CISC 1400 Discrete Structures

Size: px
Start display at page:

Download "CISC 1400 Discrete Structures"

Transcription

1 CISC 1400 Discrete Structures Chapter 2 Sequences What is Sequence? A sequence is an ordered list of objects or elements. For example, 1, 2, 3, 4, 5, 6, 7, 8 Each object/element is called a term. 1 st term in a sequence : a 1 k th term in a sequence : a k A sequence can be infinite or finite A length is associated with a finite sequence. in the sequence indicates that the sequence continues. a 1, a 2,, a k,.

2 Describing Patterns in Sequences What number comes next? 1, 2, 3, 4, 5, 2, 6, 10, 14, 18, 1, 2, 4, 8, 16, 2, 4, 6, 8, 10 What is a 1? What is a 3? What is a 5? What is a k if k = 4? What is a k-1 if k = 4?

3 2, 4, 6, 8, 10 Can we relate a term to previous terms? The first term a 1 is 2. Second term a 2 is 2 more than the first term a 1. Third term a 3 is 2 more than the second term a 2.. In fact, each subsequent term a k is just two more than the previous one a k-1. a 1 = 2 a k = a k , 4, 6, 8, 10 Can we describe each item in relation to its position in the sequence? The term at position 1 is 2 The term at position 2 is 4 The term at position 3 is 6 The term at position k is 2 * k a k = 2*k

4 2, 4, 6, 8, 10 We have found two ways to describe the sequence Recursive method: each subsequent term a k is two more than the previous one a k-1 Closed method: the term at position k is 2 * k It s also the sequence of all even numbers Describing Patterns in Sequences Recursive Method The pattern could be that each term is somehow related to previous terms Closed Method The pattern could be described by its relationship to its position in the sequence (1 st, 2 nd, 3 rd etc )

5 1, 2, 3, 4, 5, Recursive method: a 1 = 1 a 2 = 2 = 1 + a 1 a 3 = 3 = 1 + a 2 a 4 = 4 = 1 + a 3 a k = 1+ a k-1 Closed method: a 1 = 1 a 2 = 2 = 1*2 a 3 = 3 = 1*3 a 4 = 4 = 1*4 a k = 1*k = k 1, 3, 5, 7, 9, Recursive method: a 1 = 1 a 2 = 3 = 2 + a 1 a 3 = 5 = 2 + a 2 a 4 = 7 = 2 + a 3 a k = 2+a k-1 Closed method: a 1 = 1 = 1+2*0 a 2 = 3 = 1+2*1 a 3 = 5 = 1+2*2 a 4 = 7 = 1+2*3 a k = 1+2*(k-1)

6 1, 2, 6, 24, 120, Recursive method: a 1 = 1 a 2 = 2 = 2 * a 1 a 3 = 6 = 3 * a 2 a 4 = 24 = 4 * a 3 a k = k*a k-1 Closed method: a 1 = 1 a 2 = 2 = 1*2 a 3 = 6 = 1*2*3 a 4 = 24 = 1*2*3*4 a k = 1*2*3* *k Recursive Method vs. Closed Method Recursive Method Given the sequence, easier to find recursive formula Harder for evaluating a given term Closed Method Given the sequence, harder to find closed formula Easier for evaluating a given term

7 Exercises: find out recursive formula 1, 4, 7,10,13, a 1 =1, a k = a k , 2, 4, 8, 16, 32, a 1 =1, a k = a k-1 *2 1, 1, 2, 3, 5, 8, 13, a 1 =1, a 2 =1, a k = a k-1 +a k-2 Exercises: find out closed formula 3, 5, 7, 9, a k = 1+k*2 3, 6, 9, 12, a k = k*3 1, 4, 7, 10, 13, a k = (k-1)*3+1

8 What comes next? 2, 5, 10, 17, 26, 37, a 1 =2, a k =a k-1 +2k-1 2, 3, 5, 8, 12, 17, a 1 =2, a k = a k-1 +k-1 Closed Formula => Recursive Formula By observations: write out a number of initial terms, and then determine how each value relates to previous term(s) a k 7k 6 k a k a 1 1 a k a k 1 7

9 Closed formula => Recursive formula: algebraic manipulation a k 7k 6 Try to describe a k in terms of a k-1 a k 7k 6 a k 1 7( k 1) 6 7k 13 We see that a k 13 7k a 13 k 1 7 k 1 7 k 1 k 1 ak k 6 a 13 6 a So the recursive formula is a 7*1 6 a 7 k a k Exercise Given the closed formula, find the recursive formula: a k =3k+5

10 Summation A summation is just the sum of some terms in a sequence. For example is the summation of first 6 terms of sequence: 1, 2, 3, 4, 5, 6, 7, is the summation of the first 5 terms of sequence 1, 4, 9, 16, 25, 49, Summation is a very common Idea Because it is so common, mathematicians have developed a shorthand to represent summations (some people call this sigma notation) n i1 a i This is what the shorthand looks like, on the next few slides we will dissect it a bit.

11 Sigma Notation n i1 a i The giant Sigma just means that this represents a summation Sigma Notation n i1 a i The i=1 at the bottom just states where is the sequence we want to start. If the value was 5 then we would start the sequence at the 5 th position

12 Sigma Notation n i1 a i The n at the top just says to what element in the sequence we want to get to. In this case we want to go up through the nth item. Sigma Notation n i1 a i The portion to the right of the sigma is the closed formula for the sequence you want to sum over.

13 Sigma Notation n i1 a i So this states that we want to compute the closed formula for each element from 1 to n. Sigma Notation n i1 i Thus our summation is n If I told you that n had the value of 5, then the summation would be = 15

14 Examples 5 1 2) ( i i ) ( i i Sums using sigma notation ) (5 i i ) ( i i

15 Decimal Numeral System Base-10 Decimal numbers uses digits from These are the regular numbers that we use. It is based on the decimal sequence 10, 100, 1000, Example: = = Numeral System b - numeral system base d n - the n-th digit n - can start from negative number if the number has a fraction part. N+1 - the number of digits

16 Binary Numeral System - Base-2 It is easier that computer hardware represents only the binary digits - 0/1. It is based on the binary sequence 2, 4, 8, 16, 32,. Since the closed form of binary sequence is a k = 2 k, the binary sequence is written as 2 1, 2 2,2 3, 2 4, Binary Numeral System - Base-2 Binary number n: position of digits = = 21

17 Binary Numeral System - Base = = = = =32+2+1= 35 From Decimal to Binary Short Division by Two with Remainder

18 Octal Numeral System - Base-8 Octal numbers uses digits from = = 16+7 = = = = = 2247 Hexadecimal Numeral System - Base-16 Hex numbers uses digits from 0..9 and A..F = = 40 2F 16 = = 47 BC12 16 = = 48146

19 2016/9/8

MATH Dr. Halimah Alshehri Dr. Halimah Alshehri

MATH Dr. Halimah Alshehri Dr. Halimah Alshehri MATH 1101 haalshehri@ksu.edu.sa 1 Introduction To Number Systems First Section: Binary System Second Section: Octal Number System Third Section: Hexadecimal System 2 Binary System 3 Binary System The binary

More information

Conversions between Decimal and Binary

Conversions between Decimal and Binary Conversions between Decimal and Binary Binary to Decimal Technique - use the definition of a number in a positional number system with base 2 - evaluate the definition formula ( the formula ) using decimal

More information

ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 112 Intro to Electrical and Computer Engineering ENGIN 112 Intro to Electrical and Computer Engineering Lecture 3 More Number Systems Overview Hexadecimal numbers Related to binary and octal numbers Conversion between hexadecimal, octal and binary Value

More information

Number Theory: Representations of Integers

Number Theory: Representations of Integers Instructions: In-class exercises are meant to introduce you to a new topic and provide some practice with the new topic. Work in a team of up to 4 people to complete this exercise. You can work simultaneously

More information

Four Important Number Systems

Four Important Number Systems Four Important Number Systems System Why? Remarks Decimal Base 10: (10 fingers) Most used system Binary Base 2: On/Off systems 3-4 times more digits than decimal Octal Base 8: Shorthand notation for working

More information

Counting in Different Number Systems

Counting in Different Number Systems Counting in Different Number Systems Base 1 (Decimal) is important because that is the base that we first learn in our culture. Base 2 (Binary) is important because that is the base used for computer codes

More information

EE260: Digital Design, Spring n Digital Computers. n Number Systems. n Representations. n Conversions. n Arithmetic Operations.

EE260: Digital Design, Spring n Digital Computers. n Number Systems. n Representations. n Conversions. n Arithmetic Operations. EE 260: Introduction to Digital Design Number Systems Yao Zheng Department of Electrical Engineering University of Hawaiʻi at Mānoa Overview n Digital Computers n Number Systems n Representations n Conversions

More information

Menu. Review of Number Systems EEL3701 EEL3701. Math. Review of number systems >Binary math >Signed number systems

Menu. Review of Number Systems EEL3701 EEL3701. Math. Review of number systems >Binary math >Signed number systems Menu Review of number systems >Binary math >Signed number systems Look into my... 1 Our decimal (base 10 or radix 10) number system is positional. Ex: 9437 10 = 9x10 3 + 4x10 2 + 3x10 1 + 7x10 0 We have

More information

CISC 1100: Structures of Computer Science

CISC 1100: Structures of Computer Science CISC 1100: Structures of Computer Science Chapter 2 Sets and Sequences Fordham University Department of Computer and Information Sciences Fall, 2010 CISC 1100/Fall, 2010/Chapter 2 1 / 49 Outline Sets Basic

More information

4. Number Theory (Part 2)

4. Number Theory (Part 2) 4. Number Theory (Part 2) Terence Sim Mathematics is the queen of the sciences and number theory is the queen of mathematics. Reading Sections 4.8, 5.2 5.4 of Epp. Carl Friedrich Gauss, 1777 1855 4.3.

More information

Binary addition example worked out

Binary addition example worked out Binary addition example worked out Some terms are given here Exercise: what are these numbers equivalent to in decimal? The initial carry in is implicitly 0 1 1 1 0 (Carries) 1 0 1 1 (Augend) + 1 1 1 0

More information

Numbering Systems. Contents: Binary & Decimal. Converting From: B D, D B. Arithmetic operation on Binary.

Numbering Systems. Contents: Binary & Decimal. Converting From: B D, D B. Arithmetic operation on Binary. Numbering Systems Contents: Binary & Decimal. Converting From: B D, D B. Arithmetic operation on Binary. Addition & Subtraction using Octal & Hexadecimal 2 s Complement, Subtraction Using 2 s Complement.

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering Boolean Algebra Boolean Algebra A Boolean algebra is defined with: A set of

More information

12/31/2010. Digital Operations and Computations Course Notes. 01-Number Systems Text: Unit 1. Overview. What is a Digital System?

12/31/2010. Digital Operations and Computations Course Notes. 01-Number Systems Text: Unit 1. Overview. What is a Digital System? Digital Operations and Computations Course Notes 0-Number Systems Text: Unit Winter 20 Professor H. Louie Department of Electrical & Computer Engineering Seattle University ECEGR/ISSC 20 Digital Operations

More information

CSE 241 Digital Systems Spring 2013

CSE 241 Digital Systems Spring 2013 CSE 241 Digital Systems Spring 2013 Instructor: Prof. Kui Ren Department of Computer Science and Engineering Lecture slides modified from many online resources and used solely for the educational purpose.

More information

We say that the base of the decimal number system is ten, represented by the symbol

We say that the base of the decimal number system is ten, represented by the symbol Introduction to counting and positional notation. In the decimal number system, a typical number, N, looks like... d 3 d 2 d 1 d 0.d -1 d -2 d -3... [N1] where the ellipsis at each end indicates that there

More information

Mat Week 8. Week 8. gcd() Mat Bases. Integers & Computers. Linear Combos. Week 8. Induction Proofs. Fall 2013

Mat Week 8. Week 8. gcd() Mat Bases. Integers & Computers. Linear Combos. Week 8. Induction Proofs. Fall 2013 Fall 2013 Student Responsibilities Reading: Textbook, Section 3.7, 4.1, & 5.2 Assignments: Sections 3.6, 3.7, 4.1 Proof Worksheets Attendance: Strongly Encouraged Overview 3.6 Integers and Algorithms 3.7

More information

Student Responsibilities Week 8. Mat Section 3.6 Integers and Algorithms. Algorithm to Find gcd()

Student Responsibilities Week 8. Mat Section 3.6 Integers and Algorithms. Algorithm to Find gcd() Student Responsibilities Week 8 Mat 2345 Week 8 Reading: Textbook, Section 3.7, 4.1, & 5.2 Assignments: Sections 3.6, 3.7, 4.1 Induction Proof Worksheets Attendance: Strongly Encouraged Fall 2013 Week

More information

Introduction Integers. Discrete Mathematics Andrei Bulatov

Introduction Integers. Discrete Mathematics Andrei Bulatov Introduction Integers Discrete Mathematics Andrei Bulatov Discrete Mathematics - Integers 9- Integers God made the integers; all else is the work of man Leopold Kroenecker Discrete Mathematics - Integers

More information

ECE380 Digital Logic. Positional representation

ECE380 Digital Logic. Positional representation ECE380 Digital Logic Number Representation and Arithmetic Circuits: Number Representation and Unsigned Addition Dr. D. J. Jackson Lecture 16-1 Positional representation First consider integers Begin with

More information

Hakim Weatherspoon CS 3410 Computer Science Cornell University

Hakim Weatherspoon CS 3410 Computer Science Cornell University Hakim Weatherspoon CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer. memory inst 32 register

More information

CHAPTER 2 NUMBER SYSTEMS

CHAPTER 2 NUMBER SYSTEMS CHAPTER 2 NUMBER SYSTEMS The Decimal Number System : We begin our study of the number systems with the familiar decimal number system. The decimal system contains ten unique symbol 0, 1, 2, 3, 4, 5, 6,

More information

ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 112 Intro to Electrical and Computer Engineering ENGIN 112 Intro to Electrical and Computer Engineering Lecture 2 Number Systems Russell Tessier KEB 309 G tessier@ecs.umass.edu Overview The design of computers It all starts with numbers Building circuits

More information

Expressions, Equations and Inequalities Guided Notes

Expressions, Equations and Inequalities Guided Notes Expressions, Equations and Inequalities Guided Notes Standards: Alg1.M.A.SSE.A.01a - The Highly Proficient student can explain the context of different parts of a formula presented as a complicated expression.

More information

Chapter 2 (Part 3): The Fundamentals: Algorithms, the Integers & Matrices. Integers & Algorithms (2.5)

Chapter 2 (Part 3): The Fundamentals: Algorithms, the Integers & Matrices. Integers & Algorithms (2.5) CSE 54 Discrete Mathematics & Chapter 2 (Part 3): The Fundamentals: Algorithms, the Integers & Matrices Integers & Algorithms (Section 2.5) by Kenneth H. Rosen, Discrete Mathematics & its Applications,

More information

CSEN102 Introduction to Computer Science

CSEN102 Introduction to Computer Science CSEN102 Introduction to Computer Science Lecture 7: Representing Information I Prof. Dr. Slim Abdennadher Dr. Mohammed Salem, slim.abdennadher@guc.edu.eg, mohammed.salem@guc.edu.eg German University Cairo,

More information

Number System conversions

Number System conversions Number System conversions Number Systems The system used to count discrete units is called number system. There are four systems of arithmetic which are often used in digital electronics. Decimal Number

More information

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary Number System Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary BOOLEAN ALGEBRA BOOLEAN LOGIC OPERATIONS Logical AND Logical OR Logical COMPLEMENTATION

More information

CS1800 Discrete Structures Fall 2017 October, CS1800 Discrete Structures Midterm Version A

CS1800 Discrete Structures Fall 2017 October, CS1800 Discrete Structures Midterm Version A CS1800 Discrete Structures Fall 2017 October, 2017 CS1800 Discrete Structures Midterm Version A Instructions: 1. The exam is closed book and closed notes. You may not use a calculator or any other electronic

More information

Week No. 06: Numbering Systems

Week No. 06: Numbering Systems Week No. 06: Numbering Systems Numbering System: A numbering system defined as A set of values used to represent quantity. OR A number system is a term used for a set of different symbols or digits, which

More information

EECS 1028 M: Discrete Mathematics for Engineers

EECS 1028 M: Discrete Mathematics for Engineers EECS 1028 M: Discrete Mathematics for Engineers Suprakash Datta Office: LAS 3043 Course page: http://www.eecs.yorku.ca/course/1028 Also on Moodle S. Datta (York Univ.) EECS 1028 W 18 1 / 16 Sequences and

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION One of the most important tasks of mathematics is to discover and characterize regular patterns, such as those associated with processes that

More information

Number Bases. Ioan Despi. University of New England. August 4, 2013

Number Bases. Ioan Despi. University of New England. August 4, 2013 Number Bases Ioan Despi despi@turing.une.edu.au University of New England August 4, 2013 Outline Ioan Despi AMTH140 2 of 21 1 Frequently Used Number Systems 2 Conversion to Numbers of Different Bases 3

More information

Lecture 2. The Euclidean Algorithm and Numbers in Other Bases

Lecture 2. The Euclidean Algorithm and Numbers in Other Bases Lecture 2. The Euclidean Algorithm and Numbers in Other Bases At the end of Lecture 1, we gave formulas for the greatest common divisor GCD (a, b), and the least common multiple LCM (a, b) of two integers

More information

10/14/2009. Reading: Hambley Chapters

10/14/2009. Reading: Hambley Chapters EE40 Lec 14 Digital Signal and Boolean Algebra Prof. Nathan Cheung 10/14/2009 Reading: Hambley Chapters 7.1-7.4 7.4 Slide 1 Analog Signals Analog: signal amplitude is continuous with time. Amplitude Modulated

More information

Numbers. Dr Hammadi Nait-Charif. Senior Lecturer Bournemouth University United Kingdom

Numbers. Dr Hammadi Nait-Charif. Senior Lecturer Bournemouth University United Kingdom Numbers Dr Hammadi Nait-Charif Senior Lecturer Bournemouth University United Kingdom hncharif@bournemouth.ac.uk http://nccastaff.bmth.ac.uk/hncharif/mathscgs/maths.html Dr Hammadi Nait-Charif (BU, UK)

More information

Advanced Counting Techniques. Chapter 8

Advanced Counting Techniques. Chapter 8 Advanced Counting Techniques Chapter 8 Chapter Summary Applications of Recurrence Relations Solving Linear Recurrence Relations Homogeneous Recurrence Relations Nonhomogeneous Recurrence Relations Divide-and-Conquer

More information

Chapter 9 - Number Systems

Chapter 9 - Number Systems Chapter 9 - Number Systems Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 9 - Number Systems 1 / 50 1 Motivation 2 Positional Number Systems 3 Binary System L. Tarrataca Chapter

More information

2.5 정수와알고리즘 (Integers and Algorithms)

2.5 정수와알고리즘 (Integers and Algorithms) 이산수학 () 2.5 정수와알고리즘 (Integers and Algorithms) 2006 년봄학기 문양세강원대학교컴퓨터과학과 Introduction Base-b representations of integers. (b진법표현 ) Especially: binary, hexadecimal, octal. Also, two s complement representation

More information

of Digital Electronics

of Digital Electronics 26 Digital Electronics 729 Digital Electronics 26.1 Analog and Digital Signals 26.3 Binary Number System 26.5 Decimal to Binary Conversion 26.7 Octal Number System 26.9 Binary-Coded Decimal Code (BCD Code)

More information

THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS

THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS The real number SySTeM C O M P E T E N C Y 1 THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS This competency section reviews some of the fundamental

More information

Base-b representations of integers. (b 진법표현 ) Algorithms for computer arithmetic: Euclidean algorithm for finding GCD s.

Base-b representations of integers. (b 진법표현 ) Algorithms for computer arithmetic: Euclidean algorithm for finding GCD s. 이산수학 () 정수와알고리즘 (Integers and Algorithms) 2011년봄학기 강원대학교컴퓨터과학전공문양세 Introduction Base-b representations of integers. (b 진법표현 ) Especially: binary, hexadecimal, octal. Also, two s complement representation

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES In section 11.9, we were able to find power series representations for a certain restricted class of functions. INFINITE SEQUENCES AND SERIES

More information

ALGEBRA+NUMBER THEORY +COMBINATORICS

ALGEBRA+NUMBER THEORY +COMBINATORICS ALGEBRA+NUMBER THEORY +COMBINATORICS COMP 321 McGill University These slides are mainly compiled from the following resources. - Professor Jaehyun Park slides CS 97SI - Top-coder tutorials. - Programming

More information

9.1 SEQUENCES AND SERIES

9.1 SEQUENCES AND SERIES 640 Chapter 9 Sequences, Series, and Probability 9. SEQUENCES AND SERIES What you should learn Use sequence notation to write the terms of sequences. Use factorial notation. Use summation notation to write

More information

0,..., r 1 = digits in radix r number system, that is 0 d i r 1 where m i n 1

0,..., r 1 = digits in radix r number system, that is 0 d i r 1 where m i n 1 RADIX r NUMBER SYSTEM Let (N) r be a radix r number in a positional weighting number system, then (N) r = d n 1 r n 1 + + d 0 r 0 d 1 r 1 + + d m r m where: r = radix d i = digit at position i, m i n 1

More information

ENG2410 Digital Design Introduction to Digital Systems. Fall 2017 S. Areibi School of Engineering University of Guelph

ENG2410 Digital Design Introduction to Digital Systems. Fall 2017 S. Areibi School of Engineering University of Guelph ENG2410 Digital Design Introduction to Digital Systems Fall 2017 S. Areibi School of Engineering University of Guelph Resources Chapter #1, Mano Sections 1.1 Digital Computers 1.2 Number Systems 1.3 Arithmetic

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH There are 10 types of people in the world: those who understand binary and those who don't. Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Define the

More information

With Question/Answer Animations. Chapter 4

With Question/Answer Animations. Chapter 4 With Question/Answer Animations Chapter 4 Chapter Motivation Number theory is the part of mathematics devoted to the study of the integers and their properties. Key ideas in number theory include divisibility

More information

Advanced Counting Techniques

Advanced Counting Techniques . All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education. Advanced Counting

More information

NUMBERS AND CODES CHAPTER Numbers

NUMBERS AND CODES CHAPTER Numbers CHAPTER 2 NUMBERS AND CODES 2.1 Numbers When a number such as 101 is given, it is impossible to determine its numerical value. Some may say it is five. Others may say it is one hundred and one. Could it

More information

What is Binary? Digital Systems and Information Representation. An Example. Physical Representation. Boolean Algebra

What is Binary? Digital Systems and Information Representation. An Example. Physical Representation. Boolean Algebra What is Binary? Digital Systems and Information Representation CSE 102 Underlying base signals are two valued: 0 or 1 true or false (T or F) high or low (H or L) One bit is the smallest unambiguous unit

More information

Standard forms for writing numbers

Standard forms for writing numbers Standard forms for writing numbers In order to relate the abstract mathematical descriptions of familiar number systems to the everyday descriptions of numbers by decimal expansions and similar means,

More information

Sequences. 1. Number sequences. 2. Arithmetic sequences. Consider the illustrated pattern of circles:

Sequences. 1. Number sequences. 2. Arithmetic sequences. Consider the illustrated pattern of circles: Sequences 1. Number sequences Consider the illustrated pattern of circles: The first layer has just one blue ball. The second layer has three pink balls. The third layer has five black balls. The fourth

More information

1 Computing System 2. 2 Data Representation Number Systems 22

1 Computing System 2. 2 Data Representation Number Systems 22 Chapter 4: Computing System & Data Representation Christian Jacob 1 Computing System 2 1.1 Abacus 3 2 Data Representation 19 3 Number Systems 22 3.1 Important Number Systems for Computers 24 3.2 Decimal

More information

Numbers and Arithmetic

Numbers and Arithmetic Numbers and Arithmetic See: P&H Chapter 2.4 2.6, 3.2, C.5 C.6 Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Big Picture: Building a Processor memory inst register file alu

More information

14:332:231 DIGITAL LOGIC DESIGN. Why Binary Number System?

14:332:231 DIGITAL LOGIC DESIGN. Why Binary Number System? :33:3 DIGITAL LOGIC DESIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall 3 Lecture #: Binary Number System Complement Number Representation X Y Why Binary Number System? Because

More information

THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS

THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS THE REAL NUMBER SYSTEM C O M P E T E N C Y 1 THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS This competency section reviews some of the fundamental

More information

Fundamentals of Digital Design

Fundamentals of Digital Design Fundamentals of Digital Design Digital Radiation Measurement and Spectroscopy NE/RHP 537 1 Binary Number System The binary numeral system, or base-2 number system, is a numeral system that represents numeric

More information

Math /Foundations of Algebra/Fall 2017 Foundations of the Foundations: Proofs

Math /Foundations of Algebra/Fall 2017 Foundations of the Foundations: Proofs Math 4030-001/Foundations of Algebra/Fall 017 Foundations of the Foundations: Proofs A proof is a demonstration of the truth of a mathematical statement. We already know what a mathematical statement is.

More information

Solutions to Assignment 1

Solutions to Assignment 1 Solutions to Assignment 1 Question 1. [Exercises 1.1, # 6] Use the division algorithm to prove that every odd integer is either of the form 4k + 1 or of the form 4k + 3 for some integer k. For each positive

More information

SERIES

SERIES SERIES.... This chapter revisits sequences arithmetic then geometric to see how these ideas can be extended, and how they occur in other contexts. A sequence is a list of ordered numbers, whereas a series

More information

Why digital? Overview. Number Systems. Binary to Decimal conversion

Why digital? Overview. Number Systems. Binary to Decimal conversion Why digital? Overview It has the following advantages over analog. It can be processed and transmitted efficiently and reliably. It can be stored and retrieved with greater accuracy. Noise level does not

More information

Sequences and Series. Copyright Cengage Learning. All rights reserved.

Sequences and Series. Copyright Cengage Learning. All rights reserved. Sequences and Series Copyright Cengage Learning. All rights reserved. 12.1 Sequences and Summation Notation Copyright Cengage Learning. All rights reserved. Objectives Sequences Recursively Defined Sequences

More information

Digital Systems Overview. Unit 1 Numbering Systems. Why Digital Systems? Levels of Design Abstraction. Dissecting Decimal Numbers

Digital Systems Overview. Unit 1 Numbering Systems. Why Digital Systems? Levels of Design Abstraction. Dissecting Decimal Numbers Unit Numbering Systems Fundamentals of Logic Design EE2369 Prof. Eric MacDonald Fall Semester 2003 Digital Systems Overview Digital Systems are Home PC XBOX or Playstation2 Cell phone Network router Data

More information

CSCI 220: Computer Architecture-I Instructor: Pranava K. Jha. BCD Codes

CSCI 220: Computer Architecture-I Instructor: Pranava K. Jha. BCD Codes CSCI 220: Computer Architecture-I Instructor: Pranava K. Jha BCD Codes Q. Give representation of the decimal number 853 in each of the following codes. (a) 8421 code (c) 84(-2)(-1) code (b) Excess-three

More information

MAT 243 Test 2 SOLUTIONS, FORM A

MAT 243 Test 2 SOLUTIONS, FORM A MAT Test SOLUTIONS, FORM A 1. [10 points] Give a recursive definition for the set of all ordered pairs of integers (x, y) such that x < y. Solution: Let S be the set described above. Note that if (x, y)

More information

COT 3100 Applications of Discrete Structures Dr. Michael P. Frank

COT 3100 Applications of Discrete Structures Dr. Michael P. Frank University of Florida Dept. of Computer & Information Science & Engineering COT 3100 Applications of Discrete Structures Dr. Michael P. Frank Slides for a Course Based on the Text Discrete Mathematics

More information

Contents. Chapter 2 Digital Circuits Page 1 of 30

Contents. Chapter 2 Digital Circuits Page 1 of 30 Chapter 2 Digital Circuits Page 1 of 30 Contents Contents... 1 2 Digital Circuits... 2 2.1 Binary Numbers... 2 2.2 Binary Switch... 4 2.3 Basic Logic Operators and Logic Expressions... 5 2.4 Truth Tables...

More information

THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS

THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS The real number SySTeM C O M P E T E N C Y 1 THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS This competency section reviews some of the fundamental

More information

Computer Number Systems

Computer Number Systems Computer Number Systems All computers are electronic devices and can ultimately do one thing: detect whether an electrical signal is on or off. Therefore, the earliest computer scientists realized that

More information

Senior Math Circles Cryptography and Number Theory Week 2

Senior Math Circles Cryptography and Number Theory Week 2 Senior Math Circles Cryptography and Number Theory Week 2 Dale Brydon Feb. 9, 2014 1 Divisibility and Inverses At the end of last time, we saw that not all numbers have inverses mod n, but some do. We

More information

hexadecimal-to-decimal conversion

hexadecimal-to-decimal conversion OTHER NUMBER SYSTEMS: octal (digits 0 to 7) group three binary numbers together and represent as base 8 3564 10 = 110 111 101 100 2 = (6X8 3 ) + (7X8 2 ) + (5X8 1 ) + (4X8 0 ) = 6754 8 hexadecimal (digits

More information

Digital Electronics Part 1: Binary Logic

Digital Electronics Part 1: Binary Logic Digital Electronics Part 1: Binary Logic Electronic devices in your everyday life What makes these products examples of electronic devices? What are some things they have in common? 2 How do electronics

More information

Midterm Examination # 1 Wednesday, February 25, Duration of examination: 75 minutes

Midterm Examination # 1 Wednesday, February 25, Duration of examination: 75 minutes Page 1 of 10 School of Computer Science 60-265-01 Computer Architecture and Digital Design Winter 2009 Semester Midterm Examination # 1 Wednesday, February 25, 2009 Student Name: First Name Family Name

More information

SAMPLE ANSWERS MARKER COPY

SAMPLE ANSWERS MARKER COPY Page 1 of 12 School of Computer Science 60-265-01 Computer Architecture and Digital Design Fall 2012 Midterm Examination # 1 Tuesday, October 23, 2012 SAMPLE ANSWERS MARKER COPY Duration of examination:

More information

UNDERSTANDING ENGINEERING MATHEMATICS

UNDERSTANDING ENGINEERING MATHEMATICS UNDERSTANDING ENGINEERING MATHEMATICS JOHN BIRD WORKED SOLUTIONS TO EXERCISES 1 INTRODUCTION In Understanding Engineering Mathematic there are over 750 further problems arranged regularly throughout the

More information

1 What is numerical analysis and scientific computing?

1 What is numerical analysis and scientific computing? Mathematical preliminaries 1 What is numerical analysis and scientific computing? Numerical analysis is the study of algorithms that use numerical approximation (as opposed to general symbolic manipulations)

More information

Finding Prime Factors

Finding Prime Factors Section 3.2 PRE-ACTIVITY PREPARATION Finding Prime Factors Note: While this section on fi nding prime factors does not include fraction notation, it does address an intermediate and necessary concept to

More information

CS/COE0447: Computer Organization and Assembly Language

CS/COE0447: Computer Organization and Assembly Language CS/COE0447: Computer Organization and Assembly Language Logic Design Introduction (Brief?) Appendix B: The Basics of Logic Design Dept. of Computer Science Logic design? Digital hardware is implemented

More information

Sequences and Series. College Algebra

Sequences and Series. College Algebra Sequences and Series College Algebra Sequences A sequence is a function whose domain is the set of positive integers. A finite sequence is a sequence whose domain consists of only the first n positive

More information

Discrete Mathematics GCD, LCM, RSA Algorithm

Discrete Mathematics GCD, LCM, RSA Algorithm Discrete Mathematics GCD, LCM, RSA Algorithm Abdul Hameed http://informationtechnology.pk/pucit abdul.hameed@pucit.edu.pk Lecture 16 Greatest Common Divisor 2 Greatest common divisor The greatest common

More information

Unit 1. Math 116. Number Systems

Unit 1. Math 116. Number Systems Unit Math Number Systems Unit One Number Systems Sections. Introduction to Number Systems Through out history civilizations have keep records using their own number systems. This unit will introduce some

More information

CS1800 Discrete Structures Final Version A

CS1800 Discrete Structures Final Version A CS1800 Discrete Structures Fall 2017 Profs. Aslam, Gold, & Pavlu December 11, 2017 CS1800 Discrete Structures Final Version A Instructions: 1. The exam is closed book and closed notes. You may not use

More information

Floating Point Number Systems. Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le

Floating Point Number Systems. Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le Floating Point Number Systems Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le 1 Overview Real number system Examples Absolute and relative errors Floating point numbers Roundoff

More information

Mathematical Induction

Mathematical Induction Mathematical Induction Representation of integers Mathematical Induction Reading (Epp s textbook) 5.1 5.3 1 Representations of Integers Let b be a positive integer greater than 1. Then if n is a positive

More information

3 The fundamentals: Algorithms, the integers, and matrices

3 The fundamentals: Algorithms, the integers, and matrices 3 The fundamentals: Algorithms, the integers, and matrices 3.4 The integers and division This section introduces the basics of number theory number theory is the part of mathematics involving integers

More information

TI-36X Solar, English

TI-36X Solar, English TI-36X Solar, English www.ti.com/calc ti-cares@ti.com TI.36X SOLAR Scientific Calculator Basic Operations... 2 Results... 2 Basic Arithmetic... 3 Percents... 4 Fractions... 5 Powers and Roots... 6 Logarithmic

More information

Chapter 1 Indices & Standard Form

Chapter 1 Indices & Standard Form Chapter 1 Indices & Standard Form Section 1.1 Simplifying Only like (same letters go together; same powers and same letter go together) terms can be grouped together. Example: a 2 + 3ab + 4a 2 5ab + 10

More information

Representation of Functions as Power Series.

Representation of Functions as Power Series. MATH 0 - A - Spring 009 Representation of Functions as Power Series. Our starting point in this section is the geometric series: x n = + x + x + x 3 + We know this series converges if and only if x

More information

Exam 1. Problem 1: True or false

Exam 1. Problem 1: True or false Exam 1 Problem 1: True or false We are told that events A and B are conditionally independent, given a third event C, and that P(B C) > 0. For each one of the following statements, decide whether the statement

More information

Prerequisites. Introduction CHAPTER OUTLINE

Prerequisites. Introduction CHAPTER OUTLINE Prerequisites 1 Figure 1 Credit: Andreas Kambanls CHAPTER OUTLINE 1.1 Real Numbers: Algebra Essentials 1.2 Exponents and Scientific Notation 1.3 Radicals and Rational Expressions 1.4 Polynomials 1.5 Factoring

More information

Base Number Systems. Honors Precalculus Mr. Velazquez

Base Number Systems. Honors Precalculus Mr. Velazquez Base Number Systems Honors Precalculus Mr. Velazquez 1 Our System: Base 10 When we express numbers, we do so using ten numerical characters which cycle every multiple of 10. The reason for this is simple:

More information

In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents

In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents around an electrical circuit. This is a short lecture,

More information

Chapter 4: Radicals and Complex Numbers

Chapter 4: Radicals and Complex Numbers Section 4.1: A Review of the Properties of Exponents #1-42: Simplify the expression. 1) x 2 x 3 2) z 4 z 2 3) a 3 a 4) b 2 b 5) 2 3 2 2 6) 3 2 3 7) x 2 x 3 x 8) y 4 y 2 y 9) 10) 11) 12) 13) 14) 15) 16)

More information

Introduction to digital systems. Juan P Bello

Introduction to digital systems. Juan P Bello Introduction to digital systems Juan P Bello Analogue vs Digital (1) Analog information is made up of a continuum of values within a given range At its most basic, digital information can assume only one

More information

Mathematical Induction

Mathematical Induction Mathematical Induction MAT30 Discrete Mathematics Fall 018 MAT30 (Discrete Math) Mathematical Induction Fall 018 1 / 19 Outline 1 Mathematical Induction Strong Mathematical Induction MAT30 (Discrete Math)

More information

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13 MATH383W LECTURE NOTES: WEEK 6 //00 Recursive sequences (cont.) Examples: () a =, a n+ = 3 a n. The first few terms are,,, 5 = 5, 3 5 = 5 3, Since 5

More information

1 Question related to polynomials

1 Question related to polynomials 07-08 MATH00J Lecture 6: Taylor Series Charles Li Warning: Skip the material involving the estimation of error term Reference: APEX Calculus This lecture introduced Taylor Polynomial and Taylor Series

More information

School of Computer Science and Electrical Engineering 28/05/01. Digital Circuits. Lecture 14. ENG1030 Electrical Physics and Electronics

School of Computer Science and Electrical Engineering 28/05/01. Digital Circuits. Lecture 14. ENG1030 Electrical Physics and Electronics Digital Circuits 1 Why are we studying digital So that one day you can design something which is better than the... circuits? 2 Why are we studying digital or something better than the... circuits? 3 Why

More information