ENG2410 Digital Design Introduction to Digital Systems. Fall 2017 S. Areibi School of Engineering University of Guelph

Size: px
Start display at page:

Download "ENG2410 Digital Design Introduction to Digital Systems. Fall 2017 S. Areibi School of Engineering University of Guelph"

Transcription

1 ENG2410 Digital Design Introduction to Digital Systems Fall 2017 S. Areibi School of Engineering University of Guelph

2 Resources Chapter #1, Mano Sections 1.1 Digital Computers 1.2 Number Systems 1.3 Arithmetic Operations 1.4 Decimal Codes 1.5 Alphanumeric Codes 2

3 Topics Computing Devices and VLSI Design Signals (Digital vs. Analog) Digital Systems and Computers Number systems [binary, octal, hex] Base Conversion Arithmetic Operations Decimal Codes [BCD] Alphanumeric Codes 3

4 4

5 Computing Devices Everywhere! Embedded Systems PC PDA Car Game console Home Networking Household Body Super Computer Entertainment Medicine Communication What is the main enabler to such digital systems? 5

6 The Transistor Revolution First transistor Bell Labs, 1948 Bipolar logic 1960 s Intel 4004 processor Designed in 1971 Almost 3000 transistors Speed:1 MHz operation 6

7 The VLSI Design Cycle Specification SYSTEM Functional design + MODULE Logic design Circuit design Physical design GATE CIRCUIT Test/Fabrication S n+ G n+ D DEVICE

8 1.3 VLSI Design Styles Vdd Contact Vdd IN1 IN2 OUT IN1 IN2 OUT Metal layer Poly layer Diffusion layer p-type transistor KLMH GND GND n-type transistor IN1 IN2 OUT Power (Vdd)-Rail Ground (GND)-Rail 8 Lienig

9 9

10 Signals An information variable represented by a physical quantity (speech, Temp, humidty, noise, ) 10

11 Signals Signals can be analog or digital: 1. Analog signals can have an infinite number of values in a range; 2. Digital signals can have only a limited number of values. 11

12 Analog Signals Time Analog Continuous in value & time 12

13 Digital Signals For digital systems, the variable takes on discrete values (i.e., not continuous) Time Digital Discrete in value 13

14 Signal Examples Over Time Digital (Binary) values are represented by: digits 0 and 1 / False (F) and True (T) words (symbols) Low (L) and High (H) words On and Off. Time Asynchronous Digital Synchronous Discrete in value & continuous in time Discrete in value & time 14

15 Binary Values: Other Physical Quantities What are other physical quantities represent 0 and 1? CPU: Voltage Hard Drive: Magnetic Field Direction Dynamic Ram: Electric Charge CD: Surface Pits/Light 15

16 A Digital Computer Example Data/Instructions/code All in Memory CPU Control unit Datapath clock Inputs: Keyboard, mouse, modem, microphone Input/Output Outputs: CRT, LCD, modem, speakers 16

17 17

18 Number Systems Representation A number with radix r is represented by a string of digits: A n -1 A n -2 A 1 A 0. A -1 A -2 A -m +1 A -m in which 0 A i < rand. is the radix point. The string of digits represents the power series: (Number) r = ( i = n - 1 ) ( j = - 1 ) i j A r i + i = 0 j = - m A (Integer Portion) + (Fraction Portion) j r 18

19 Decimal Number System Base (also called radix) = digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } Digit Position Integer & fraction Formal Notation Digit Weight Weight = (Base) Position Magnitude Sum of Digit x Weight (512.74) d 2 *B 2 +d 1 *B 1 +d 0 *B 0 +d -1 *B -1 +d -2 *B -2 19

20 Octal Number System Base = 8 8 digits { 0, 1, 2, 3, 4, 5, 6, 7 } Weights Weight = (Base) Position Formal Notation Magnitude Sum of Digit x Weight /8 1/ (512.74) 8 5 * * * * *8-2 =( ) 10 20

21 Octal Number System: Example For Example, (27) 8 can be expressed as: ( ) 10 (17.1) 8 can be expressed as: ( ) 10 21

22 Hexadecimal Number System Base = digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F } Weights Weight = (Base) Position Formal Notation Magnitude Sum of Digit x Weight /16 1/256 1 E 5 7 A (1E5.7A) 16 1 * * * * *16-2 =( ) 10 22

23 Hex to Decimal Just multiply each hex digit by decimal value, and add the results. (2ac) = (684) Dec Hex a 11 b 12 c 13 d 14 e 15 f 23

24 24

25 Binary Number System Base = 2 2 digits { 0, 1 }, called binary digits or bits Weights Weight = (Base) Position Magnitude Sum of Bit x Weight Formal Notation /2 1/ * * * * *2-2 =(5.25) 10 (101.01) 2 Groups of bits 4 bits = Nibble 8 bits = Byte

26 Binary Decimal: Example position value What is in decimal? position Binary # = (156) 10 26

27 Binary Numbers Examples: (00) 2 (0) 10 (01) 2 (1) 10 ( ) 2 (1) 10 (10) 2 (2) 10 (010) 2 (2) 10 (11) 2 (3) 10 (100) 2 (4) 10 ( ) 2 Strings of binary digits ( bits ) One bitcan store a number from 0 to 1 nbits can store numbers from 0 to 2 n -1 27

28 Binary Fractions 2 i 2 i Integer Values 1 b i b i-1... b 2 b 1 b 0 b -1 b -2 b -3 b -j 1/2 Fractional Values 1/4 1/8 2 -j decimal number = 28

29 Example x x x x x2-2 6 and 3/4 29

30 Example x x x x x x x2-6 63/64 Note: (1) Numbers of the form are just below 1.0 (2) Short form notation for such numbers is 1.0 -ε 30

31 Why Binary? This is easier to implement in hardware than a unit that can take on 10 different values. For instance, it can be represented by a transistor being off (0) or on (1). Alternatively, it can be a magnetic stripe that is magnetized with North in one direction (0) or the opposite (1). Binary also has a convenient and natural association with logical values of: False (0) and True (1). 31

32 The Power of 2 n 2 n = = = = = = = =128 n 2 n = = = = = =1M =1G =1T Kilo Mega Giga Tera 32

33 33

34 Number Base Conversions Evaluate Magnitude Evaluate Magnitude Octal (Base 8) Decimal (Base 10) Binary (Base 2) Evaluate Magnitude Hexadecimal (Base 16) 34

35 Conversion Between Bases To convert from one base to another: 1) Convert the Integer Part 2) Convert the Fraction Part 3) Join the two results with a radix point 35

36 Decimal to Binary Conversion

37 Decimal (Integer) to Binary Conversion Divide the number by the Base (=2) Take the remainder (either 0 or 1) as a coefficient Take the quotient and repeat the division Example: (13) 10 Quotient Remainder Coefficient 13/ 2 = 6 1 a 0 = 1 6 / 2 = 3 0 a 1 = 0 3 / 2 = / 2 = 0 1 a 2 = 1 a 3 = 1 Answer: (13) 10 = (a 3 a 2 a 1 a 0 ) 2 = (1101) 2 MSB LSB 37

38 Decimal (Fraction) to Binary Conversion Multiply the number by the Base (=2) Take the integer (either 0 or 1) as a coefficient Take the resultant fraction and repeat multiplication Example: (0.625) 10 Integer Fraction Coefficient * 2 = a -1 = * 2 = 0. 5 a -2 = * 2 = 1. 0 a -3 = 1 Answer: (0.625) 10 = (0.a -1 a -2 a -3 ) 2 = (0.101) 2 MSB LSB 38

39 Decimal to Octal Conversion Example: (175) 10 Quotient Remainder Coefficient 175 / 8 = 21 7 a 0 = 7 21 / 8 = 2 5 a 1 = 5 2 / 8 = 0 2 a 2 = 2 Answer: (175) 10 = (a 2 a 1 a 0 ) 8 = (257) 8 Example: (0.3125) 10 Integer Fraction Coefficient * 8 = 2. 5 a -1 = * 8 = 4. 0 a -2 = 4 Answer: (0.3125) 10 = (0.a -1 a -2 a -3 ) 8 = (0.24) 8 39

40 Decimal to Hex (684) /16 = 42 rem 12=c c 42/16 = 2 rem 10=a ac 2/16 = 0 rem 2 2ac Dec Hex a 11 b 12 c 13 d 14 e 15 f 40

41 Hexadecimal (Base 16) Strings of 0 s and 1 s too hard to write Use base-16 or hexadecimal 4 bits Dec Bin Hex Dec Bin Hex a b c d e f Why use base 16? Power of 2 Size of byte 41

42 Hex to Binary Convention write 0x (prefix) before number Hex to Binary just convert digits 0x2ac (2ac) x2ac = ( ) 2 No magic remember hex digit = 4 bits Bin Hex a 1011 b 1100 c 1101 d 1110 e 1111 f 42

43 Binary Hexadecimal Conversion 16 = 2 4 Each group of 4 bits represents a hexadecimal digit Example: Pad with Zeros ( ) 2 ( ) 16 Hex Works both ways (Binary to Hex & Hex to Binary) Binary A B C D E F

44 Binary to Hex Just convert groups of 4 bits ( ) b ( ) 2 = 0x537b = (537b) 16 Bin Hex a 1011 b 1100 c 1101 d 1110 e 1111 f 44

45 Octal Hexadecimal Conversion Convert to Binary as an intermediate step Example: ( ) 8 Assume Zeros Assume Zeros ( ) 2 ( ) 16 Works both ways (Octal to Hex & Hex to Octal) 45

46 46

47 Addition Decimal Addition Carry = Ten Base Subtract a Base 47

48 Adding bits: = = 1 Binary Addition = = (1) = (1) 1 carry carry Adding integers: (1) 2 = (7) (0) 2 = (6) 10 = (1)1 (1)0 (0) (1) 2 = (13) 10 48

49 Binary Addition Column Addition = (61) = (23) = (84) 10 (2) 10 49

50 50

51 Binary Numbers and Binary Coding Flexibility of representation Within constraints below, can assign any binary combination (called a code word) to any data as long as data is uniquely encoded. Information Types Numeric Must represent range of data needed Very desirable to represent data such that simple, straightforward computation for common arithmetic operations permitted Tight relation to binary numbers Non-numeric Greater flexibility since arithmetic operations not applied. Not tied to binary numbers 51

52 Non-numeric Binary Codes Given n binary digits (called bits), a binary code is a mapping from a set of represented elements to a subset of the 2 n binary numbers. Example: A binary code for the seven colors of the rainbow Code 100 is not used Color Red Orange Yellow Green Blue Indigo Violet Binary Number

53 Number of Bits Required Given M elements to be represented by a binary code, the minimum number of bits, n, needed, satisfies the following relationships: 2 n > M >2 (n 1) n = log 2 M where x, is called the ceiling function, i.e the integer greater than or equal to x. 53

54 Number of Bits Required Given M elements to be represented by a binary code, the minimum number of bits, n, needed, satisfies the following relationships: 2 n n = M > 2 n 1, where log 2 M = ceiling(log2 M ) Example: How many bits are required to represent decimal digits with a binary code? M = 10, hence n = ceiling (log 2 10) = ceiling (3.3219) = 4 Checking: 2 4 = > 2 3 = 8 54

55 Binary Codes Group of n bits Up to 2 n combinations Each combination represents an element of information Binary Coded Decimal (BCD) Each Decimal Digit is represented by 4 bits (0 9) Valid combinations (10 15) Invalid combinations Decimal BCD

56 Gray Code One bit changes from one code to the next code Different than Binary Decimal Gray Binary

57 Binary Representations A bit is the most basic unit of information in a computer. It is a state of on or off in a digital circuit. Sometimes these states are high or low voltage instead of on or off.. A group of four bits is called a nibble(or nybble). Bytes, therefore, consist of two nibbles: a high-order nibble, and a low-order nibble. A byteis a group of eight bits. A byte is the smallest possible addressable (can be found via its location) unit of computer storage. A wordis a contiguous group of bytes. Words can be any number of bits (16, 32, 64 bits are common). 57

58 Conversion or Coding? Do NOTmix up conversion of a decimal number to a binary number with codinga decimal number with a BINARY CODE. (13) 10 = (1101) 2 (This is conversion) (13) BCD ( ) BCD (This is coding) Advantages/Disadvantages? 58

59 BCD: Advantages/Disadvantages Disadvantage: It is obvious that a BCD number needs more bitsthan its equivalent binary value (26) 10 = (11010) 2 (26) 10 = ( ) BCD Advantages: Computer input/output data are handled by people who use the decimal system. So it is easier to convert back/forth to BCD. 59

60 60

61 Character Codes From numbers to letters ASCII Stands for American Standard Code for Information Interchange Only 7 bits defined Unicode 61

62 ASCII Code American Standard Code for Information Interchange Info 7-bit Code A B Z a b z ?

63 ASCII table 63

64 Reading Read Chapter 1 Make sure you re comfortable with material Check the lecture notes from the Web site. Solve the assignment. 64

65 Homework See Assignment #1 On Web I expect you to know number systems well and be able to do conversions and arithmetic Decimal Binary Binary Decimal Decimal Hex Hex Decimal Will be on test! 65

66 66

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Chapter 1 Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu http://www.ee.unlv.edu/~b1morris/cpe100/ CPE100: Digital Logic Design I Section 1004: Dr. Morris From Zero to One Chapter 1 Background:

More information

ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 112 Intro to Electrical and Computer Engineering ENGIN 112 Intro to Electrical and Computer Engineering Lecture 2 Number Systems Russell Tessier KEB 309 G tessier@ecs.umass.edu Overview The design of computers It all starts with numbers Building circuits

More information

of Digital Electronics

of Digital Electronics 26 Digital Electronics 729 Digital Electronics 26.1 Analog and Digital Signals 26.3 Binary Number System 26.5 Decimal to Binary Conversion 26.7 Octal Number System 26.9 Binary-Coded Decimal Code (BCD Code)

More information

EE260: Digital Design, Spring n Digital Computers. n Number Systems. n Representations. n Conversions. n Arithmetic Operations.

EE260: Digital Design, Spring n Digital Computers. n Number Systems. n Representations. n Conversions. n Arithmetic Operations. EE 260: Introduction to Digital Design Number Systems Yao Zheng Department of Electrical Engineering University of Hawaiʻi at Mānoa Overview n Digital Computers n Number Systems n Representations n Conversions

More information

Binary addition example worked out

Binary addition example worked out Binary addition example worked out Some terms are given here Exercise: what are these numbers equivalent to in decimal? The initial carry in is implicitly 0 1 1 1 0 (Carries) 1 0 1 1 (Augend) + 1 1 1 0

More information

14:332:231 DIGITAL LOGIC DESIGN. Why Binary Number System?

14:332:231 DIGITAL LOGIC DESIGN. Why Binary Number System? :33:3 DIGITAL LOGIC DESIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall 3 Lecture #: Binary Number System Complement Number Representation X Y Why Binary Number System? Because

More information

CSE 241 Digital Systems Spring 2013

CSE 241 Digital Systems Spring 2013 CSE 241 Digital Systems Spring 2013 Instructor: Prof. Kui Ren Department of Computer Science and Engineering Lecture slides modified from many online resources and used solely for the educational purpose.

More information

12/31/2010. Digital Operations and Computations Course Notes. 01-Number Systems Text: Unit 1. Overview. What is a Digital System?

12/31/2010. Digital Operations and Computations Course Notes. 01-Number Systems Text: Unit 1. Overview. What is a Digital System? Digital Operations and Computations Course Notes 0-Number Systems Text: Unit Winter 20 Professor H. Louie Department of Electrical & Computer Engineering Seattle University ECEGR/ISSC 20 Digital Operations

More information

Digital Circuits, Binary Numbering, and Logic Gates Cornerstone Electronics Technology and Robotics II

Digital Circuits, Binary Numbering, and Logic Gates Cornerstone Electronics Technology and Robotics II Digital Circuits, Binary Numbering, and Logic Gates Cornerstone Electronics Technology and Robotics II Administration: o Prayer Electricity and Electronics, Section 20.1, Digital Fundamentals: o Fundamentals:

More information

Menu. Review of Number Systems EEL3701 EEL3701. Math. Review of number systems >Binary math >Signed number systems

Menu. Review of Number Systems EEL3701 EEL3701. Math. Review of number systems >Binary math >Signed number systems Menu Review of number systems >Binary math >Signed number systems Look into my... 1 Our decimal (base 10 or radix 10) number system is positional. Ex: 9437 10 = 9x10 3 + 4x10 2 + 3x10 1 + 7x10 0 We have

More information

ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 112 Intro to Electrical and Computer Engineering ENGIN 112 Intro to Electrical and Computer Engineering Lecture 3 More Number Systems Overview Hexadecimal numbers Related to binary and octal numbers Conversion between hexadecimal, octal and binary Value

More information

CHAPTER 2 NUMBER SYSTEMS

CHAPTER 2 NUMBER SYSTEMS CHAPTER 2 NUMBER SYSTEMS The Decimal Number System : We begin our study of the number systems with the familiar decimal number system. The decimal system contains ten unique symbol 0, 1, 2, 3, 4, 5, 6,

More information

ECE380 Digital Logic. Positional representation

ECE380 Digital Logic. Positional representation ECE380 Digital Logic Number Representation and Arithmetic Circuits: Number Representation and Unsigned Addition Dr. D. J. Jackson Lecture 16-1 Positional representation First consider integers Begin with

More information

MATH Dr. Halimah Alshehri Dr. Halimah Alshehri

MATH Dr. Halimah Alshehri Dr. Halimah Alshehri MATH 1101 haalshehri@ksu.edu.sa 1 Introduction To Number Systems First Section: Binary System Second Section: Octal Number System Third Section: Hexadecimal System 2 Binary System 3 Binary System The binary

More information

Chapter 1. Binary Systems 1-1. Outline. ! Introductions. ! Number Base Conversions. ! Binary Arithmetic. ! Binary Codes. ! Binary Elements 1-2

Chapter 1. Binary Systems 1-1. Outline. ! Introductions. ! Number Base Conversions. ! Binary Arithmetic. ! Binary Codes. ! Binary Elements 1-2 Chapter 1 Binary Systems 1-1 Outline! Introductions! Number Base Conversions! Binary Arithmetic! Binary Codes! Binary Elements 1-2 3C Integration 傳輸與介面 IA Connecting 聲音與影像 Consumer Screen Phone Set Top

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Number Systems

Introduction to Digital Logic Missouri S&T University CPE 2210 Number Systems Introduction to Digital Logic Missouri S&T University CPE 2210 Number Systems Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and

More information

Hakim Weatherspoon CS 3410 Computer Science Cornell University

Hakim Weatherspoon CS 3410 Computer Science Cornell University Hakim Weatherspoon CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer. memory inst 32 register

More information

E40M. Binary Numbers. M. Horowitz, J. Plummer, R. Howe 1

E40M. Binary Numbers. M. Horowitz, J. Plummer, R. Howe 1 E40M Binary Numbers M. Horowitz, J. Plummer, R. Howe 1 Reading Chapter 5 in the reader A&L 5.6 M. Horowitz, J. Plummer, R. Howe 2 Useless Box Lab Project #2 Adding a computer to the Useless Box alows us

More information

We say that the base of the decimal number system is ten, represented by the symbol

We say that the base of the decimal number system is ten, represented by the symbol Introduction to counting and positional notation. In the decimal number system, a typical number, N, looks like... d 3 d 2 d 1 d 0.d -1 d -2 d -3... [N1] where the ellipsis at each end indicates that there

More information

Digital Systems Roberto Muscedere Images 2013 Pearson Education Inc. 1

Digital Systems Roberto Muscedere Images 2013 Pearson Education Inc. 1 Digital Systems Digital systems have such a prominent role in everyday life The digital age The technology around us is ubiquitous, that is we don t even notice it anymore Digital systems are used in:

More information

Numbers and Arithmetic

Numbers and Arithmetic Numbers and Arithmetic See: P&H Chapter 2.4 2.6, 3.2, C.5 C.6 Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Big Picture: Building a Processor memory inst register file alu

More information

Numbers and Arithmetic

Numbers and Arithmetic Numbers and Arithmetic See: P&H Chapter 2.4 2.6, 3.2, C.5 C.6 Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Big Picture: Building a Processor memory inst register file alu

More information

Number Theory: Representations of Integers

Number Theory: Representations of Integers Instructions: In-class exercises are meant to introduce you to a new topic and provide some practice with the new topic. Work in a team of up to 4 people to complete this exercise. You can work simultaneously

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Number Systems

Introduction to Digital Logic Missouri S&T University CPE 2210 Number Systems Introduction to Digital Logic Missouri S&T University CPE 2210 Number Systems Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and

More information

Mark Redekopp, All rights reserved. Lecture 1 Slides. Intro Number Systems Logic Functions

Mark Redekopp, All rights reserved. Lecture 1 Slides. Intro Number Systems Logic Functions Lecture Slides Intro Number Systems Logic Functions EE 0 in Context EE 0 EE 20L Logic Design Fundamentals Logic Design, CAD Tools, Lab tools, Project EE 357 EE 457 Computer Architecture Using the logic

More information

Why digital? Overview. Number Systems. Binary to Decimal conversion

Why digital? Overview. Number Systems. Binary to Decimal conversion Why digital? Overview It has the following advantages over analog. It can be processed and transmitted efficiently and reliably. It can be stored and retrieved with greater accuracy. Noise level does not

More information

CSEN102 Introduction to Computer Science

CSEN102 Introduction to Computer Science CSEN102 Introduction to Computer Science Lecture 7: Representing Information I Prof. Dr. Slim Abdennadher Dr. Mohammed Salem, slim.abdennadher@guc.edu.eg, mohammed.salem@guc.edu.eg German University Cairo,

More information

Introduction to digital systems. Juan P Bello

Introduction to digital systems. Juan P Bello Introduction to digital systems Juan P Bello Analogue vs Digital (1) Analog information is made up of a continuum of values within a given range At its most basic, digital information can assume only one

More information

Week No. 06: Numbering Systems

Week No. 06: Numbering Systems Week No. 06: Numbering Systems Numbering System: A numbering system defined as A set of values used to represent quantity. OR A number system is a term used for a set of different symbols or digits, which

More information

Math 230 Assembly Language Programming (Computer Organization) Numeric Data Lecture 2

Math 230 Assembly Language Programming (Computer Organization) Numeric Data Lecture 2 Math 230 Assembly Language Programming (Computer Organization) Numeric Data Lecture 2 1 Decimal Numbers Recall base 10 3582 = 3000 + 500 + 80 + 2 = 3 10 3 + 5 10 2 + 8 10 1 + 2 10 0 2 Positional Notation

More information

Digital Systems and Information Part II

Digital Systems and Information Part II Digital Systems and Information Part II Overview Arithmetic Operations General Remarks Unsigned and Signed Binary Operations Number representation using Decimal Codes BCD code and Seven-Segment Code Text

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering Data Representation & 2 s Complement James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy Data

More information

Digital Systems Overview. Unit 1 Numbering Systems. Why Digital Systems? Levels of Design Abstraction. Dissecting Decimal Numbers

Digital Systems Overview. Unit 1 Numbering Systems. Why Digital Systems? Levels of Design Abstraction. Dissecting Decimal Numbers Unit Numbering Systems Fundamentals of Logic Design EE2369 Prof. Eric MacDonald Fall Semester 2003 Digital Systems Overview Digital Systems are Home PC XBOX or Playstation2 Cell phone Network router Data

More information

Four Important Number Systems

Four Important Number Systems Four Important Number Systems System Why? Remarks Decimal Base 10: (10 fingers) Most used system Binary Base 2: On/Off systems 3-4 times more digits than decimal Octal Base 8: Shorthand notation for working

More information

hexadecimal-to-decimal conversion

hexadecimal-to-decimal conversion OTHER NUMBER SYSTEMS: octal (digits 0 to 7) group three binary numbers together and represent as base 8 3564 10 = 110 111 101 100 2 = (6X8 3 ) + (7X8 2 ) + (5X8 1 ) + (4X8 0 ) = 6754 8 hexadecimal (digits

More information

NUMBERS AND CODES CHAPTER Numbers

NUMBERS AND CODES CHAPTER Numbers CHAPTER 2 NUMBERS AND CODES 2.1 Numbers When a number such as 101 is given, it is impossible to determine its numerical value. Some may say it is five. Others may say it is one hundred and one. Could it

More information

Chapter 1 CSCI

Chapter 1 CSCI Chapter 1 CSCI-1510-003 What is a Number? An expression of a numerical quantity A mathematical quantity Many types: Natural Numbers Real Numbers Rational Numbers Irrational Numbers Complex Numbers Etc.

More information

The Magic of Negative Numbers in Computers

The Magic of Negative Numbers in Computers IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 12, Issue 4 Ver. I (Jul. - Aug.2016), PP 92-98 www.iosrjournals.org The Magic of Negative Numbers in Computers U. Sridevi

More information

Conversions between Decimal and Binary

Conversions between Decimal and Binary Conversions between Decimal and Binary Binary to Decimal Technique - use the definition of a number in a positional number system with base 2 - evaluate the definition formula ( the formula ) using decimal

More information

1 Computing System 2. 2 Data Representation Number Systems 22

1 Computing System 2. 2 Data Representation Number Systems 22 Chapter 4: Computing System & Data Representation Christian Jacob 1 Computing System 2 1.1 Abacus 3 2 Data Representation 19 3 Number Systems 22 3.1 Important Number Systems for Computers 24 3.2 Decimal

More information

Numbering Systems. Contents: Binary & Decimal. Converting From: B D, D B. Arithmetic operation on Binary.

Numbering Systems. Contents: Binary & Decimal. Converting From: B D, D B. Arithmetic operation on Binary. Numbering Systems Contents: Binary & Decimal. Converting From: B D, D B. Arithmetic operation on Binary. Addition & Subtraction using Octal & Hexadecimal 2 s Complement, Subtraction Using 2 s Complement.

More information

Chapter 1 :: From Zero to One

Chapter 1 :: From Zero to One Chapter 1 :: From Zero to One Digital Design and Computer Architecture David Money Harris and Sarah L. Harris Copyright 2007 Elsevier 1- Chapter 1 :: Topics Background The Game Plan The Art of Managing

More information

Unit II Chapter 4:- Digital Logic Contents 4.1 Introduction... 4

Unit II Chapter 4:- Digital Logic Contents 4.1 Introduction... 4 Unit II Chapter 4:- Digital Logic Contents 4.1 Introduction... 4 4.1.1 Signal... 4 4.1.2 Comparison of Analog and Digital Signal... 7 4.2 Number Systems... 7 4.2.1 Decimal Number System... 7 4.2.2 Binary

More information

CpE358/CS381. Switching Theory and Logical Design. Summer

CpE358/CS381. Switching Theory and Logical Design. Summer Switching Theory and Logical Design - Class Schedule Monday Tuesday Wednesday Thursday Friday May 7 8 9 - Class 2 - Class 2 2 24 - Class 3 25 26 - Class 4 27 28 Quiz Commencement 3 June 2 - Class 5 3 -

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Chapter 1 Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu http://www.ee.unlv.edu/~b1morris/cpe100/ CPE100: Digital Logic Design I Section 1004: Dr. Morris From Zero to One Chapter 1 Background:

More information

Digital Techniques. Figure 1: Block diagram of digital computer. Processor or Arithmetic logic unit ALU. Control Unit. Storage or memory unit

Digital Techniques. Figure 1: Block diagram of digital computer. Processor or Arithmetic logic unit ALU. Control Unit. Storage or memory unit Digital Techniques 1. Binary System The digital computer is the best example of a digital system. A main characteristic of digital system is its ability to manipulate discrete elements of information.

More information

Number System conversions

Number System conversions Number System conversions Number Systems The system used to count discrete units is called number system. There are four systems of arithmetic which are often used in digital electronics. Decimal Number

More information

CHAPTER 7. Exercises 17/ / /2 2 0

CHAPTER 7. Exercises 17/ / /2 2 0 CHAPTER 7 Exercises E7. (a) For the whole part, we have: Quotient Remainders 23/2 /2 5 5/2 2 2/2 0 /2 0 Reading the remainders in reverse order, we obtain: 23 0 = 0 2 For the fractional part we have 2

More information

Save from: cs. Logic design 1 st Class أستاذ المادة: د. عماد

Save from:   cs. Logic design 1 st Class أستاذ المادة: د. عماد Save from: www.uotiq.org/dep cs Logic design 1 st Class أستاذ المادة: د. عماد استاذة المادة: م.م ميساء Contents Lectured One: Number system operation 1- Decimal numbers. 2- Binary numbers. 3- Octal numbers.

More information

Computer Architecture, IFE CS and T&CS, 4 th sem. Representation of Integer Numbers in Computer Systems

Computer Architecture, IFE CS and T&CS, 4 th sem. Representation of Integer Numbers in Computer Systems Representation of Integer Numbers in Computer Systems Positional Numbering System Additive Systems history but... Roman numerals Positional Systems: r system base (radix) A number value a - digit i digit

More information

Digital Electronics Part 1: Binary Logic

Digital Electronics Part 1: Binary Logic Digital Electronics Part 1: Binary Logic Electronic devices in your everyday life What makes these products examples of electronic devices? What are some things they have in common? 2 How do electronics

More information

Digital Logic and Design (Course Code: EE222) Lecture 1 5: Digital Electronics Fundamentals. Evolution of Electronic Devices

Digital Logic and Design (Course Code: EE222) Lecture 1 5: Digital Electronics Fundamentals. Evolution of Electronic Devices Indian Institute of Technolog Jodhpur, Year 207 208 Digital Logic and Design (Course Code: EE222) Lecture 5: Digital Electronics Fundamentals Course Instructor: Shree Prakash Tiwari Email: sptiwari@iitj.ac.in

More information

convert a two s complement number back into a recognizable magnitude.

convert a two s complement number back into a recognizable magnitude. 1 INTRODUCTION The previous lesson introduced binary and hexadecimal numbers. In this lesson we look at simple arithmetic operations using these number systems. In particular, we examine the problem of

More information

FYSE410 DIGITAL ELECTRONICS [1] [2] [3] [4] [5] A number system consists of an ordered set of symbols (digits).

FYSE410 DIGITAL ELECTRONICS [1] [2] [3] [4] [5] A number system consists of an ordered set of symbols (digits). FYSE4 DIGITAL ELECTRONICS Litterature: LECTURE [] [] [4] [5] DIGITAL LOGIC CIRCUIT ANALYSIS & DESIGN Victor P. Nelson, H. Troy Nagle J. David Irwin, ill D. Carroll ISN --4694- DIGITAL DESIGN M. Morris

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering Boolean Algebra Boolean Algebra A Boolean algebra is defined with: A set of

More information

ECE 372 Microcontroller Design

ECE 372 Microcontroller Design Data Formats Humor There are 10 types of people in the world: Those who get binary and those who don t. 1 Information vs. Data Information An abstract description of facts, processes or perceptions How

More information

CSE370: Introduction to Digital Design

CSE370: Introduction to Digital Design CSE370: Introduction to Digital Design Course staff Gaetano Borriello, Brian DeRenzi, Firat Kiyak Course web www.cs.washington.edu/370/ Make sure to subscribe to class mailing list (cse370@cs) Course text

More information

B.Sc. PHYSICS III YEAR

B.Sc. PHYSICS III YEAR B.Sc. PHYSICS III YEAR DJK3C : DIGITAL ELECTRONICS SYLLABUS Unit I : Number System Decimal binary octal hexadecimal number system conversion from one system to another binary arithmetic 1 s complement

More information

Cs302 Quiz for MID TERM Exam Solved

Cs302 Quiz for MID TERM Exam Solved Question # 1 of 10 ( Start time: 01:30:33 PM ) Total Marks: 1 Caveman used a number system that has distinct shapes: 4 5 6 7 Question # 2 of 10 ( Start time: 01:31:25 PM ) Total Marks: 1 TTL based devices

More information

CISC 1400 Discrete Structures

CISC 1400 Discrete Structures CISC 1400 Discrete Structures Chapter 2 Sequences What is Sequence? A sequence is an ordered list of objects or elements. For example, 1, 2, 3, 4, 5, 6, 7, 8 Each object/element is called a term. 1 st

More information

CHW 261: Logic Design

CHW 261: Logic Design CHW 26: Logic Design Instructors: Prof. Hala Zayed Dr. Ahmed Shalaby http://www.bu.edu.eg/staff/halazayed4 http://bu.edu.eg/staff/ahmedshalaby4# Slide Digital Fundamentals Digital Concepts Slide 2 What?

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D.

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D. Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Digital IC packages TTL (transistor-transistor

More information

JNTU World. Digital Logic Design. Introduction

JNTU World. Digital Logic Design. Introduction Digital Logic Design Introduction A digital computer stores data in terms of digits (numbers) and proceeds in discrete steps from one state to the next. The states of a digital computer typically involve

More information

E&CE 223 Digital Circuits & Systems. Winter Lecture Transparencies (Introduction) M. Sachdev

E&CE 223 Digital Circuits & Systems. Winter Lecture Transparencies (Introduction) M. Sachdev E&CE 223 Digital Circuits & Systems Winter 2004 Lecture Transparencies (Introduction) M. Sachdev 1 of 38 Course Information: People Instructor M. Sachdev, CEIT 4015, ext. 3370, msachdev@uwaterloo.ca Lab

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics

LOGIC CIRCUITS. Basic Experiment and Design of Electronics Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Outline Combinational logic circuits Output

More information

University of Florida EEL 3701 Fall 2014 Dr. Eric. M. Schwartz Department of Electrical & Computer Engineering Wednesday, 15 October 2014

University of Florida EEL 3701 Fall 2014 Dr. Eric. M. Schwartz Department of Electrical & Computer Engineering Wednesday, 15 October 2014 Page 1/12 Exam 1 May the Schwartz Instructions: be with you! Turn off all cell phones and other noise making devices and put away all electronics Show all work on the front of the test papers Box each

More information

LOGIC GATES. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D.

LOGIC GATES. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D. Basic Eperiment and Design of Electronics LOGIC GATES Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Outline Boolean algebra Logic gates Karnaugh maps

More information

Outline. policies for the first part. with some potential answers... MCS 260 Lecture 10.0 Introduction to Computer Science Jan Verschelde, 9 July 2014

Outline. policies for the first part. with some potential answers... MCS 260 Lecture 10.0 Introduction to Computer Science Jan Verschelde, 9 July 2014 Outline 1 midterm exam on Friday 11 July 2014 policies for the first part 2 questions with some potential answers... MCS 260 Lecture 10.0 Introduction to Computer Science Jan Verschelde, 9 July 2014 Intro

More information

Hardware Design I Chap. 4 Representative combinational logic

Hardware Design I Chap. 4 Representative combinational logic Hardware Design I Chap. 4 Representative combinational logic E-mail: shimada@is.naist.jp Already optimized circuits There are many optimized circuits which are well used You can reduce your design workload

More information

Schedule. ECEN 301 Discussion #25 Final Review 1. Date Day Class No. 1 Dec Mon 25 Final Review. Title Chapters HW Due date. Lab Due date.

Schedule. ECEN 301 Discussion #25 Final Review 1. Date Day Class No. 1 Dec Mon 25 Final Review. Title Chapters HW Due date. Lab Due date. Schedule Date Day Class No. Dec Mon 25 Final Review 2 Dec Tue 3 Dec Wed 26 Final Review Title Chapters HW Due date Lab Due date LAB 8 Exam 4 Dec Thu 5 Dec Fri Recitation HW 6 Dec Sat 7 Dec Sun 8 Dec Mon

More information

Design of Digital Circuits Reading: Binary Numbers. Required Reading for Week February 2017 Spring 2017

Design of Digital Circuits Reading: Binary Numbers. Required Reading for Week February 2017 Spring 2017 Design of Digital Circuits Reading: Binary Numbers Required Reading for Week 1 23-24 February 2017 Spring 2017 Binary Numbers Design of Digital Circuits 2016 Srdjan Capkun Frank K. Gürkaynak http://www.syssec.ethz.ch/education/digitaltechnik_16

More information

The Design Procedure. Output Equation Determination - Derive output equations from the state table

The Design Procedure. Output Equation Determination - Derive output equations from the state table The Design Procedure Specification Formulation - Obtain a state diagram or state table State Assignment - Assign binary codes to the states Flip-Flop Input Equation Determination - Select flipflop types

More information

Number Representation and Waveform Quantization

Number Representation and Waveform Quantization 1 Number Representation and Waveform Quantization 1 Introduction This lab presents two important concepts for working with digital signals. The first section discusses how numbers are stored in memory.

More information

COMBINATIONAL LOGIC CIRCUITS. Dr. Mudathir A. Fagiri

COMBINATIONAL LOGIC CIRCUITS. Dr. Mudathir A. Fagiri COMBINATIONAL LOGIC CIRCUITS Dr. Mudathir A. Fagiri Standard Combinational Modules Decoder: Decode address Encoder: Encode address Multiplexer (Mux): Select data by address Demultiplexier (DeMux): Direct

More information

Fundamentals of Digital Design

Fundamentals of Digital Design Fundamentals of Digital Design Digital Radiation Measurement and Spectroscopy NE/RHP 537 1 Binary Number System The binary numeral system, or base-2 number system, is a numeral system that represents numeric

More information

Chapter 7. Sequential Circuits Registers, Counters, RAM

Chapter 7. Sequential Circuits Registers, Counters, RAM Chapter 7. Sequential Circuits Registers, Counters, RAM Register - a group of binary storage elements suitable for holding binary info A group of FFs constitutes a register Commonly used as temporary storage

More information

Informatics 1 - Computation & Logic: Tutorial 3

Informatics 1 - Computation & Logic: Tutorial 3 Informatics 1 - Computation & Logic: Tutorial 3 Counting Week 5: 16-20 October 2016 Please attempt the entire worksheet in advance of the tutorial, and bring all work with you. Tutorials cannot function

More information

School of Computer Science and Electrical Engineering 28/05/01. Digital Circuits. Lecture 14. ENG1030 Electrical Physics and Electronics

School of Computer Science and Electrical Engineering 28/05/01. Digital Circuits. Lecture 14. ENG1030 Electrical Physics and Electronics Digital Circuits 1 Why are we studying digital So that one day you can design something which is better than the... circuits? 2 Why are we studying digital or something better than the... circuits? 3 Why

More information

LABORATORY MANUAL MICROPROCESSOR AND MICROCONTROLLER

LABORATORY MANUAL MICROPROCESSOR AND MICROCONTROLLER LABORATORY MANUAL S u b j e c t : MICROPROCESSOR AND MICROCONTROLLER TE (E lectr onics) ( S e m V ) 1 I n d e x Serial No T i tl e P a g e N o M i c r o p r o c e s s o r 8 0 8 5 1 8 Bit Addition by Direct

More information

Computer Number Systems

Computer Number Systems Computer Number Systems All computers are electronic devices and can ultimately do one thing: detect whether an electrical signal is on or off. Therefore, the earliest computer scientists realized that

More information

Lecture 2 Review on Digital Logic (Part 1)

Lecture 2 Review on Digital Logic (Part 1) Lecture 2 Review on Digital Logic (Part 1) Xuan Silvia Zhang Washington University in St. Louis http://classes.engineering.wustl.edu/ese461/ Grading Engagement 5% Review Quiz 10% Homework 10% Labs 40%

More information

NUMBER SYSTEMS. and DATA REPRESENTATION. for COMPUTERS (PROBLEM ANSWERS)

NUMBER SYSTEMS. and DATA REPRESENTATION. for COMPUTERS (PROBLEM ANSWERS) NUMBER SYSTEMS and DATA REPRESENTATION for COMPUTERS (PROBLEM ANSWERS) 05 March 2008 Number Systems and Data Representation 2 Table of Contents Table of Contents... 2 Conversion Between Binary and Hexadecimal

More information

Combinational Logic. By : Ali Mustafa

Combinational Logic. By : Ali Mustafa Combinational Logic By : Ali Mustafa Contents Adder Subtractor Multiplier Comparator Decoder Encoder Multiplexer How to Analyze any combinational circuit like this? Analysis Procedure To obtain the output

More information

Unit 3. Digital encoding

Unit 3. Digital encoding Unit 3. Digital encoding Digital Electronic Circuits (Circuitos Electrónicos Digitales) E.T.S.I. Informática Universidad de Sevilla 9/2012 Jorge Juan 2010, 2011, 2012 You are free to

More information

Midterm Examination # 1 Wednesday, February 25, Duration of examination: 75 minutes

Midterm Examination # 1 Wednesday, February 25, Duration of examination: 75 minutes Page 1 of 10 School of Computer Science 60-265-01 Computer Architecture and Digital Design Winter 2009 Semester Midterm Examination # 1 Wednesday, February 25, 2009 Student Name: First Name Family Name

More information

10/14/2009. Reading: Hambley Chapters

10/14/2009. Reading: Hambley Chapters EE40 Lec 14 Digital Signal and Boolean Algebra Prof. Nathan Cheung 10/14/2009 Reading: Hambley Chapters 7.1-7.4 7.4 Slide 1 Analog Signals Analog: signal amplitude is continuous with time. Amplitude Modulated

More information

SAU1A FUNDAMENTALS OF DIGITAL COMPUTERS

SAU1A FUNDAMENTALS OF DIGITAL COMPUTERS SAU1A FUNDAMENTALS OF DIGITAL COMPUTERS Unit : I - V Unit : I Overview Fundamentals of Computers Characteristics of Computers Computer Language Operating Systems Generation of Computers 2 Definition of

More information

Carry Look Ahead Adders

Carry Look Ahead Adders Carry Look Ahead Adders Lesson Objectives: The objectives of this lesson are to learn about: 1. Carry Look Ahead Adder circuit. 2. Binary Parallel Adder/Subtractor circuit. 3. BCD adder circuit. 4. Binary

More information

ww.padasalai.net

ww.padasalai.net t w w ADHITHYA TRB- TET COACHING CENTRE KANCHIPURAM SUNDER MATRIC SCHOOL - 9786851468 TEST - 2 COMPUTER SCIENC PG - TRB DATE : 17. 03. 2019 t et t et t t t t UNIT 1 COMPUTER SYSTEM ARCHITECTURE t t t t

More information

Numbers & Arithmetic. Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. See: P&H Chapter , 3.2, C.5 C.

Numbers & Arithmetic. Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. See: P&H Chapter , 3.2, C.5 C. Numbers & Arithmetic Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University See: P&H Chapter 2.4-2.6, 3.2, C.5 C.6 Example: Big Picture Computer System Organization and Programming

More information

Digital Logic (2) Boolean Algebra

Digital Logic (2) Boolean Algebra Digital Logic (2) Boolean Algebra Boolean algebra is the mathematics of digital systems. It was developed in 1850 s by George Boole. We will use Boolean algebra to minimize logic expressions. Karnaugh

More information

Sample Marking Scheme

Sample Marking Scheme Page 1 of 10 School of Computer Science 60-265-01 Computer Architecture and Digital Design Fall 2008 Midterm Examination # 1 B Wednesday, November 5, 2008 Sample Marking Scheme Duration of examination:

More information

Appendix: a brief history of numbers

Appendix: a brief history of numbers Appendix: a brief history of numbers God created the natural numbers. Everything else is the work of man. Leopold Kronecker (1823 1891) Fundamentals of Computing 2017 18 (2, appendix) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

More information

( c) Give logic symbol, Truth table and circuit diagram for a clocked SR flip-flop. A combinational circuit is defined by the function

( c) Give logic symbol, Truth table and circuit diagram for a clocked SR flip-flop. A combinational circuit is defined by the function Question Paper Digital Electronics (EE-204-F) MDU Examination May 2015 1. (a) represent (32)10 in (i) BCD 8421 code (ii) Excess-3 code (iii) ASCII code (b) Design half adder using only NAND gates. ( c)

More information

University of Florida EEL 3701 Summer 2015 Dr. Eric. M. Schwartz Department of Electrical & Computer Engineering Tuesday, 30 June 2015

University of Florida EEL 3701 Summer 2015 Dr. Eric. M. Schwartz Department of Electrical & Computer Engineering Tuesday, 30 June 2015 University of Florida EEL 3701 Summer 2015 Dr Eric M Schwartz Page 1/13 Exam 1 May the Schwartz be with you! Instructions: Turn off all cell phones and other noise making devices Show all work on the front

More information

PAST EXAM PAPER & MEMO N3 ABOUT THE QUESTION PAPERS:

PAST EXAM PAPER & MEMO N3 ABOUT THE QUESTION PAPERS: EKURHULENI TECH COLLEGE. No. 3 Mogale Square, Krugersdorp. Website: www. ekurhulenitech.co.za Email: info@ekurhulenitech.co.za TEL: 011 040 7343 CELL: 073 770 3028/060 715 4529 PAST EXAM PAPER & MEMO N3

More information

CS1800: Hex & Logic. Professor Kevin Gold

CS1800: Hex & Logic. Professor Kevin Gold CS1800: Hex & Logic Professor Kevin Gold Reviewing Last Time: Binary Last time, we saw that arbitrary numbers can be represented in binary. Each place in a binary number stands for a different power of

More information

Discrete mathematics is the study of techniques, ideas and modes of

Discrete mathematics is the study of techniques, ideas and modes of CHAPTER 1 Discrete Systems Discrete mathematics is the study of techniques, ideas and modes of reasoning that are indispensable in applied disciplines such as computer science or information technology.

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CS6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CS6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CS6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN UNIT I : BOOLEAN ALGEBRA AND LOGIC GATES PART - A (2 MARKS) Number

More information

Counting in Different Number Systems

Counting in Different Number Systems Counting in Different Number Systems Base 1 (Decimal) is important because that is the base that we first learn in our culture. Base 2 (Binary) is important because that is the base used for computer codes

More information