Time-Dependent Density-Functional Theory

Time-Dependent Density-Functional Theory Summer School on First Principles Calculations for Condensed Matter and Nanoscience August 21 September 3, 2005 Santa Barbara, California Time-Dependent Density-Functional Theory X. Gonze, Université Catholique

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute for Microstructure Physics OUTLINE LECTURE I Phenomena to be described by TDDFT LECTURE II Review of ground-state DFT LECTURE

More information

The frequency-dependent Sternheimer equation in TDDFT

The frequency-dependent Sternheimer equation in TDDFT The frequency-dependent Sternheimer equation in TDDFT A new look into an old equation Miguel A. L. Marques 1 Centre for Computational Physics, University of Coimbra, Portugal 2 European Theoretical Spectroscopy

More information

Linear response to an electric field: absorption and energy-loss Independent particle, Local fields effects, and Time-Dependent DFT

Linear response to an electric field: absorption and energy-loss Independent particle, Local fields effects, and Time-Dependent DFT Linear response to an electric field: absorption and energy-loss Independent particle, Local fields effects, and Time-Dependent DFT D. Sangalli Motivations: probe your system Scattering of Transmission

More information

Linear response time-dependent density functional theory

Linear response time-dependent density functional theory Linear response time-dependent density functional theory Emmanuel Fromager Laboratoire de Chimie Quantique, Université de Strasbourg, France fromagere@unistra.fr Emmanuel Fromager (UdS) Cours RFCT, Strasbourg,

More information

Many-Body Perturbation Theory. Lucia Reining, Fabien Bruneval

Many-Body Perturbation Theory. Lucia Reining, Fabien Bruneval , Fabien Bruneval Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF) Belfast, 27.6.2007 Outline 1 Reminder 2 Perturbation Theory

More information

Electronic Structure: Density Functional Theory

Electronic Structure: Density Functional Theory Electronic Structure: Density Functional Theory S. Kurth, M. A. L. Marques, and E. K. U. Gross Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany (Dated:

More information

Time-dependent density functional theory : direct computation of excitation energies

Time-dependent density functional theory : direct computation of excitation energies CECAM Tutorial Electronic excitations and spectroscopies : Theory and Codes Lyon 007 Time-dependent density functional theory : direct computation of excitation energies X. Gonze Université Catholique

More information

LDA and beyond. A primer into density-functional theory and related techniques Tobias Burnus. Diploma and PhD colloquium 22 November 2006

LDA and beyond. A primer into density-functional theory and related techniques Tobias Burnus. Diploma and PhD colloquium 22 November 2006 LDA and beyond A primer into density-functional theory and related techniques Tobias Burnus Diploma and PhD colloquium 22 November 2006 Pre-remarks I Functionals A function f maps a number to another number:

More information

Neutral Electronic Excitations:

Neutral Electronic Excitations: Neutral Electronic Excitations: a Many-body approach to the optical absorption spectra Claudio Attaccalite http://abineel.grenoble.cnrs.fr/ Second Les Houches school in computational physics: ab-initio

More information

Microscopic-Macroscopic connection. Silvana Botti

Microscopic-Macroscopic connection. Silvana Botti relating experiment and theory European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre for Computational

More information

Introduction to TDDFT

Introduction to TDDFT Introduction to TDDFT Linear-Response TDDFT in Frequency-Reciprocal space on a Plane-Waves basis: the DP (Dielectric Properties) code Valerio Olevano Institut Néel, CNRS, Grenoble European Theoretical

More information

Time-dependent density functional theory (TDDFT)

Time-dependent density functional theory (TDDFT) Advanced Workshop on High-Performance & High-Throughput Materials Simulations using Quantum ESPRESSO ICTP, Trieste, Italy, January 16 to 27, 2017 Time-dependent density functional theory (TDDFT) Ralph

More information

All electron optimized effective potential method for solids

All electron optimized effective potential method for solids All electron optimized effective potential method for solids Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. 22

More information

Electronic excitations, spectroscopy and quantum transport from ab initio theory

Electronic excitations, spectroscopy and quantum transport from ab initio theory Electronic excitations, spectroscopy and quantum transport from ab initio theory Valerio Olevano Institut Néel, CNRS & Université Joseph Fourier, Grenoble September 22, 2009 ii Abstract Spectroscopy and

More information

Time-dependent density functional theory (TDDFT)

Time-dependent density functional theory (TDDFT) 04/05/16 Hands-on workshop and Humboldt-Kolleg: Density-Functional Theory and Beyond - Basic Principles and Modern Insights Isfahan University of Technology, Isfahan, Iran, May 2 to 13, 2016 Time-dependent

More information

Key concepts in Density Functional Theory (II)

Key concepts in Density Functional Theory (II) Kohn-Sham scheme and band structures European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Present Address: LPMCN Université

More information

Introduction to Green functions, GW, and BSE

Introduction to Green functions, GW, and BSE Introduction to Green functions, the GW approximation, and the Bethe-Salpeter equation Stefan Kurth 1. Universidad del País Vasco UPV/EHU, San Sebastián, Spain 2. IKERBASQUE, Basque Foundation for Science,

More information

Energy dependence of the exchange-correlation kernel of time-dependent density functional theory: A simple model for solids

Energy dependence of the exchange-correlation kernel of time-dependent density functional theory: A simple model for solids Energy dependence of the exchange-correlation kernel of time-dependent density functional theory: A simple model for solids Silvana Botti, Armel Fourreau, François Nguyen, Yves-Olivier Renault, Francesco

More information

Real space investigation of local field effects on surfaces

Real space investigation of local field effects on surfaces Real space investigation of local field effects on surfaces Nicolas Tancogne-Dejean, Valérie Véniard Laboratoire des Solides Irradiés,Ecole Polytechnique, CNRS, CEA/DSM European Theoretical Spectroscopy

More information

Time-dependent Density Functional Theory

Time-dependent Density Functional Theory Time-dependent Density Functional Theory Miguel A. L. Marques and E. K. U. Gross 1 Introduction Time-dependent density-functional theory (TDDFT) extends the basic ideas of ground-state density-functional

More information

Time-dependent density functional theory

Time-dependent density functional theory Annual Review of Physical Chemistry 2004 1056-8700/97/0610-00 Time-dependent density functional theory M. A. L. Marques and E.K. U. Gross Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee

More information

Microscopic-macroscopic connection

Microscopic-macroscopic connection icroscopic-macroscopic connection Valérie Véniard ETSF France Laboratoire des Solides Irradiés Ecole Polytechniue CEA-DS CNRS 91128 Palaiseau France Outline 1. Introduction: which uantities do we need

More information

Density Functional Theory for Electrons in Materials

Density Functional Theory for Electrons in Materials Density Functional Theory for Electrons in Materials Richard M. Martin Department of Physics and Materials Research Laboratory University of Illinois at Urbana-Champaign 1 Density Functional Theory for

More information

Independent electrons in an effective potential

Independent electrons in an effective potential ABC of DFT Adiabatic approximation Independent electrons in an effective potential Hartree Fock Density Functional Theory MBPT - GW Density Functional Theory in a nutshell Every observable quantity of

More information

Linear response theory and TDDFT

Linear response theory and TDDFT Linear response theory and TDDFT Claudio Attaccalite http://abineel.grenoble.cnrs.fr/ CECAM Yambo School 2013 (Lausanne) Motivations: +- hν Absorption Spectroscopy Many Body Effects!!! Motivations(II):Absorption

More information

Key concepts in Density Functional Theory

Key concepts in Density Functional Theory From the many body problem to the Kohn-Sham scheme ILM (LPMCN) CNRS, Université Lyon 1 - France European Theoretical Spectroscopy Facility (ETSF) December 12, 2012 Lyon Outline 1 The many-body problem

More information

v(r i r j ) = h(r i )+ 1 N

v(r i r j ) = h(r i )+ 1 N Chapter 1 Hartree-Fock Theory 1.1 Formalism For N electrons in an external potential V ext (r), the many-electron Hamiltonian can be written as follows: N H = [ p i i=1 m +V ext(r i )]+ 1 N N v(r i r j

More information

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride Dimer Philip Straughn Abstract Charge transfer between Na and Cl ions is an important problem in physical chemistry. However,

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute of Microstructure Physics Halle (Saale) OUTLINE Phenomena to be described by TDDFT: Matter in weak and strong laser fields Basic

More information

Dept of Mechanical Engineering MIT Nanoengineering group

Dept of Mechanical Engineering MIT Nanoengineering group 1 Dept of Mechanical Engineering MIT Nanoengineering group » To calculate all the properties of a molecule or crystalline system knowing its atomic information: Atomic species Their coordinates The Symmetry

More information

Exact exchange (spin current) density-functional methods for magnetic properties, spin-orbit effects, and excited states

Exact exchange (spin current) density-functional methods for magnetic properties, spin-orbit effects, and excited states Exact exchange (spin current) density-functional methods for magnetic properties, spin-orbit effects, and excited states DFT with orbital-dependent functionals A. Görling Universität Erlangen-Nürnberg

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute of Microstructure Physics Halle (Saale) OUTLINE Phenomena to be described by TDDFT Basic theorems of TDDFT Approximate xc functionals:

More information

OPTICAL RESPONSE OF FINITE AND EXTENDED SYSTEMS ARGYRIOS TSOLAKIDIS

OPTICAL RESPONSE OF FINITE AND EXTENDED SYSTEMS ARGYRIOS TSOLAKIDIS OPTICAL RESPONSE OF FINITE AND EXTENDED SYSTEMS BY ARGYRIOS TSOLAKIDIS Ptych., Aristotle University of Thessaloniki, 1995 M.S., University of Illinois, 1998 THESIS Submitted in partial fulfillment of the

More information

Quantum Electrodynamical TDDFT: From basic theorems to approximate functionals

Quantum Electrodynamical TDDFT: From basic theorems to approximate functionals Quantum Electrodynamical TDDFT: From basic theorems to approximate functionals Ilya Tokatly NanoBio Spectroscopy Group - UPV/EHU San Sebastiàn - Spain IKERBASQUE, Basque Foundation for Science - Bilbao

More information

Advanced TDDFT PDF Created with deskpdf PDF Writer - Trial ::

Advanced TDDFT PDF Created with deskpdf PDF Writer - Trial :: Advanced TDDFT TDDFT Humanity has advanced, when it has advanced, not because it has been sober, responsible, and cautious, but because it has been playful, rebellious, and immature Tom Robbins US novelist

More information

TDDFT II. Alberto Castro

TDDFT II. Alberto Castro Problem set Alberto Castro Institute for Biocomputation and Physics of Complex Systems (BIFI) and Zaragoza Scientific Center for Advanced Modeling (ZCAM), University of Zaragoza, Spain ELK Summit, Lausanne

More information

Electronic excitations in materials for solar cells

Electronic excitations in materials for solar cells Electronic excitations in materials for solar cells beyond standard density functional theory Silvana Botti 1 LSI, École Polytechnique-CNRS-CEA, Palaiseau, France 2 LPMCN, CNRS-Université Lyon 1, France

More information

Beyond time-dependent exact exchange: The need for long-range correlation

Beyond time-dependent exact exchange: The need for long-range correlation THE JOURNAL OF CHEMICAL PHYSICS 124, 144113 2006 Beyond time-dependent exact exchange: The need for long-range correlation Fabien Bruneval a European Theoretical Spectroscopy Facility (ETSF), Laboratoire

More information

TDDFT in Chemistry and Biochemistry III

TDDFT in Chemistry and Biochemistry III TDDFT in Chemistry and Biochemistry III Dmitrij Rappoport Department of Chemistry and Chemical Biology Harvard University TDDFT Winter School Benasque, January 2010 Dmitrij Rappoport (Harvard U.) TDDFT

More information

Advanced TDDFT I: Memory and Initial-State Dependence

Advanced TDDFT I: Memory and Initial-State Dependence Advanced TDDFT I: Memory and Initial-State Dependence when the adiabatic approximation commits a crime Where were you at the time the photon was annihilated? I..um I just can t remember! V xc( r,t ) n(r,t)

More information

Time-Dependent Density Functional Perturbation Theory New algorithms with applications to molecular spectra

Time-Dependent Density Functional Perturbation Theory New algorithms with applications to molecular spectra Scuola Internazionale Superiore di Studi Avanzati - ma per seguir virtute e conoscenza - Time-Dependent Density Functional Perturbation Theory New algorithms with applications to molecular spectra Thesis

More information

1 Density functional theory (DFT)

1 Density functional theory (DFT) 1 Density functional theory (DFT) 1.1 Introduction Density functional theory is an alternative to ab initio methods for solving the nonrelativistic, time-independent Schrödinger equation H Φ = E Φ. The

More information

The GW approximation

The GW approximation The GW approximation Matteo Gatti European Theoretical Spectroscopy Facility (ETSF) LSI - Ecole Polytechnique & Synchrotron SOLEIL - France matteo.gatti@polytechnique.fr - http://etsf.polytechnique.fr

More information

Novel Functionals and the GW Approach

Novel Functionals and the GW Approach Novel Functionals and the GW Approach Patrick Rinke FritzHaberInstitut der MaxPlanckGesellschaft, Berlin Germany IPAM 2005 Workshop III: DensityFunctional Theory Calculations for Modeling Materials and

More information

Photoelectronic properties of chalcopyrites for photovoltaic conversion:

Photoelectronic properties of chalcopyrites for photovoltaic conversion: Photoelectronic properties of chalcopyrites for photovoltaic conversion: self-consistent GW calculations Silvana Botti 1 LSI, CNRS-CEA-École Polytechnique, Palaiseau, France 2 LPMCN, CNRS-Université Lyon

More information

Density Functional Theory. Martin Lüders Daresbury Laboratory

Density Functional Theory. Martin Lüders Daresbury Laboratory Density Functional Theory Martin Lüders Daresbury Laboratory Ab initio Calculations Hamiltonian: (without external fields, non-relativistic) impossible to solve exactly!! Electrons Nuclei Electron-Nuclei

More information

Optimized Effective Potential method for non-collinear Spin-DFT: view to spindynamics

Optimized Effective Potential method for non-collinear Spin-DFT: view to spindynamics Optimized Effective Potential method for non-collinear Spin-DFT: view to spindynamics S. Sharma and E. K. U. Gross nstitut für Theoretische Physik, FU Berlin Fritz-Haber nstitut, Berlin 21 Sept 2006 Synopsis

More information

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation Electrochemistry project, Chemistry Department, November 2006 Ab-initio Molecular Dynamics Simulation Outline Introduction Ab-initio concepts Total energy concepts Adsorption energy calculation Project

More information

The electronic structure of materials 2 - DFT

The electronic structure of materials 2 - DFT Quantum mechanics 2 - Lecture 9 December 19, 2012 1 Density functional theory (DFT) 2 Literature Contents 1 Density functional theory (DFT) 2 Literature Historical background The beginnings: L. de Broglie

More information

Orbital functionals derived from variational functionals of the Green function

Orbital functionals derived from variational functionals of the Green function Orbital functionals derived from variational functionals of the Green function Nils Erik Dahlen Robert van Leeuwen Rijksuniversiteit Groningen Ulf von Barth Lund University Outline 1. Deriving orbital

More information

arxiv:cond-mat/ v2 [cond-mat.other] 14 Apr 2006

arxiv:cond-mat/ v2 [cond-mat.other] 14 Apr 2006 Beyond time-dependent exact-exchange: the need for long-range correlation arxiv:cond-mat/0604358v2 [cond-mat.other] 14 Apr 2006 Fabien Bruneval 1,, Francesco Sottile 1,2,, Valerio Olevano 1,3, and Lucia

More information

Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory

Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory 1/11 Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory Julien Toulouse Université Pierre & Marie Curie and CNRS, 4 place Jussieu, Paris, France Web page: www.lct.jussieu.fr/pagesperso/toulouse/

More information

Current density functional theory for optical spectra Boeij, P.L. de; Kootstra, F.; Berger, Johannes; Leeuwen, R. van; Snijders, J.G.

Current density functional theory for optical spectra Boeij, P.L. de; Kootstra, F.; Berger, Johannes; Leeuwen, R. van; Snijders, J.G. University of Groningen Current density functional theory for optical spectra Boeij, P.L. de; Kootstra, F.; Berger, Johannes; Leeuwen, R. van; Snijders, J.G. Published in: The Journal of Chemical Physics

More information

The potential of Potential Functional Theory

The potential of Potential Functional Theory The potential of Potential Functional Theory IPAM DFT School 2016 Attila Cangi August, 22 2016 Max Planck Institute of Microstructure Physics, Germany P. Elliott, AC, S. Pittalis, E.K.U. Gross, K. Burke,

More information

Advanced TDDFT II. Double Excitations in TDDFT

Advanced TDDFT II. Double Excitations in TDDFT Advanced TDDFT II. Double Excitations in TDDFT f xc Neepa T. Maitra Hunter College and the Graduate Center of the City University of New York First, quick recall of how we get excitations in TDDFT: Linear

More information

2.5 Time dependent density functional theory

2.5 Time dependent density functional theory .5 Time dependent density functional theory The main theorems of Kohn-Sham DFT state that: 1. Every observable is a functional of the density (Hohenger-Kohn theorem).. The density can be obtained within

More information

Many electrons: Density functional theory Part II. Bedřich Velický VI.

Many electrons: Density functional theory Part II. Bedřich Velický VI. Many electrons: Density functional theory Part II. Bedřich Velický velicky@karlov.mff.cuni.cz VI. NEVF 514 Surface Physics Winter Term 013-014 Troja 1 st November 013 This class is the second devoted to

More information

X-ray Spectroscopy Theory Lectures

X-ray Spectroscopy Theory Lectures TIMES Lecture Series SIMES-SLAC-Stanford Winter, 2017 X-ray Spectroscopy Theory Lectures J. J. Rehr I. Introduction to the Theory of X-ray spectra II. Real-space Green's function Theory and FEFF III. Inelastic

More information

Ab Initio theories to predict ARPES Hedin's GW and beyond

Ab Initio theories to predict ARPES Hedin's GW and beyond Ab Initio theories to predict ARPES Hedin's GW and beyond Valerio Olevano Institut NEEL, CNRS, Grenoble, France and European Theoretical Spectroscopy Facility Many thanks to: Matteo Gatti, Pierre Darancet,

More information

MBPT and TDDFT Theory and Tools for Electronic-Optical Properties Calculations in Material Science

MBPT and TDDFT Theory and Tools for Electronic-Optical Properties Calculations in Material Science MBPT and TDDFT Theory and Tools for Electronic-Optical Properties Calculations in Material Science Dott.ssa Letizia Chiodo Nano-bio Spectroscopy Group & ETSF - European Theoretical Spectroscopy Facility,

More information

Spectroscopy of nanostructures: from optics to transport

Spectroscopy of nanostructures: from optics to transport Spectroscopy of nanostructures: from optics to transport Angel Rubio NanoBio Spectroscopy Group, Dpto. Física de Materiales, Universidad del País Vasco, Centro Mixto CSIC UPV/EHU and DIPC Edificio Korta,

More information

Claudia Ambrosch-Draxl, University of Leoben, Austria Chair of Atomistic Modelling and Design of Materials

Claudia Ambrosch-Draxl, University of Leoben, Austria Chair of Atomistic Modelling and Design of Materials Excited state properties p within WIEN2k Claudia Ambrosch-Draxl, University of Leoben, Austria Chair of Atomistic Modelling and Design of Materials Beyond the ground state Basics about light scattering

More information

Introduction to density-functional theory. Emmanuel Fromager

Introduction to density-functional theory. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Institut

More information

Lecture 8: Introduction to Density Functional Theory

Lecture 8: Introduction to Density Functional Theory Lecture 8: Introduction to Density Functional Theory Marie Curie Tutorial Series: Modeling Biomolecules December 6-11, 2004 Mark Tuckerman Dept. of Chemistry and Courant Institute of Mathematical Science

More information

The GW Approximation. Manish Jain 1. July 8, Department of Physics Indian Institute of Science Bangalore 1/36

The GW Approximation. Manish Jain 1. July 8, Department of Physics Indian Institute of Science Bangalore 1/36 1/36 The GW Approximation Manish Jain 1 Department of Physics Indian Institute of Science Bangalore July 8, 2014 Ground-state properties 2/36 Properties that are intrinsic to a system with all its electrons

More information

Models for Time-Dependent Phenomena

Models for Time-Dependent Phenomena Models for Time-Dependent Phenomena I. Phenomena in laser-matter interaction: atoms II. Phenomena in laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein p. Outline Phenomena in

More information

BSE and TDDFT at work

BSE and TDDFT at work BSE and TDDFT at work Claudio Attaccalite http://abineel.grenoble.cnrs.fr/ CECAM Yambo School 2013 (Lausanne) Optical Absorption: Microscopic View Direct and indirect interactions between an e-h pair created

More information

GW quasiparticle energies

GW quasiparticle energies Chapter 4 GW quasiparticle energies Density functional theory provides a good description of ground state properties by mapping the problem of interacting electrons onto a KS system of independent particles

More information

Multi-Scale Modeling from First Principles

Multi-Scale Modeling from First Principles m mm Multi-Scale Modeling from First Principles μm nm m mm μm nm space space Predictive modeling and simulations must address all time and Continuum Equations, densityfunctional space scales Rate Equations

More information

This is a repository copy of Self-interaction in Green's-function theory of the hydrogen atom.

This is a repository copy of Self-interaction in Green's-function theory of the hydrogen atom. This is a repository copy of Self-interaction in Green's-function theory of the hydrogen atom. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/4030/ Article: Nelson, W., Bokes,

More information

IV. Calculations of X-ray Spectra in Real-space and Real-time. J. J. Rehr

IV. Calculations of X-ray Spectra in Real-space and Real-time. J. J. Rehr TIMES Lecture Series SLAC-Stanford U March 2, 2017 IV. Calculations of X-ray Spectra in Real-space and Real-time J. J. Rehr Calculations of X-ray Spectra in Real-space and Real-time Goal: Real-space, real

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

VASP: Dielectric response Perturbation theory, linear response, and finite electric fields

VASP: Dielectric response Perturbation theory, linear response, and finite electric fields VASP: Dielectric response Perturbation theory, linear response, and finite electric fields University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria Outline

More information

André Schleife Department of Materials Science and Engineering

André Schleife Department of Materials Science and Engineering André Schleife Department of Materials Science and Engineering Yesterday you (should have) learned this: http://upload.wikimedia.org/wikipedia/commons/e/ea/ Simple_Harmonic_Motion_Orbit.gif 1. deterministic

More information

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT Models for Time-Dependent Phenomena I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein, TDDFT school Benasque 22 p. Outline Laser-matter

More information

Spin gaps and spin flip energies in density functional theory

Spin gaps and spin flip energies in density functional theory Spin gaps and spin flip energies in density functional theory Klaus Capelle Universidade Federal do ABC Carsten Ullrich University of Missouri-Columbia G. Vignale University of Missouri-Columbia Charge

More information

Electron energy loss spectroscopy (EELS)

Electron energy loss spectroscopy (EELS) Electron energy loss spectroscopy (EELS) Phil Hasnip Condensed Matter Dynamics Group Department of Physics, University of York, U.K. http://www-users.york.ac.uk/~pjh503 Many slides courtesy of Jonathan

More information

DFT in practice : Part II. Ersen Mete

DFT in practice : Part II. Ersen Mete pseudopotentials Department of Physics Balıkesir University, Balıkesir - Turkey August 13, 2009 - NanoDFT 09, İzmir Institute of Technology, İzmir Outline Pseudopotentials Basic Ideas Norm-conserving pseudopotentials

More information

arxiv:cond-mat/ v1 [cond-mat.other] 24 Mar 2005

arxiv:cond-mat/ v1 [cond-mat.other] 24 Mar 2005 arxiv:cond-mat/0503601v1 [cond-mat.other] 4 Mar 005 Abstract Vortices as Yukawa bosons in the two-dimensional Harmonic confinement K. K. Rajagopal A system of N vortices in a two-dimensional harmonic trap

More information

Density functional theory

Density functional theory Density functional theory Seminar Ib - 1. letnik, II. stopnja Author: Matic Pečovnik Mentor: Doc. Dr. Tomaž Rejec Faculty of Mathematics and Physics, University in Ljubljana Abstract Many-body problems

More information

MD simulation: output

MD simulation: output Properties MD simulation: output Trajectory of atoms positions: e. g. diffusion, mass transport velocities: e. g. v-v autocorrelation spectrum Energies temperature displacement fluctuations Mean square

More information

Chapter 3 The Microscopic Description of a Macroscopic Experiment

Chapter 3 The Microscopic Description of a Macroscopic Experiment Chapter 3 The Microscopic Description of a Macroscopic Experiment Silvana Botti and Matteo Gatti 3.1 Introduction The interaction between electromagnetic radiation (or particles) and matter creates elementary

More information

Solutions to selected problems from Giuliani, Vignale : Quantum Theory of the Electron Liquid

Solutions to selected problems from Giuliani, Vignale : Quantum Theory of the Electron Liquid Solutions to selected problems from Giuliani, Vignale : Quantum Theory of the Electron Liquid These problems have been solved as a part of the Independent study class with prof. Neepa Maitra. Compiled

More information

Excited state dynamics of nanostructures and extended systems within TDDFT

Excited state dynamics of nanostructures and extended systems within TDDFT Excited state dynamics of nanostructures and extended systems within TDDFT Angel Rubio Dpto. de Física de Materiales, Universidad del País Vasco, Donostia International Physics Center (DIPC), and Centro

More information

CHEM6085: Density Functional Theory

CHEM6085: Density Functional Theory Lecture 5 CHEM6085: Density Functional Theory Orbital-free (or pure ) DFT C.-K. Skylaris 1 Consists of three terms The electronic Hamiltonian operator Electronic kinetic energy operator Electron-Electron

More information

Plan of the lectures

Plan of the lectures Plan of the lectures 1. Introductory remarks on metallic nanostructures Relevant quantities and typical physical parameters Applications. Linear electron response: Mie theory and generalizations 3. Nonlinear

More information

Notes on Density Functional Theory

Notes on Density Functional Theory Notes on Density Functional Theory Rocco Martinazzo E-mail: rocco.martinazzo@unimi.it Contents 1 Introduction 1 Density Functional Theory 7 3 The Kohn-Sham approach 11 1 Introduction We consider here a

More information

Electronic excitations in materials for photovoltaics

Electronic excitations in materials for photovoltaics Electronic excitations in materials for photovoltaics Self-consistent GW and Bethe-Salpeter equation Silvana Botti 1 LSI, École Polytechnique-CNRS-CEA, Palaiseau, France 2 LPMCN, CNRS-Université Lyon 1,

More information

Core-level Spectroscopies with FEFF9 and OCEAN

Core-level Spectroscopies with FEFF9 and OCEAN Soleil Theory Day Synchrotron SOLEIL, Grand Amphi 6/5/2014 Core-level Spectroscopies with FEFF9 and OCEAN J. J. Rehr 1,4 K. Gilmore, 2,4 J. Kas, 1 J. Vinson, 3 E. Shirley 3 1 University of Washington,

More information

J. Paier, M. Marsman, G. Kresse, Kerstin Hummer. Computational Materials Physics Faculty of Physics University of Vienna. Funded by the Austrian FWF

J. Paier, M. Marsman, G. Kresse, Kerstin Hummer. Computational Materials Physics Faculty of Physics University of Vienna. Funded by the Austrian FWF J. Paier, M. Marsman, G. Kresse, Kerstin Hummer Computational Materials Physics Faculty of Physics University of Vienna Funded by the Austrian FWF Accurate calculation of optical absorption and electron

More information

Adaptively Compressed Polarizability Operator

Adaptively Compressed Polarizability Operator Adaptively Compressed Polarizability Operator For Accelerating Large Scale ab initio Phonon Calculations Ze Xu 1 Lin Lin 2 Lexing Ying 3 1,2 UC Berkeley 3 ICME, Stanford University BASCD, December 3rd

More information

Applications of Time-Dependent Density Functional Theory

Applications of Time-Dependent Density Functional Theory Physica Scripta. Vol. T109, 54 60, 2004 Applications of Time-Dependent Density Functional Theory Silvana Botti Laboratiore des Solides Irradiés, CNRS-CEA-E cole Polytechnique, F-91128 Palaiseau, France

More information

TDDFT Explorations in Phase-Space. Neepa T. Maitra Hunter College and the Graduate Center of the City University of New York

TDDFT Explorations in Phase-Space. Neepa T. Maitra Hunter College and the Graduate Center of the City University of New York TDDFT Explorations in Phase-Space Neepa T. Maitra Hunter College and the Graduate Center of the City University of New York TDDFT in Phase-Space Outline Why phase-space DFT? Some motivating examples and

More information