GW Many-Body Theory for Electronic Structure. Rex Godby

Size: px
Start display at page:

Download "GW Many-Body Theory for Electronic Structure. Rex Godby"

Transcription

1 GW Many-Body Theory for Electronic Structure Rex Godby

2 Outline Lecture 1 (Monday) Introduction to MBPT The GW approximation (non-sc and SC) Implementation of GW Spectral properties Lecture 2 (Tuesday) GW total energy Self-consistency in GW Vertex corrections beyond GW Using MBPT to get better DFT functionals Workshop talk GW-like approaches to quantum transport GW Many-Body Theory for Electronic Structure - Benasque, August

3 The Basic Problem Nucleus α (fixed) Electron i Electrons interact with each other as well as with the nuclei! GW Many-Body Theory for Electronic Structure - Benasque, August

4 Quantum Mechanics One-electron Schrödinger equation: 2 ħ 2m 2 ψ ( r) + V ( r) ψ ( r) Eψ ( r) Account for other electrons through an effective potential felt by each electron Density-functional theory: V ( r) Veff ( r) Many-body perturbation theory: V r) Σ = ( ( r, r', E) GW Many-Body Theory for Electronic Structure - Benasque, August

5 Approaches to the electron-electron interaction Density-functional theory (for ground-state properties only): [ V ext (r) + V Hartree (r) + V xc (r) ε i ]ψ i (r) = 0 Many-body perturbation theory based on Green s functions: [ V ext + V Hartree + Σ xc (ω ) ω]g(r, r,ω) = δ(r r ) (which, inter alia, leads to the quasiparticle equation [ V ext + V Hartree + Σ xc (ε) ε]ψ (r) = 0) Note the two ways of describing exchange and correlation: In DFT: V xc (r) (local, energy-independent potential) In many-body theory: Σ xc (r, r,ω ) (non-local, energydependent potential) GW Many-Body Theory for Electronic Structure - Benasque, August

6 Why Not Just Leave it to DFT?

7 Some Pathologies of the KSDFT functional δe [ n] Band-gap problem: V ( r) xc xc = δn( r) is discontinuous (by a constant) when an electron is added to an insulator (Sham and Schlüter, Perdew and Levy 1983) Widely separated open-shell atoms: V xc(r) has a peculiar spatial variation between distant atoms so as to equalise highest occupied states (Almbladh and von Barth 1985) Exchange-correlation electric field accompanies real electric field in an insulator (Godby and Sham 1994, Gonze, Ghosez and Godby 1995) GW Many-Body Theory for Electronic Structure - Benasque, August

8 Why Not Just Leave it to DFT? DFT functionals are known to have important pathologies, meaning that density-based approximate functionals can be inadequate MPBT quantities better behaved MBPT role in analysing existing functionals and devising new ones (e.g. orbital functionals) Access to excited-state properties, some of which are inaccessible or inaccurate in (TD)DFT Accurate ground-state quantities also available GW Many-Body Theory for Electronic Structure - Benasque, August

9 MBPT vs. (TD)DFT

10 MBPT vs. TDDFT Many-body perturbation theory (e.g. GW) Based on Green s functions Self-energy theories give one-particle G, e.g. electron addition/removal Natural domain: quasiparticle energies, band structure, spectral function Similar diagrammatic theories for two-particle G, e.g. optical absorption Other applications: ground state total energy, etc. GW Many-Body Theory for Electronic Structure - Benasque, August

11 MBPT vs. TDDFT (2) DFT Natural domain (of ordinary DFT): ground state total energy TDDFT permits study of time-evolution (e.g. excited states) of N-electron system Treatment of exchange and correlation in TDDFT requires some approximation, often based on the HEG / WIEG GW Many-Body Theory for Electronic Structure - Benasque, August

12 Pros and Cons Method DFT / TDDFT Advantages Inexpensive (esp. density-based functionals) Disadvantages XC functional and f xc (r,r,ω) pathological and can be difficult to approximate sufficiently accurately [Intermediate approaches such as GW-based orbital functionals (KS/GKS)] GW (+ MBPT) Description of XC explicit diagrammatic series, better behaved Can be expensive GW Many-Body Theory for Electronic Structure - Benasque, August

13 Introduction to Many-Body Perturbation Theory

14 Electronic Excitations: G 1 and G 2 N,0 N+1,s N 1,s N,s GW Many-Body Theory for Electronic Structure - Benasque, August

15 Key ideas of many-body perturbation theory Electronic and optical experiments often measure some aspect of the one-particle Green s function The spectral function, Im G, tells you about the singleparticle-like approximate eigenstates of the system: the quasiparticles Im G non-interacting interacting E 1 E 2 µ G obtained from self-energy Σ(r,r,E) Σ = GW + O(W 2 ); W = screened Coulomb interaction ω GW Many-Body Theory for Electronic Structure - Benasque, August

16 Second Quantisation Field operators add/remove an electron at r with spin σ (x=r,σ) at time t ψ ˆ ( x, t) ˆ ( x, t) Defined rigorously in terms of operation on Slater determinants Have equations of motion in the Heisenberg representation that follows from the TDSE ; ψ GW Many-Body Theory for Electronic Structure - Benasque, August

17 1-particle Green's Function G One-particle Green's function G ( x, x'; t t') i N T[ ψ ˆ ( x, t) ψˆ ( x', t' )] N + where x ( r, ξ) is space+spin, N = N-electron ground state, T=time-ordering operator GW Many-Body Theory for Electronic Structure - Benasque, August

18 GW Many-Body Theory for Electronic Structure - Benasque, August

19 G as a Propagator G( x, x'; t t') i N T[ ψ ˆ( x, t) ψˆ ( x', t')] + N ψˆ ( r' t') ψˆ ( rt) GW Many-Body Theory for Electronic Structure - Benasque, August

20 Equation of Motion of G Using equation of motion of field operators, G can be shown to satisfy i i = t v( r, r') δ ( x h( x) G( xt; x' t') + N T[ ψˆ x') δ ( t t') Then write Σ V H +Σ xc ψψψ ˆ ˆ ˆ ] N d 4 x ΣG - defines Σ GW Many-Body Theory for Electronic Structure - Benasque, August

21 i i Green's Functions and Self-Energies G obeys a very similar equation to the Green s function of the Kohn-Sham electrons in DFT, but with the non-local, time-dependent Σ replacing V xc : t t { h + V + Σ } H G( xt; x' t') = δ ( x t') { h + V + V } G ( xt; x' t') = δ ( x x') δ ( t t' ) H xc xc KS x') δ ( t GW Many-Body Theory for Electronic Structure - Benasque, August

22 GW Many-Body Theory for Electronic Structure - Benasque, August Lehmann Representation for G ( ) ( ) < = > = + = <> = + µ ε ψ µ ε ψ µ ε δ ε ω ω s N N s N s N s s s s s s s E E N s N E E s N N f i f f G 1, 1,, ) ˆ ( 1,, 1, ) ˆ ( ) (, ') *( ) ( ) ',, ( r r r r r r r s labels the excited states of the N+1 or N-1- electron systems G has its poles at each energy with which an electron can be added/removed

23 Our Cast of Players G Green s function Σ xc Self-energy (related to G as discussed) W Dynamically screened Coulomb interaction P Irreducible polarisation propagator Γ Vertex function GW Many-Body Theory for Electronic Structure - Benasque, August

24 Hedin s Equations With Σ/G relation, exact closed equations for G, Σ etc. GW Many-Body Theory for Electronic Structure - Benasque, August

25 The GW Approximation

26 The GW Approximation Iterate Hedin s equations once starting with Σ=0 GW Many-Body Theory for Electronic Structure - Benasque, August

27 The GW Approximation Σ ( x, x'; ω) i = W ( x, x'; ω') G ( x, x'; ω + ω') e 2π where x ( r, ξ ) is space+spin iδω ' d ω' In the time domain Σ( x, x'; t t') = iw ( x, x'; t t') G( x, x'; t t') W is the dynamically screened Coulomb interaction between electrons GW Many-Body Theory for Electronic Structure - Benasque, August

28 Implementation of GW

29 Local-density-approximation calculation of one-electron wavefunctions and eigenvalues, using ab initio pseudopotentials Compute Green's function G Compute screened Coulomb interaction W S(q,ω) Compute self-energy Σ(r,r',ω) QP energies E Solve Dyson equation to obtain updated Green's function G(r,r',ω) Spectral function Charge density + momentum distn. Space-time method: H.N. Rojas, RWG and R.J. Needs, Phys. Rev. Lett (1995) Total energy Updated self-energy GW Many-Body Theory for Electronic Structure - Benasque, August

30 Spectral Properties

31 G 0 W 0 Band Structures of Insulators From "Quasiparticle calculations in solids", W.G. Aulbur, L. Jönsson and J.W. Wilkins, Solid State Physics 54 1 (2000) [also available in preprint form at l#reviews] GW Many-Body Theory for Electronic Structure - Benasque, August

32 Self-Consistency Fully self-consistent Σ=iGW: Conserving Partially self-consistent Σ=iGW0: Conserving Non-self-consistent Σ=iG0W0: Non-conserving Arno Schindlmayr, Pablo García-González and RWG Kris Delaney GW Many-Body Theory for Electronic Structure - Benasque, August

33 Tests for Be atom (QP energies) K.T. Delaney, P. García-González, Angel Rubio, Patrick Rinke and RWG, Phys. Rev. Lett GW Many-Body Theory for Electronic Structure - Benasque, August

34 Total Energy from Many- Body Perturbation Theory

35 Ab initio GW total energy Galitskii-Migdal expression for ground-state total energy E = µ 1 3 dω d r ( ω + h r) ) A( r, r', ω r' r + 2 ) ( V, where Start with LDA calculation Use GW space-time method to calculate self-energy Σ ( r, r', it) using a double grid in real space, and a grid in imaginary time LDA 0 xc ) ( ) Calculate new Green s function using G = 1 G ( Σ V G0 Recalculate Σ using new G and new W (based on new G) Repeat to self-consistency Calculate total energy using self-consistent G nucl 1 GW Many-Body Theory for Electronic Structure - Benasque, August

36 Total Energy of the H.E.G ε XC (Ha) ε XC (Ha) Exact G 0 W 0 GW 0 GW r s (a.u.) Pablo García-González and RWG, PRB 2001 Exact G 0 W 0 GW 0 GW GW Many-Body Theory for Electronic Structure - Benasque, August

37 Van der Waals forces GW Pablo García-González and RWG, PRL 2002 GW Many-Body Theory for Electronic Structure - Benasque, August

38 Vertex Corrections Beyond GW

39 The Vertex Σ=GWΓ is exact by definition Vertex function Γ needs to be approximated; in GW start with Σ=0 Can also start with Σ = simplified self-energy; simplest of all is V xc LDA GW Many-Body Theory for Electronic Structure - Benasque, August

40 Morris, Stankovski et al. DFT-based Vertex (A)LDA vertex in W (G 0 W 0 LDA ) yields slight improvement over G 0 W 0 If ALDA vertex is also added into Σ, things get much worse! Morris, Stankovski, Rinke, Delaney, RWG, PRB 2007 GW Many-Body Theory for Electronic Structure - Benasque, August

41 DFT-based Vertex (2) Averaged Density Approximation (ADA) produces convenient non-local vertex, which gives good total energies and quasiparticle properties for jellium [Stankovski, Robinson, Morris, Rinke, Delaney, RWG] GW Many-Body Theory for Electronic Structure - Benasque, August

42 DFT-based Vertex (3) and restores the good results of G 0 W 0 for the I.P. of atoms! GW Many-Body Theory for Electronic Structure - Benasque, August

43 DFT-based Vertex (4) Future question: Interplay between self-consistency and vertex GW Many-Body Theory for Electronic Structure - Benasque, August

44 Using self-energy approaches to shed light on DFT functionals

45 Using self-energy approaches to shed light on DFT functionals G.s. total energy already discussed (e.g. van der Waals) Orbital functions based on GW self-energies Beyond exact exchange DFT From Σ can calculate g.s. density ρ(r), then determine V xc such that the same density is reproduced: Sham-Schlüter equation (see e.g. Godby Schlüter Sham PRL 1986): relevant to Band-gap problem Exchange-correlation electric field in polarised systems (and TDDFT current functionals à la R. van Leeuwen et al.) GW Many-Body Theory for Electronic Structure - Benasque, August

46 Acknowledgements and Further Reading

47 Collaborators Pablo García-González Kris Delaney Patrick Rinke Martin Stankovski Peter Bokes Angel Rubio GW Many-Body Theory for Electronic Structure - Benasque, August

48 Some starting points for further reading "Quasiparticle calculations in solids", W.G. Aulbur, L. Jönsson and J.W. Wilkins, Solid State Physics 54 1 (2000), available in preprint form on the web Many-particle theory, E.K.U. Gross, Runge and Heinonen, Adam Hilger (approx. 1992) Electron Correlations in Molecules and Solids, P. Fulde, Springer (1993) "Density functional theories and self-energy approaches", R. W. Godby and P. García-González, chapter in "A Primer in Density Functional Theory", ed. Carlos Fiolhais, Fernando Nogueira and M. A. L. Marques, Lecture Notes in Physics vol. 620, Springer (Heidelberg), 2003 Further info at GW Many-Body Theory for Electronic Structure - Benasque, August

GW-like approaches to quantum transport. Rex Godby

GW-like approaches to quantum transport. Rex Godby GW-like approaches to quantum transport Rex Godby Outline Introduction to the quantum transport problem Ab initio quantum conductance in the presence of e e interaction (TDDFT / MBPT) 2 + Bothersome aspects

More information

Quantum Transport: electron-electron and electron-phonon effects. Rex Godby

Quantum Transport: electron-electron and electron-phonon effects. Rex Godby Quantum Transport: electron-electron and electron-phonon effects Rex Godby Outline Introduction to the quantum transport problem Ab initio quantum conductance in the presence of e-e interaction (TDDFT

More information

5 Density Functional Theories and Self-energy Approaches

5 Density Functional Theories and Self-energy Approaches 5 Density Functional Theories and Self-energy Approaches Rex W. Godby and Pablo García-González Department of Physics, University of York, Heslington, York YO105DD, United Kingdom rwg3@york.ac.uk Departamento

More information

MBPT and the GW approximation

MBPT and the GW approximation MBPT and the GW approximation Matthieu Verstraete Université de Liège, Belgium European Theoretical Spectroscopy Facility (ETSF) Matthieu.Verstraete@ulg.ac.be http://www.etsf.eu Benasque - TDDFT 2010 1/60

More information

Many electrons: Density functional theory Part II. Bedřich Velický VI.

Many electrons: Density functional theory Part II. Bedřich Velický VI. Many electrons: Density functional theory Part II. Bedřich Velický velicky@karlov.mff.cuni.cz VI. NEVF 514 Surface Physics Winter Term 013-014 Troja 1 st November 013 This class is the second devoted to

More information

GW quasiparticle energies

GW quasiparticle energies Chapter 4 GW quasiparticle energies Density functional theory provides a good description of ground state properties by mapping the problem of interacting electrons onto a KS system of independent particles

More information

This is a repository copy of Self-interaction in Green's-function theory of the hydrogen atom.

This is a repository copy of Self-interaction in Green's-function theory of the hydrogen atom. This is a repository copy of Self-interaction in Green's-function theory of the hydrogen atom. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/4030/ Article: Nelson, W., Bokes,

More information

Linear-response excitations. Silvana Botti

Linear-response excitations. Silvana Botti from finite to extended systems 1 LSI, CNRS-CEA-École Polytechnique, Palaiseau, France 2 LPMCN, CNRS-Université Lyon 1, France 3 European Theoretical Spectroscopy Facility September 3, 2008 Benasque, TDDFT

More information

This is a repository copy of Self-consistent calculation of total energies of the electron gas using many-body perturbation theory.

This is a repository copy of Self-consistent calculation of total energies of the electron gas using many-body perturbation theory. This is a repository copy of Self-consistent calculation of total energies of the electron gas using many-body perturbation theory. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/4010/

More information

Quantum Transport Beyond the Independent-Electron Approximation. Rex Godby

Quantum Transport Beyond the Independent-Electron Approximation. Rex Godby Quantum Transport Beyond the Independent-Electron Approximation Rex Godby Outline Introduction to the quantum transport problem Ab initio quantum conductance in the presence of e e interaction (TDDFT /

More information

Time-Dependent Density-Functional Theory

Time-Dependent Density-Functional Theory Summer School on First Principles Calculations for Condensed Matter and Nanoscience August 21 September 3, 2005 Santa Barbara, California Time-Dependent Density-Functional Theory X. Gonze, Université Catholique

More information

Introduction to DFT and Density Functionals. by Michel Côté Université de Montréal Département de physique

Introduction to DFT and Density Functionals. by Michel Côté Université de Montréal Département de physique Introduction to DFT and Density Functionals by Michel Côté Université de Montréal Département de physique Eamples Carbazole molecule Inside of diamant Réf: Jean-François Brière http://www.phys.umontreal.ca/~michel_

More information

Orbital functionals derived from variational functionals of the Green function

Orbital functionals derived from variational functionals of the Green function Orbital functionals derived from variational functionals of the Green function Nils Erik Dahlen Robert van Leeuwen Rijksuniversiteit Groningen Ulf von Barth Lund University Outline 1. Deriving orbital

More information

Multi-Scale Modeling from First Principles

Multi-Scale Modeling from First Principles m mm Multi-Scale Modeling from First Principles μm nm m mm μm nm space space Predictive modeling and simulations must address all time and Continuum Equations, densityfunctional space scales Rate Equations

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute for Microstructure Physics OUTLINE LECTURE I Phenomena to be described by TDDFT Some generalities on functional theories LECTURE

More information

Key concepts in Density Functional Theory

Key concepts in Density Functional Theory From the many body problem to the Kohn-Sham scheme ILM (LPMCN) CNRS, Université Lyon 1 - France European Theoretical Spectroscopy Facility (ETSF) December 12, 2012 Lyon Outline 1 The many-body problem

More information

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride Dimer Philip Straughn Abstract Charge transfer between Na and Cl ions is an important problem in physical chemistry. However,

More information

The GW approximation

The GW approximation The GW approximation Matteo Gatti European Theoretical Spectroscopy Facility (ETSF) LSI - Ecole Polytechnique & Synchrotron SOLEIL - France matteo.gatti@polytechnique.fr - http://etsf.polytechnique.fr

More information

Key concepts in Density Functional Theory (I) Silvana Botti

Key concepts in Density Functional Theory (I) Silvana Botti From the many body problem to the Kohn-Sham scheme European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre

More information

Combining quasiparticle energy calculations with exact-exchange density-functional theory

Combining quasiparticle energy calculations with exact-exchange density-functional theory Combining quasiparticle energy calculations with exact-exchange density-functional theory Patrick Rinke 1, Abdallah Qteish 1,2, Jörg Neugebauer 1,3,4, Christoph Freysoldt 1 and Matthias Scheffler 1 1 Fritz-Haber-Institut

More information

Novel Functionals and the GW Approach

Novel Functionals and the GW Approach Novel Functionals and the GW Approach Patrick Rinke FritzHaberInstitut der MaxPlanckGesellschaft, Berlin Germany IPAM 2005 Workshop III: DensityFunctional Theory Calculations for Modeling Materials and

More information

MBPT and TDDFT Theory and Tools for Electronic-Optical Properties Calculations in Material Science

MBPT and TDDFT Theory and Tools for Electronic-Optical Properties Calculations in Material Science MBPT and TDDFT Theory and Tools for Electronic-Optical Properties Calculations in Material Science Dott.ssa Letizia Chiodo Nano-bio Spectroscopy Group & ETSF - European Theoretical Spectroscopy Facility,

More information

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY A TUTORIAL FOR PHYSICAL SCIENTISTS WHO MAY OR MAY NOT HATE EQUATIONS AND PROOFS REFERENCES

More information

CHEM6085: Density Functional Theory

CHEM6085: Density Functional Theory Lecture 5 CHEM6085: Density Functional Theory Orbital-free (or pure ) DFT C.-K. Skylaris 1 Consists of three terms The electronic Hamiltonian operator Electronic kinetic energy operator Electron-Electron

More information

Introduction to Green functions, GW, and BSE

Introduction to Green functions, GW, and BSE Introduction to Green functions, the GW approximation, and the Bethe-Salpeter equation Stefan Kurth 1. Universidad del País Vasco UPV/EHU, San Sebastián, Spain 2. IKERBASQUE, Basque Foundation for Science,

More information

Spectroscopy of nanostructures: from optics to transport

Spectroscopy of nanostructures: from optics to transport Spectroscopy of nanostructures: from optics to transport Angel Rubio NanoBio Spectroscopy Group, Dpto. Física de Materiales, Universidad del País Vasco, Centro Mixto CSIC UPV/EHU and DIPC Edificio Korta,

More information

3/23/2010 More basics of DFT Kieron Burke and friends UC Irvine Physics and Chemistry References for ground-state DFT ABC of DFT, by KB and Rudy Magyar, http://dft.uci.edu A Primer in Density Functional

More information

Density Functional Theory. Martin Lüders Daresbury Laboratory

Density Functional Theory. Martin Lüders Daresbury Laboratory Density Functional Theory Martin Lüders Daresbury Laboratory Ab initio Calculations Hamiltonian: (without external fields, non-relativistic) impossible to solve exactly!! Electrons Nuclei Electron-Nuclei

More information

Ensemble-generalization approach:

Ensemble-generalization approach: Ensemble-generalization approach: addressing some long-standing problems in DFT Eli Kraisler Max Planck Institute of Microstructure Physics, Halle (Saale), Germany DFT2016 summer school, Los Angeles, August

More information

The GW Approximation. Manish Jain 1. July 8, Department of Physics Indian Institute of Science Bangalore 1/36

The GW Approximation. Manish Jain 1. July 8, Department of Physics Indian Institute of Science Bangalore 1/36 1/36 The GW Approximation Manish Jain 1 Department of Physics Indian Institute of Science Bangalore July 8, 2014 Ground-state properties 2/36 Properties that are intrinsic to a system with all its electrons

More information

Ab Initio theories to predict ARPES Hedin's GW and beyond

Ab Initio theories to predict ARPES Hedin's GW and beyond Ab Initio theories to predict ARPES Hedin's GW and beyond Valerio Olevano Institut NEEL, CNRS, Grenoble, France and European Theoretical Spectroscopy Facility Many thanks to: Matteo Gatti, Pierre Darancet,

More information

Theoretical Framework for Electronic & Optical Excitations, the GW & BSE Approximations and Considerations for Practical Calculations

Theoretical Framework for Electronic & Optical Excitations, the GW & BSE Approximations and Considerations for Practical Calculations Theoretical Framework for Electronic & Optical Excitations, the GW & BSE Approximations and Considerations for Practical Calculations Mark S Hybertsen Center for Functional Nanomaterials Brookhaven National

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Many-Body Perturbation Theory: (1) The GW Approximation

Many-Body Perturbation Theory: (1) The GW Approximation Many-Body Perturbation Theory: (1) The GW Approximation Michael Rohlfing Fachbereich Physik Universität Osnabrück MASP, June 29, 2012 Motivation Excited states: electrons, holes Equation of motion Approximations

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

Progress & challenges with Luttinger-Ward approaches for going beyond DFT

Progress & challenges with Luttinger-Ward approaches for going beyond DFT Progress & challenges with Luttinger-Ward approaches for going beyond DFT Sohrab Ismail-Beigi Yale University Dept. of Applied Physics and Physics & CRISP (NSF MRSEC) Ismail-Beigi, Phys. Rev. B (2010)

More information

Key concepts in Density Functional Theory (II)

Key concepts in Density Functional Theory (II) Kohn-Sham scheme and band structures European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Present Address: LPMCN Université

More information

Solid-State Optical Absorption from Optimally-Tuned Time- Dependent Screened Range- Separated Hybrids

Solid-State Optical Absorption from Optimally-Tuned Time- Dependent Screened Range- Separated Hybrids Solid-State Optical Absorption from Optimally-Tuned Time- Dependent Screened Range- Separated Hybrids Sivan Refaely-Abramson University of California, Berkeley; Lawrence Berkeley National Laboratory TDDFT

More information

Short Course on Density Functional Theory and Applications VIII. Time-dependent DFT

Short Course on Density Functional Theory and Applications VIII. Time-dependent DFT Short Course on Density Functional Theory and Applications VIII. Time-dependent DFT Samuel B. Trickey Sept. 2008 Quantum Theory Project Dept. of Physics and Dept. of Chemistry trickey@qtp.ufl.edu Time-dependent

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechanics University of York Lecturer: Rex Godby Notes by Victor Naden Robinson Lecture 1: TDSE Lecture 2: TDSE Lecture 3: FMG Lecture 4: FMG Lecture 5: Ehrenfest s Theorem and the Classical

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

Spin gaps and spin flip energies in density functional theory

Spin gaps and spin flip energies in density functional theory Spin gaps and spin flip energies in density functional theory Klaus Capelle Universidade Federal do ABC Carsten Ullrich University of Missouri-Columbia G. Vignale University of Missouri-Columbia Charge

More information

Today: Thursday, April 30. Examples of applications of the Baym-Kadanoff theory for the polarization propagator: Approximations for the self-energy:

Today: Thursday, April 30. Examples of applications of the Baym-Kadanoff theory for the polarization propagator: Approximations for the self-energy: Thursday, April 30 Today: Examples of applications of the Baym-Kadanoff theory for the polarization propagator: Free propagator Random Phase Approximation Extended (2p2h) RPA Approximations for the self-energy:

More information

CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 19122

CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 19122 CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 191 THANKS TO MANY COLLABORATORS, INCLUDING SY VOSKO DAVID LANGRETH ALEX

More information

Random-phase approximation and beyond for materials: concepts, practice, and future perspectives. Xinguo Ren

Random-phase approximation and beyond for materials: concepts, practice, and future perspectives. Xinguo Ren Random-phase approximation and beyond for materials: concepts, practice, and future perspectives Xinguo Ren University of Science and Technology of China, Hefei USTC-FHI workshop on frontiers of Advanced

More information

Photoelectronic properties of chalcopyrites for photovoltaic conversion:

Photoelectronic properties of chalcopyrites for photovoltaic conversion: Photoelectronic properties of chalcopyrites for photovoltaic conversion: self-consistent GW calculations Silvana Botti 1 LSI, CNRS-CEA-École Polytechnique, Palaiseau, France 2 LPMCN, CNRS-Université Lyon

More information

Dept of Mechanical Engineering MIT Nanoengineering group

Dept of Mechanical Engineering MIT Nanoengineering group 1 Dept of Mechanical Engineering MIT Nanoengineering group » To calculate all the properties of a molecule or crystalline system knowing its atomic information: Atomic species Their coordinates The Symmetry

More information

All electron optimized effective potential method for solids

All electron optimized effective potential method for solids All electron optimized effective potential method for solids Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. 22

More information

Pseudopotential generation and test by the ld1.x atomic code: an introduction

Pseudopotential generation and test by the ld1.x atomic code: an introduction and test by the ld1.x atomic code: an introduction SISSA and DEMOCRITOS Trieste (Italy) Outline 1 2 3 Spherical symmetry - I The Kohn and Sham (KS) equation is (in atomic units): [ 1 ] 2 2 + V ext (r)

More information

André Schleife Department of Materials Science and Engineering

André Schleife Department of Materials Science and Engineering André Schleife Department of Materials Science and Engineering Yesterday you (should have) learned this: http://upload.wikimedia.org/wikipedia/commons/e/ea/ Simple_Harmonic_Motion_Orbit.gif 1. deterministic

More information

Advanced TDDFT PDF Created with deskpdf PDF Writer - Trial ::

Advanced TDDFT PDF Created with deskpdf PDF Writer - Trial :: Advanced TDDFT TDDFT Humanity has advanced, when it has advanced, not because it has been sober, responsible, and cautious, but because it has been playful, rebellious, and immature Tom Robbins US novelist

More information

Density Functional Theory for Electrons in Materials

Density Functional Theory for Electrons in Materials Density Functional Theory for Electrons in Materials Richard M. Martin Department of Physics and Materials Research Laboratory University of Illinois at Urbana-Champaign 1 Density Functional Theory for

More information

Many-Body Perturbation Theory. Lucia Reining, Fabien Bruneval

Many-Body Perturbation Theory. Lucia Reining, Fabien Bruneval , Fabien Bruneval Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF) Belfast, 27.6.2007 Outline 1 Reminder 2 Perturbation Theory

More information

Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that. Keith Refson STFC Rutherford Appleton Laboratory

Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that. Keith Refson STFC Rutherford Appleton Laboratory Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that Keith Refson STFC Rutherford Appleton Laboratory LDA/GGA DFT is good but... Naive LDA/GGA calculation severely underestimates band-gaps.

More information

Density matrix functional theory vis-á-vis density functional theory

Density matrix functional theory vis-á-vis density functional theory Density matrix functional theory vis-á-vis density functional theory 16.4.007 Ryan Requist Oleg Pankratov 1 Introduction Recently, there has been renewed interest in density matrix functional theory (DMFT)

More information

Quantum Electrodynamical TDDFT: From basic theorems to approximate functionals

Quantum Electrodynamical TDDFT: From basic theorems to approximate functionals Quantum Electrodynamical TDDFT: From basic theorems to approximate functionals Ilya Tokatly NanoBio Spectroscopy Group - UPV/EHU San Sebastiàn - Spain IKERBASQUE, Basque Foundation for Science - Bilbao

More information

Pseudopotentials: design, testing, typical errors

Pseudopotentials: design, testing, typical errors Pseudopotentials: design, testing, typical errors Kevin F. Garrity Part 1 National Institute of Standards and Technology (NIST) Uncertainty Quantification in Materials Modeling 2015 Parameter free calculations.

More information

Time-dependent density functional theory (TDDFT)

Time-dependent density functional theory (TDDFT) Advanced Workshop on High-Performance & High-Throughput Materials Simulations using Quantum ESPRESSO ICTP, Trieste, Italy, January 16 to 27, 2017 Time-dependent density functional theory (TDDFT) Ralph

More information

Orbital dependent correlation potentials in ab initio density functional theory

Orbital dependent correlation potentials in ab initio density functional theory Orbital dependent correlation potentials in ab initio density functional theory noniterative - one step - calculations Ireneusz Grabowski Institute of Physics Nicolaus Copernicus University Toruń, Poland

More information

Linear response theory and TDDFT

Linear response theory and TDDFT Linear response theory and TDDFT Claudio Attaccalite http://abineel.grenoble.cnrs.fr/ CECAM Yambo School 2013 (Lausanne) Motivations: +- hν Absorption Spectroscopy Many Body Effects!!! Motivations(II):Absorption

More information

Ab initio Electronic Structure

Ab initio Electronic Structure Ab initio Electronic Structure M. Alouani IPCMS, UMR 7504, Université Louis Pasteur, Strasbourg France http://www-ipcms.u-strasbg.fr In coll. with: B. Arnaud, O. Bengone, Y. Dappe, and S. Lebègue 1965

More information

Diagrammatic self-energy approximations and the total particle number

Diagrammatic self-energy approximations and the total particle number PHYSICAL REVIEW B, VOLUME 64, 235106 Diagrammatic self-energy approximations and the total particle number Arno Schindlmayr, 1, * P. García-González, 2 and R. W. Godby 3 1 Fritz-Haber-Institut der Max-Planck-Gesellschaft,

More information

Advanced TDDFT I: Memory and Initial-State Dependence

Advanced TDDFT I: Memory and Initial-State Dependence Advanced TDDFT I: Memory and Initial-State Dependence when the adiabatic approximation commits a crime Where were you at the time the photon was annihilated? I..um I just can t remember! V xc( r,t ) n(r,t)

More information

Electronic Structure: Density Functional Theory

Electronic Structure: Density Functional Theory Electronic Structure: Density Functional Theory S. Kurth, M. A. L. Marques, and E. K. U. Gross Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany (Dated:

More information

DFT in practice : Part II. Ersen Mete

DFT in practice : Part II. Ersen Mete pseudopotentials Department of Physics Balıkesir University, Balıkesir - Turkey August 13, 2009 - NanoDFT 09, İzmir Institute of Technology, İzmir Outline Pseudopotentials Basic Ideas Norm-conserving pseudopotentials

More information

Strong interaction in the nuclear medium: new trends Effective interactions and energy functionals: applications to nuclear systems I

Strong interaction in the nuclear medium: new trends Effective interactions and energy functionals: applications to nuclear systems I École Joliot-Curie 27 September - 3 October 2009 Lacanau - France Strong interaction in the nuclear medium: new trends Effective interactions and energy functionals: applications to nuclear systems I Marcella

More information

2.5 Time dependent density functional theory

2.5 Time dependent density functional theory .5 Time dependent density functional theory The main theorems of Kohn-Sham DFT state that: 1. Every observable is a functional of the density (Hohenger-Kohn theorem).. The density can be obtained within

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

Nonlocal exchange correlation in screened-exchange density functional methods

Nonlocal exchange correlation in screened-exchange density functional methods Nonlocal exchange correlation in screened-exchange density functional methods Byounghak Lee and Lin-Wang Wang Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California

More information

Time-dependent density functional theory (TDDFT)

Time-dependent density functional theory (TDDFT) 04/05/16 Hands-on workshop and Humboldt-Kolleg: Density-Functional Theory and Beyond - Basic Principles and Modern Insights Isfahan University of Technology, Isfahan, Iran, May 2 to 13, 2016 Time-dependent

More information

Modified Becke-Johnson (mbj) exchange potential

Modified Becke-Johnson (mbj) exchange potential Modified Becke-Johnson (mbj) exchange potential Hideyuki Jippo Fujitsu Laboratories LTD. 2015.12.21-22 OpenMX developer s meeting @ Kobe Overview: mbj potential The semilocal exchange potential adding

More information

Time Dependent Density Functional Theory. Francesco Sottile

Time Dependent Density Functional Theory. Francesco Sottile Applications, limitations and... new frontiers Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF) Vienna, 19 January 2007 /55 Outline

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

A FRESH LOOK AT THE BAND-GAP PROBLEM IN DENSITY FUNCTIONAL THEORY

A FRESH LOOK AT THE BAND-GAP PROBLEM IN DENSITY FUNCTIONAL THEORY A FRESH LOOK AT THE BAND-GAP PROBLEM IN DENSITY FUNCTIONAL THEORY JOHN P. PERDEW PHYSICS & CHEMISTRY, TEMPLE UNIVERSITY PHILADELPHIA, PENNSYLVANIA, USA SUPPORTED BY THE U.S. DEPARTMENT OF ENERGY, EFRC

More information

Time-dependent density functional theory : direct computation of excitation energies

Time-dependent density functional theory : direct computation of excitation energies CECAM Tutorial Electronic excitations and spectroscopies : Theory and Codes Lyon 007 Time-dependent density functional theory : direct computation of excitation energies X. Gonze Université Catholique

More information

Andrea Marini. Introduction to the Many-Body problem (I): the diagrammatic approach

Andrea Marini. Introduction to the Many-Body problem (I): the diagrammatic approach Introduction to the Many-Body problem (I): the diagrammatic approach Andrea Marini Material Science Institute National Research Council (Monterotondo Stazione, Italy) Zero-Point Motion Many bodies and

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute for Microstructure Physics OUTLINE LECTURE I Phenomena to be described by TDDFT LECTURE II Review of ground-state DFT LECTURE

More information

Algorithms and Computational Aspects of DFT Calculations

Algorithms and Computational Aspects of DFT Calculations Algorithms and Computational Aspects of DFT Calculations Part I Juan Meza and Chao Yang High Performance Computing Research Lawrence Berkeley National Laboratory IMA Tutorial Mathematical and Computational

More information

Key concepts in Density Functional Theory (II) Silvana Botti

Key concepts in Density Functional Theory (II) Silvana Botti Kohn-Sham scheme, band structure and optical spectra European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address:

More information

Cumulant Green s function approach for excited state and thermodynamic properties of cool to warm dense matter

Cumulant Green s function approach for excited state and thermodynamic properties of cool to warm dense matter HoW exciting! Workshop Humboldt University Berlin 7 August, 2018 Cumulant Green s function approach for excited state and thermodynamic properties of cool to warm dense matter J. J. Rehr & J. J. Kas University

More information

Development of density functional theory for plasmon assisted superconductors. Ryotaro Arita Univ. Tokyo/PRESTO

Development of density functional theory for plasmon assisted superconductors. Ryotaro Arita Univ. Tokyo/PRESTO Development of density functional theory for plasmon assisted superconductors Ryotaro Arita Univ. Tokyo/PRESTO In collaboration with Ryosuke Akashi (Univ. Tokyo) Poster 28 (arxiv:1303.5052, 1305.0390)

More information

The Electronic Structure of Dye- Sensitized TiO 2 Clusters from Many- Body Perturbation Theory

The Electronic Structure of Dye- Sensitized TiO 2 Clusters from Many- Body Perturbation Theory The Electronic Structure of Dye- Sensitized TiO 2 Clusters from Many- Body Perturbation Theory Noa Marom Center for Computational Materials Institute for Computational Engineering and Sciences The University

More information

Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC

Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC Sergey V. Churakov sergey.churakov@psi.ch Paul Scherrer Institute Switzerland Cement Phase Composition C-S-H H Solid Solution Model

More information

Generalized generalized gradient approximation: An improved density-functional theory for accurate orbital eigenvalues

Generalized generalized gradient approximation: An improved density-functional theory for accurate orbital eigenvalues PHYSICAL REVIEW B VOLUME 55, NUMBER 24 15 JUNE 1997-II Generalized generalized gradient approximation: An improved density-functional theory for accurate orbital eigenvalues Xinlei Hua, Xiaojie Chen, and

More information

Electronic structure, plane waves and pseudopotentials

Electronic structure, plane waves and pseudopotentials Electronic structure, plane waves and pseudopotentials P.J. Hasnip Spectroscopy Workshop 2009 We want to be able to predict what electrons and nuclei will do from first principles, without needing to know

More information

XYZ of ground-state DFT

XYZ of ground-state DFT XYZ of ground-state DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA January 5-9th, 2014 Kieron (UC Irvine) XYZ of ground-state

More information

297 K 297 K 83 K PRB 36, 4821 (1987) C. Tarrio, PRB 40, 7852 (1989)

297 K 297 K 83 K PRB 36, 4821 (1987) C. Tarrio, PRB 40, 7852 (1989) Finite temperature calculations of the electronic and optical properties of solids and nanostructures: the role of electron-phonon coupling from Initio perspective Andrea Marini National Reserach Council

More information

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education Session 1 Introduction to Computational Chemistry 1 Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory 1 Introduction to Density Functional Theory 21 February 2011; V172 P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 21 February 2011 Introduction to DFT 2 3 4 Ab initio Computational

More information

A. RUBIO Dept. de Fisica de Materiales, Univ. del Pais Vasco and Centro Mixto CSIC-UPV/EHU, Donostia, San Sebastian, Spain

A. RUBIO Dept. de Fisica de Materiales, Univ. del Pais Vasco and Centro Mixto CSIC-UPV/EHU, Donostia, San Sebastian, Spain united nations educational, scientific and cultural organization the abdus salam international centre for theoretical physics international atomic energy agency SMR 1564-3 SPRING COLLEGE ON SCIENCE AT

More information

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005 Multi-reference Density Functional Theory COLUMBUS Workshop Argonne National Laboratory 15 August 2005 Capt Eric V. Beck Air Force Institute of Technology Department of Engineering Physics 2950 Hobson

More information

1 Back to the ground-state: electron gas

1 Back to the ground-state: electron gas 1 Back to the ground-state: electron gas Manfred Lein and Eberhard K. U. Gross 1.1 Introduction In this chapter, we explore how concepts of time-dependent density functional theory can be useful in the

More information

Angel Rubio. Motivation. I. Illustration of the physics for nano- and bio-structures. II. Extended systems: problems and new developments

Angel Rubio. Motivation. I. Illustration of the physics for nano- and bio-structures. II. Extended systems: problems and new developments Lectures on Applications of TDDFT Angel Rubio Dpto. de Física de Materiales, Universidad del País Vasco, Donostia International Physics Center (DIPC), and Centro Mixto CSIC-UPV/EHU, Donostia, Spain http://dipc.ehu.es/arubio

More information

College of Chemistry, Peking University, Beijing, China. Fritz-Haber-Institut der MPG, Berlin, Germany

College of Chemistry, Peking University, Beijing, China. Fritz-Haber-Institut der MPG, Berlin, Germany KITP Program Excitations in Condensed Matter Localized and Itinerant States in a Unified Picture beyond Density Functional Theory Hong Jiang 1, Patrick Rinke 2 and Matthias Scheffler 2 1 College of Chemistry,

More information

Theoretical spectroscopy beyond quasiparticles

Theoretical spectroscopy beyond quasiparticles A direct approach to the calculation of many-body Green s functions: Theoretical spectroscopy beyond quasiparticles Lucia Reining Palaiseau Theoretical Spectroscopy Group Palaiseau Theoretical Spectroscopy

More information

The potential of Potential Functional Theory

The potential of Potential Functional Theory The potential of Potential Functional Theory IPAM DFT School 2016 Attila Cangi August, 22 2016 Max Planck Institute of Microstructure Physics, Germany P. Elliott, AC, S. Pittalis, E.K.U. Gross, K. Burke,

More information

3: Density Functional Theory

3: Density Functional Theory The Nuts and Bolts of First-Principles Simulation 3: Density Functional Theory CASTEP Developers Group with support from the ESF ψ k Network Density functional theory Mike Gillan, University College London

More information

CHEM6085: Density Functional Theory Lecture 10

CHEM6085: Density Functional Theory Lecture 10 CHEM6085: Density Functional Theory Lecture 10 1) Spin-polarised calculations 2) Geometry optimisation C.-K. Skylaris 1 Unpaired electrons So far we have developed Kohn-Sham DFT for the case of paired

More information

Beyond time-dependent exact exchange: The need for long-range correlation

Beyond time-dependent exact exchange: The need for long-range correlation THE JOURNAL OF CHEMICAL PHYSICS 124, 144113 2006 Beyond time-dependent exact exchange: The need for long-range correlation Fabien Bruneval a European Theoretical Spectroscopy Facility (ETSF), Laboratoire

More information

Exchange-Correlation Functional

Exchange-Correlation Functional Exchange-Correlation Functional Aiichiro Nakano Collaboratory for Advanced Computing & Simulations Depts. of Computer Science, Physics & Astronomy, Chemical Engineering & Materials Science, and Biological

More information