Numbers. Dr Hammadi Nait-Charif. Senior Lecturer Bournemouth University United Kingdom

Size: px
Start display at page:

Download "Numbers. Dr Hammadi Nait-Charif. Senior Lecturer Bournemouth University United Kingdom"

Transcription

1 Numbers Dr Hammadi Nait-Charif Senior Lecturer Bournemouth University United Kingdom Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 1 / 10

2 Numbers Natural Numbers: The natural numbers 0, 1, 2, 3, 4,. are used for counting, ordering and labelling. We often use natural numbers to subscript a quantity to distinguish one element from another, e.g. x1, x2, x3, x4, etc. Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 2 / 10

3 Numbers Natural Numbers: The natural numbers 0, 1, 2, 3, 4,. are used for counting, ordering and labelling. We often use natural numbers to subscript a quantity to distinguish one element from another, e.g. x1, x2, x3, x4, etc. Integers:Integers embrace negative numbers.. 2,10, 1, 2, 3,.. Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 2 / 10

4 Numbers Natural Numbers: The natural numbers 0, 1, 2, 3, 4,. are used for counting, ordering and labelling. We often use natural numbers to subscript a quantity to distinguish one element from another, e.g. x1, x2, x3, x4, etc. Integers:Integers embrace negative numbers.. 2,10, 1, 2, 3,.. Rational Numbers:Rational or fractional numbers are numbers that can be represented as a fraction: For example 0.25 = = 4 = 15 = = 30 2 Some rational numbers can be stored accurately inside a computer, whilst many others can only be stored approximately. For example, 4/3 = produces an infinite sequence of threes and has to be truncated when stored as a binary number. Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 2 / 10

5 Irrational & Real Numbers Irrational Numbers: Irrational numbers cannot be represented as fractions. Examples being π = and e = Such numbers never terminate and are always subject to a small error when stored within a computer. Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 3 / 10

6 Irrational & Real Numbers Irrational Numbers: Irrational numbers cannot be represented as fractions. Examples being π = and e = Such numbers never terminate and are always subject to a small error when stored within a computer. Real Numbers:Real numbers embrace irrational and rational numbers. Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 3 / 10

7 Repeating decimals Is an rational number or irrational? Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 4 / 10

8 Repeating decimals Is an rational number or irrational? If x = x = x = Then 99x = 120 (1) Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 4 / 10

9 Repeating decimals Is an rational number or irrational? If x = x = x = Then 99x = 120 (1) Therefore x = 120/99 = is rational. Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 4 / 10

10 Number Systems In general, we can define any positive integer as 359 = Where 10 is the base of our decimal system. Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 5 / 10

11 Number Systems In general, we can define any positive integer as 359 = Where 10 is the base of our decimal system. In general, we can define any positive integer as abcd = a b c d 10 0 where a, b, c, d are all 9 Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 5 / 10

12 Number Systems In general, we can define any positive integer as 359 = Where 10 is the base of our decimal system. In general, we can define any positive integer as abcd = a b c d 10 0 where a, b, c, d are all 9 And any positive real number as abcd.efg = a b c d e f where a, b, c, d, e, f, g are all 9 Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 5 / 10

13 Octal to Decimal Ten is used only because we have ten fingers. If we had 8 fingers we would define an octal positive integer as. here a, b, c, d are all 7 abcd = a b c d 8 0 Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 6 / 10

14 Octal to Decimal Ten is used only because we have ten fingers. If we had 8 fingers we would define an octal positive integer as. here a, b, c, d are all 7 table: abcd = a b c d Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 6 / 10

15 Octal to Decimal Ten is used only because we have ten fingers. If we had 8 fingers we would define an octal positive integer as. here a, b, c, d are all 7 table: abcd = a b c d = = = Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 6 / 10

16 Binary Numbers Binary numbers have a base of 2 Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 7 / 10

17 Binary Numbers Binary numbers have a base of 2 For a positive binary integer abcd 2 = a b c d 2 0 here a, b, c, d are all 1 Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 7 / 10

18 Binary Numbers Binary numbers have a base of 2 For a positive binary integer abcd 2 = a b c d 2 0 here a, b, c, d are all 1 e.g x = = = (2) Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 7 / 10

19 Decimal to Binary Conversion To convert 20 into binary we do what s called successive divisions Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 8 / 10

20 Decimal to Binary Conversion To convert 20 into binary we do what s called successive divisions successive divisions: 20 = 10 Remainder = 5 Remainder 0 Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 8 / 10

21 Decimal to Binary Conversion To convert 20 into binary we do what s called successive divisions successive divisions: 20 = 10 Remainder = 5 Remainder = 2 Remainder 1 Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 8 / 10

22 Decimal to Binary Conversion To convert 20 into binary we do what s called successive divisions successive divisions: 20 = 10 Remainder = 5 Remainder 0 5 = 2 Remainder = 1 Remainder 0 Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 8 / 10

23 Decimal to Binary Conversion To convert 20 into binary we do what s called successive divisions successive divisions: 20 = 10 Remainder = 5 Remainder 0 5 = 2 Remainder = 1 Remainder = 0 Remainder 1 Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 8 / 10

24 Decimal to Binary Conversion To convert 20 into binary we do what s called successive divisions successive divisions: 20 = 10 Remainder = 5 Remainder 0 5 = 2 Remainder = 1 Remainder = 0 Remainder = Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 8 / 10

25 Other Number Systems Any base can be used to represent positional numbers abcd x = a x 3 + b x 2 + c x 1 + d x 0 Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 9 / 10

26 Other Number Systems Any base can be used to represent positional numbers abcd x = a x 3 + b x 2 + c x 1 + d x = = Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 9 / 10

27 Other Number Systems Any base can be used to represent positional numbers abcd x = a x 3 + b x 2 + c x 1 + d x = = = = Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 9 / 10

28 Other Number Systems Any base can be used to represent positional numbers abcd x = a x 3 + b x 2 + c x 1 + d x = = = = = = Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 9 / 10

29 Hexadecimal Numbers (base 16) Hexadecimal positive Integer can be represented abcd 16 = a b c d 16 0 where a, b, c, d are all 16 Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 10 / 10

30 Hexadecimal Numbers (base 16) Hexadecimal positive Integer can be represented abcd 16 = a b c d 16 0 where a, b, c, d are all 16 but this means we require some extra symbols such as ABCDEF Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 10 / 10

31 Hexadecimal Numbers (base 16) Hexadecimal positive Integer can be represented abcd 16 = a b c d 16 0 where a, b, c, d are all 16 but this means we require some extra symbols such as ABCDEF 2E6 16 = E = = Dr Hammadi Nait-Charif (BU, UK) Numbers NCCA-2011/12 10 / 10

MATH Dr. Halimah Alshehri Dr. Halimah Alshehri

MATH Dr. Halimah Alshehri Dr. Halimah Alshehri MATH 1101 haalshehri@ksu.edu.sa 1 Introduction To Number Systems First Section: Binary System Second Section: Octal Number System Third Section: Hexadecimal System 2 Binary System 3 Binary System The binary

More information

Four Important Number Systems

Four Important Number Systems Four Important Number Systems System Why? Remarks Decimal Base 10: (10 fingers) Most used system Binary Base 2: On/Off systems 3-4 times more digits than decimal Octal Base 8: Shorthand notation for working

More information

Conversions between Decimal and Binary

Conversions between Decimal and Binary Conversions between Decimal and Binary Binary to Decimal Technique - use the definition of a number in a positional number system with base 2 - evaluate the definition formula ( the formula ) using decimal

More information

NUMBERS AND CODES CHAPTER Numbers

NUMBERS AND CODES CHAPTER Numbers CHAPTER 2 NUMBERS AND CODES 2.1 Numbers When a number such as 101 is given, it is impossible to determine its numerical value. Some may say it is five. Others may say it is one hundred and one. Could it

More information

Week No. 06: Numbering Systems

Week No. 06: Numbering Systems Week No. 06: Numbering Systems Numbering System: A numbering system defined as A set of values used to represent quantity. OR A number system is a term used for a set of different symbols or digits, which

More information

CSEN102 Introduction to Computer Science

CSEN102 Introduction to Computer Science CSEN102 Introduction to Computer Science Lecture 7: Representing Information I Prof. Dr. Slim Abdennadher Dr. Mohammed Salem, slim.abdennadher@guc.edu.eg, mohammed.salem@guc.edu.eg German University Cairo,

More information

A number that can be written as, where p and q are integers and q Number.

A number that can be written as, where p and q are integers and q Number. RATIONAL NUMBERS 1.1 Definition of Rational Numbers: What are rational numbers? A number that can be written as, where p and q are integers and q Number. 0, is known as Rational Example:, 12, -18 etc.

More information

12/31/2010. Digital Operations and Computations Course Notes. 01-Number Systems Text: Unit 1. Overview. What is a Digital System?

12/31/2010. Digital Operations and Computations Course Notes. 01-Number Systems Text: Unit 1. Overview. What is a Digital System? Digital Operations and Computations Course Notes 0-Number Systems Text: Unit Winter 20 Professor H. Louie Department of Electrical & Computer Engineering Seattle University ECEGR/ISSC 20 Digital Operations

More information

Menu. Review of Number Systems EEL3701 EEL3701. Math. Review of number systems >Binary math >Signed number systems

Menu. Review of Number Systems EEL3701 EEL3701. Math. Review of number systems >Binary math >Signed number systems Menu Review of number systems >Binary math >Signed number systems Look into my... 1 Our decimal (base 10 or radix 10) number system is positional. Ex: 9437 10 = 9x10 3 + 4x10 2 + 3x10 1 + 7x10 0 We have

More information

Natural Numbers: Also called the counting numbers The set of natural numbers is represented by the symbol,.

Natural Numbers: Also called the counting numbers The set of natural numbers is represented by the symbol,. Name Period Date: Topic: Real Numbers and Their Graphs Standard: 9-12.A.1.3 Objective: Essential Question: What is the significance of a point on a number line? Determine the relative position on the number

More information

Quantitative Aptitude

Quantitative Aptitude WWW.UPSCMANTRA.COM Quantitative Aptitude Concept 1 1. Number System 2. HCF and LCM 2011 Prelims Paper II NUMBER SYSTEM 2 NUMBER SYSTEM In Hindu Arabic System, we use ten symbols 0, 1, 2, 3, 4, 5, 6, 7,

More information

Numbering Systems. Contents: Binary & Decimal. Converting From: B D, D B. Arithmetic operation on Binary.

Numbering Systems. Contents: Binary & Decimal. Converting From: B D, D B. Arithmetic operation on Binary. Numbering Systems Contents: Binary & Decimal. Converting From: B D, D B. Arithmetic operation on Binary. Addition & Subtraction using Octal & Hexadecimal 2 s Complement, Subtraction Using 2 s Complement.

More information

Classify, graph, and compare real numbers. Find and estimate square roots Identify and apply properties of real numbers.

Classify, graph, and compare real numbers. Find and estimate square roots Identify and apply properties of real numbers. Real Numbers and The Number Line Properties of Real Numbers Classify, graph, and compare real numbers. Find and estimate square roots Identify and apply properties of real numbers. Square root, radicand,

More information

ECE380 Digital Logic. Positional representation

ECE380 Digital Logic. Positional representation ECE380 Digital Logic Number Representation and Arithmetic Circuits: Number Representation and Unsigned Addition Dr. D. J. Jackson Lecture 16-1 Positional representation First consider integers Begin with

More information

UNIT 4 NOTES: PROPERTIES & EXPRESSIONS

UNIT 4 NOTES: PROPERTIES & EXPRESSIONS UNIT 4 NOTES: PROPERTIES & EXPRESSIONS Vocabulary Mathematics: (from Greek mathema, knowledge, study, learning ) Is the study of quantity, structure, space, and change. Algebra: Is the branch of mathematics

More information

Irrational Numbers Study Guide

Irrational Numbers Study Guide Square Roots and Cube Roots Positive Square Roots A positive number whose square is equal to a positive number b is denoted by the symbol b. The symbol b is automatically denotes a positive number. The

More information

The standard form for a general polynomial of degree n is written. Examples of a polynomial in standard form

The standard form for a general polynomial of degree n is written. Examples of a polynomial in standard form Section 4 1A: The Rational Zeros (Roots) of a Polynomial The standard form for a general polynomial of degree n is written f (x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0 where the highest degree term

More information

CISC 1400 Discrete Structures

CISC 1400 Discrete Structures CISC 1400 Discrete Structures Chapter 2 Sequences What is Sequence? A sequence is an ordered list of objects or elements. For example, 1, 2, 3, 4, 5, 6, 7, 8 Each object/element is called a term. 1 st

More information

Math-2A Lesson 2-1. Number Systems

Math-2A Lesson 2-1. Number Systems Math-A Lesson -1 Number Systems Natural Numbers Whole Numbers Lesson 1-1 Vocabulary Integers Rational Numbers Irrational Numbers Real Numbers Imaginary Numbers Complex Numbers Closure Why do we need numbers?

More information

1 Computing System 2. 2 Data Representation Number Systems 22

1 Computing System 2. 2 Data Representation Number Systems 22 Chapter 4: Computing System & Data Representation Christian Jacob 1 Computing System 2 1.1 Abacus 3 2 Data Representation 19 3 Number Systems 22 3.1 Important Number Systems for Computers 24 3.2 Decimal

More information

P.1. Real Numbers. Copyright 2011 Pearson, Inc.

P.1. Real Numbers. Copyright 2011 Pearson, Inc. P.1 Real Numbers Copyright 2011 Pearson, Inc. What you ll learn about Representing Real Numbers Order and Interval Notation Basic Properties of Algebra Integer Exponents Scientific Notation and why These

More information

NAME DATE PERIOD. A negative exponent is the result of repeated division. Extending the pattern below shows that 4 1 = 1 4 or 1. Example: 6 4 = 1 6 4

NAME DATE PERIOD. A negative exponent is the result of repeated division. Extending the pattern below shows that 4 1 = 1 4 or 1. Example: 6 4 = 1 6 4 Lesson 4.1 Reteach Powers and Exponents A number that is expressed using an exponent is called a power. The base is the number that is multiplied. The exponent tells how many times the base is used as

More information

CHAPTER 1 REAL NUMBERS KEY POINTS

CHAPTER 1 REAL NUMBERS KEY POINTS CHAPTER 1 REAL NUMBERS 1. Euclid s division lemma : KEY POINTS For given positive integers a and b there exist unique whole numbers q and r satisfying the relation a = bq + r, 0 r < b. 2. Euclid s division

More information

CHAPTER 2 NUMBER SYSTEMS

CHAPTER 2 NUMBER SYSTEMS CHAPTER 2 NUMBER SYSTEMS The Decimal Number System : We begin our study of the number systems with the familiar decimal number system. The decimal system contains ten unique symbol 0, 1, 2, 3, 4, 5, 6,

More information

Mat Week 8. Week 8. gcd() Mat Bases. Integers & Computers. Linear Combos. Week 8. Induction Proofs. Fall 2013

Mat Week 8. Week 8. gcd() Mat Bases. Integers & Computers. Linear Combos. Week 8. Induction Proofs. Fall 2013 Fall 2013 Student Responsibilities Reading: Textbook, Section 3.7, 4.1, & 5.2 Assignments: Sections 3.6, 3.7, 4.1 Proof Worksheets Attendance: Strongly Encouraged Overview 3.6 Integers and Algorithms 3.7

More information

Discrete mathematics is the study of techniques, ideas and modes of

Discrete mathematics is the study of techniques, ideas and modes of CHAPTER 1 Discrete Systems Discrete mathematics is the study of techniques, ideas and modes of reasoning that are indispensable in applied disciplines such as computer science or information technology.

More information

Student Responsibilities Week 8. Mat Section 3.6 Integers and Algorithms. Algorithm to Find gcd()

Student Responsibilities Week 8. Mat Section 3.6 Integers and Algorithms. Algorithm to Find gcd() Student Responsibilities Week 8 Mat 2345 Week 8 Reading: Textbook, Section 3.7, 4.1, & 5.2 Assignments: Sections 3.6, 3.7, 4.1 Induction Proof Worksheets Attendance: Strongly Encouraged Fall 2013 Week

More information

0,..., r 1 = digits in radix r number system, that is 0 d i r 1 where m i n 1

0,..., r 1 = digits in radix r number system, that is 0 d i r 1 where m i n 1 RADIX r NUMBER SYSTEM Let (N) r be a radix r number in a positional weighting number system, then (N) r = d n 1 r n 1 + + d 0 r 0 d 1 r 1 + + d m r m where: r = radix d i = digit at position i, m i n 1

More information

Base Number Systems. Honors Precalculus Mr. Velazquez

Base Number Systems. Honors Precalculus Mr. Velazquez Base Number Systems Honors Precalculus Mr. Velazquez 1 Our System: Base 10 When we express numbers, we do so using ten numerical characters which cycle every multiple of 10. The reason for this is simple:

More information

Class IX Chapter 1 Number Sustems Maths

Class IX Chapter 1 Number Sustems Maths Class IX Chapter 1 Number Sustems Maths Exercise 1.1 Question Is zero a rational number? Can you write it in the form 0? and q, where p and q are integers Yes. Zero is a rational number as it can be represented

More information

Day 6: 6.4 Solving Polynomial Equations Warm Up: Factor. 1. x 2-2x x 2-9x x 2 + 6x + 5

Day 6: 6.4 Solving Polynomial Equations Warm Up: Factor. 1. x 2-2x x 2-9x x 2 + 6x + 5 Day 6: 6.4 Solving Polynomial Equations Warm Up: Factor. 1. x 2-2x - 15 2. x 2-9x + 14 3. x 2 + 6x + 5 Solving Equations by Factoring Recall the factoring pattern: Difference of Squares:...... Note: There

More information

Number Bases. Ioan Despi. University of New England. August 4, 2013

Number Bases. Ioan Despi. University of New England. August 4, 2013 Number Bases Ioan Despi despi@turing.une.edu.au University of New England August 4, 2013 Outline Ioan Despi AMTH140 2 of 21 1 Frequently Used Number Systems 2 Conversion to Numbers of Different Bases 3

More information

Chapter 9 - Number Systems

Chapter 9 - Number Systems Chapter 9 - Number Systems Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 9 - Number Systems 1 / 50 1 Motivation 2 Positional Number Systems 3 Binary System L. Tarrataca Chapter

More information

Prepared by Sa diyya Hendrickson. Package Summary

Prepared by Sa diyya Hendrickson. Package Summary Introduction Prepared by Sa diyya Hendrickson Name: Date: Package Summary Defining Decimal Numbers Things to Remember Adding and Subtracting Decimals Multiplying Decimals Expressing Fractions as Decimals

More information

Chapter 1 CSCI

Chapter 1 CSCI Chapter 1 CSCI-1510-003 What is a Number? An expression of a numerical quantity A mathematical quantity Many types: Natural Numbers Real Numbers Rational Numbers Irrational Numbers Complex Numbers Etc.

More information

Register machines L2 18

Register machines L2 18 Register machines L2 18 Algorithms, informally L2 19 No precise definition of algorithm at the time Hilbert posed the Entscheidungsproblem, just examples. Common features of the examples: finite description

More information

Apply basic properties of real and complex numbers in constructing mathematical arguments (e.g., if a < b and c < 0, then ac > bc)

Apply basic properties of real and complex numbers in constructing mathematical arguments (e.g., if a < b and c < 0, then ac > bc) ALGEBRA (SMR Domain ) Algebraic Structures (SMR.) Skill a. Apply basic properties of real and complex numbers in constructing mathematical arguments (e.g., if a < b and c < 0, then ac > bc) Basic Properties

More information

Part I, Number Systems. CS131 Mathematics for Computer Scientists II Note 1 INTEGERS

Part I, Number Systems. CS131 Mathematics for Computer Scientists II Note 1 INTEGERS CS131 Part I, Number Systems CS131 Mathematics for Computer Scientists II Note 1 INTEGERS The set of all integers will be denoted by Z. So Z = {..., 2, 1, 0, 1, 2,...}. The decimal number system uses the

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH There are 10 types of people in the world: those who understand binary and those who don't. Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Define the

More information

We say that the base of the decimal number system is ten, represented by the symbol

We say that the base of the decimal number system is ten, represented by the symbol Introduction to counting and positional notation. In the decimal number system, a typical number, N, looks like... d 3 d 2 d 1 d 0.d -1 d -2 d -3... [N1] where the ellipsis at each end indicates that there

More information

Solutions to Assignment 1

Solutions to Assignment 1 Solutions to Assignment 1 Question 1. [Exercises 1.1, # 6] Use the division algorithm to prove that every odd integer is either of the form 4k + 1 or of the form 4k + 3 for some integer k. For each positive

More information

not to be republished NCERT REAL NUMBERS CHAPTER 1 (A) Main Concepts and Results

not to be republished NCERT REAL NUMBERS CHAPTER 1 (A) Main Concepts and Results REAL NUMBERS CHAPTER 1 (A) Main Concepts and Results Euclid s Division Lemma : Given two positive integers a and b, there exist unique integers q and r satisfying a = bq + r, 0 r < b. Euclid s Division

More information

MA 180 Lecture. Chapter 0. College Algebra and Calculus by Larson/Hodgkins. Fundamental Concepts of Algebra

MA 180 Lecture. Chapter 0. College Algebra and Calculus by Larson/Hodgkins. Fundamental Concepts of Algebra 0.) Real Numbers: Order and Absolute Value Definitions: Set: is a collection of objections in mathematics Real Numbers: set of numbers used in arithmetic MA 80 Lecture Chapter 0 College Algebra and Calculus

More information

Section 1.1 Notes. Real Numbers

Section 1.1 Notes. Real Numbers Section 1.1 Notes Real Numbers 1 Types of Real Numbers The Natural Numbers 1,,, 4, 5, 6,... These are also sometimes called counting numbers. Denoted by the symbol N Integers..., 6, 5, 4,,, 1, 0, 1,,,

More information

Chapter 3: Factors, Roots, and Powers

Chapter 3: Factors, Roots, and Powers Chapter 3: Factors, Roots, and Powers Section 3.1 Chapter 3: Factors, Roots, and Powers Section 3.1: Factors and Multiples of Whole Numbers Terminology: Prime Numbers: Any natural number that has exactly

More information

ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 112 Intro to Electrical and Computer Engineering ENGIN 112 Intro to Electrical and Computer Engineering Lecture 2 Number Systems Russell Tessier KEB 309 G tessier@ecs.umass.edu Overview The design of computers It all starts with numbers Building circuits

More information

Math 110 (S & E) Textbook: Calculus Early Transcendentals by James Stewart, 7 th Edition

Math 110 (S & E) Textbook: Calculus Early Transcendentals by James Stewart, 7 th Edition Math 110 (S & E) Textbook: Calculus Early Transcendentals by James Stewart, 7 th Edition 1 Appendix A : Numbers, Inequalities, and Absolute Values Sets A set is a collection of objects with an important

More information

Skills Practice Skills Practice for Lesson 4.1

Skills Practice Skills Practice for Lesson 4.1 Skills Practice Skills Practice for Lesson.1 Name Date Thinking About Numbers Counting Numbers, Whole Numbers, Integers, Rational and Irrational Numbers Vocabulary Define each term in your own words. 1.

More information

Math-2 Section 1-1. Number Systems

Math-2 Section 1-1. Number Systems Math- Section 1-1 Number Systems Natural Numbers Whole Numbers Lesson 1-1 Vocabulary Integers Rational Numbers Irrational Numbers Real Numbers Imaginary Numbers Complex Numbers Closure Why do we need numbers?

More information

Number Systems. There are 10 kinds of people those that understand binary, those that don t, and those that expected this joke to be in base 2

Number Systems. There are 10 kinds of people those that understand binary, those that don t, and those that expected this joke to be in base 2 Number Systems There are 10 kinds of people those that understand binary, those that don t, and those that expected this joke to be in base 2 A Closer Look at the Numbers We Use What is the difference

More information

(i) 2-5 (ii) (3 + 23) - 23 (v) 2π

(i) 2-5 (ii) (3 + 23) - 23 (v) 2π Number System - Worksheet Question 1: Express the following in the form p/q, where p and q are integers and q 0. Question 2: Express 0.99999... in the form p/q. Are you surprised by your answer? With your

More information

14:332:231 DIGITAL LOGIC DESIGN. Why Binary Number System?

14:332:231 DIGITAL LOGIC DESIGN. Why Binary Number System? :33:3 DIGITAL LOGIC DESIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall 3 Lecture #: Binary Number System Complement Number Representation X Y Why Binary Number System? Because

More information

NUMBERS( A group of digits, denoting a number, is called a numeral. Every digit in a numeral has two values:

NUMBERS( A group of digits, denoting a number, is called a numeral. Every digit in a numeral has two values: NUMBERS( A number is a mathematical object used to count and measure. A notational symbol that represents a number is called a numeral but in common use, the word number can mean the abstract object, the

More information

Know why the real and complex numbers are each a field, and that particular rings are not fields (e.g., integers, polynomial rings, matrix rings)

Know why the real and complex numbers are each a field, and that particular rings are not fields (e.g., integers, polynomial rings, matrix rings) COMPETENCY 1.0 ALGEBRA SKILL 1.1 1.1a. ALGEBRAIC STRUCTURES Know why the real and complex numbers are each a field, and that particular rings are not fields (e.g., integers, polynomial rings, matrix rings)

More information

Mathematics Pacing. Instruction: 9/7/17 10/31/17 Assessment: 11/1/17 11/8/17. # STUDENT LEARNING OBJECTIVES NJSLS Resources

Mathematics Pacing. Instruction: 9/7/17 10/31/17 Assessment: 11/1/17 11/8/17. # STUDENT LEARNING OBJECTIVES NJSLS Resources # STUDENT LEARNING OBJECTIVES NJSLS Resources 1 Describe real-world situations in which (positive and negative) rational numbers are combined, emphasizing rational numbers that combine to make 0. Represent

More information

Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i

Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i 2 = 1 Sometimes we like to think of i = 1 We can treat

More information

THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS

THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS The real number SySTeM C O M P E T E N C Y 1 THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS This competency section reviews some of the fundamental

More information

bc7f2306 Page 1 Name:

bc7f2306 Page 1 Name: Name: Questions 1 through 4 refer to the following: Solve the given inequality and represent the solution set using set notation: 1) 3x 1 < 2(x + 4) or 7x 3 2(x + 1) Questions 5 and 6 refer to the following:

More information

Pre-Algebra Unit 2. Rational & Irrational Numbers. Name

Pre-Algebra Unit 2. Rational & Irrational Numbers. Name Pre-Algebra Unit 2 Rational & Irrational Numbers Name Core Table 2 Pre-Algebra Name: Unit 2 Rational & Irrational Numbers Core: Table: 2.1.1 Define Rational Numbers Vocabulary: Real Numbers the set of

More information

Digital Systems Overview. Unit 1 Numbering Systems. Why Digital Systems? Levels of Design Abstraction. Dissecting Decimal Numbers

Digital Systems Overview. Unit 1 Numbering Systems. Why Digital Systems? Levels of Design Abstraction. Dissecting Decimal Numbers Unit Numbering Systems Fundamentals of Logic Design EE2369 Prof. Eric MacDonald Fall Semester 2003 Digital Systems Overview Digital Systems are Home PC XBOX or Playstation2 Cell phone Network router Data

More information

Long division for integers

Long division for integers Feasting on Leftovers January 2011 Summary notes on decimal representation of rational numbers Long division for integers Contents 1. Terminology 2. Description of division algorithm for integers (optional

More information

ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 112 Intro to Electrical and Computer Engineering ENGIN 112 Intro to Electrical and Computer Engineering Lecture 3 More Number Systems Overview Hexadecimal numbers Related to binary and octal numbers Conversion between hexadecimal, octal and binary Value

More information

CSE 241 Digital Systems Spring 2013

CSE 241 Digital Systems Spring 2013 CSE 241 Digital Systems Spring 2013 Instructor: Prof. Kui Ren Department of Computer Science and Engineering Lecture slides modified from many online resources and used solely for the educational purpose.

More information

Carnegie Learning Middle School Math Series: Grade 8 Indiana Standards Worktext Correlations

Carnegie Learning Middle School Math Series: Grade 8 Indiana Standards Worktext Correlations 8.NS.1 Give examples of rational and irrational numbers and explain the difference between them. Understand that every number has a decimal expansion; for rational numbers, show that the decimal expansion

More information

ALGEBRA+NUMBER THEORY +COMBINATORICS

ALGEBRA+NUMBER THEORY +COMBINATORICS ALGEBRA+NUMBER THEORY +COMBINATORICS COMP 321 McGill University These slides are mainly compiled from the following resources. - Professor Jaehyun Park slides CS 97SI - Top-coder tutorials. - Programming

More information

Discrete Mathematics GCD, LCM, RSA Algorithm

Discrete Mathematics GCD, LCM, RSA Algorithm Discrete Mathematics GCD, LCM, RSA Algorithm Abdul Hameed http://informationtechnology.pk/pucit abdul.hameed@pucit.edu.pk Lecture 16 Greatest Common Divisor 2 Greatest common divisor The greatest common

More information

( )( ) Algebra I / Technical Algebra. (This can be read: given n elements, choose r, 5! 5 4 3! ! ( 5 3 )! 3!(2) 2

( )( ) Algebra I / Technical Algebra. (This can be read: given n elements, choose r, 5! 5 4 3! ! ( 5 3 )! 3!(2) 2 470 Algebra I / Technical Algebra Absolute Value: A number s distance from zero on a number line. A number s absolute value is nonnegative. 4 = 4 = 4 Algebraic Expressions: A mathematical phrase that can

More information

Math From Scratch Lesson 29: Decimal Representation

Math From Scratch Lesson 29: Decimal Representation Math From Scratch Lesson 29: Decimal Representation W. Blaine Dowler January, 203 Contents Introducing Decimals 2 Finite Decimals 3 2. 0................................... 3 2.2 2....................................

More information

Trinity Web Site Design. Today we will learn about the technology of numbering systems.

Trinity Web Site Design. Today we will learn about the technology of numbering systems. Week 8 Trinity Web Site Design Today we will learn about the technology of numbering systems. Would you believe me if I told you - I can prove that 10 + 10 = 100 . You can

More information

CROSSWalk. for the Co on Core State Standards

CROSSWalk. for the Co on Core State Standards Mathematics Grade 8 CROSSWalk for the Co on Core State Standards Table of Contents Common Core State Standards Correlation Chart... 6 Domain 1 The Number System.... Domain 1: Diagnostic Assessment for

More information

Number Theory: Representations of Integers

Number Theory: Representations of Integers Instructions: In-class exercises are meant to introduce you to a new topic and provide some practice with the new topic. Work in a team of up to 4 people to complete this exercise. You can work simultaneously

More information

Dividing Polynomials: Remainder and Factor Theorems

Dividing Polynomials: Remainder and Factor Theorems Dividing Polynomials: Remainder and Factor Theorems When we divide one polynomial by another, we obtain a quotient and a remainder. If the remainder is zero, then the divisor is a factor of the dividend.

More information

THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS

THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS THE REAL NUMBER SYSTEM C O M P E T E N C Y 1 THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS This competency section reviews some of the fundamental

More information

Copy Material. Grade 8 Unit 7. Introduction to Irrational Numbers Using Geometry. Eureka Math. Eureka Math

Copy Material. Grade 8 Unit 7. Introduction to Irrational Numbers Using Geometry. Eureka Math. Eureka Math Copy Material Grade 8 Unit 7 Introduction to Irrational Numbers Using Geometry Eureka Math Eureka Math Lesson 1 Name Date Lesson 1: The Pythagorean Theorem Exit Ticket 1. Determine the length of the unknown

More information

5) ) y 20 y 10 =

5) ) y 20 y 10 = Name Class Date 7.N.4 Develop the laws of exponents for multiplication and division Directions: Rewrite as a base with an exponent. 1) 3 6 3-4 = 2) x 7 x 17 = 3) 10-8 10 3 = 5) 12-3 = -3 12 6) y 20 y 10

More information

Unit 1. Math 116. Number Systems

Unit 1. Math 116. Number Systems Unit Math Number Systems Unit One Number Systems Sections. Introduction to Number Systems Through out history civilizations have keep records using their own number systems. This unit will introduce some

More information

Additive Numbering Systems and Numbers of Different Bases MAT 142 RSCC Scott Surgent

Additive Numbering Systems and Numbers of Different Bases MAT 142 RSCC Scott Surgent Additive Numbering Systems and Numbers of Different Bases MAT 142 RSCC Scott Surgent Our modern numbering system uses ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. These are known as the Hindu-Arabic symbols.

More information

Chapter 1: Fundamentals of Algebra Lecture notes Math 1010

Chapter 1: Fundamentals of Algebra Lecture notes Math 1010 Section 1.1: The Real Number System Definition of set and subset A set is a collection of objects and its objects are called members. If all the members of a set A are also members of a set B, then A is

More information

COT 3100 Applications of Discrete Structures Dr. Michael P. Frank

COT 3100 Applications of Discrete Structures Dr. Michael P. Frank University of Florida Dept. of Computer & Information Science & Engineering COT 3100 Applications of Discrete Structures Dr. Michael P. Frank Slides for a Course Based on the Text Discrete Mathematics

More information

x 2 + 6x 18 x + 2 Name: Class: Date: 1. Find the coordinates of the local extreme of the function y = x 2 4 x.

x 2 + 6x 18 x + 2 Name: Class: Date: 1. Find the coordinates of the local extreme of the function y = x 2 4 x. 1. Find the coordinates of the local extreme of the function y = x 2 4 x. 2. How many local maxima and minima does the polynomial y = 8 x 2 + 7 x + 7 have? 3. How many local maxima and minima does the

More information

Tools of the Trade Review

Tools of the Trade Review Lesson #1 Using Variables to Create Models of the Real World 1. Write the algebraic expression that is represented by these algebra tiles. Answer: x + 0. Identify each constant, term and expression for

More information

Binary addition example worked out

Binary addition example worked out Binary addition example worked out Some terms are given here Exercise: what are these numbers equivalent to in decimal? The initial carry in is implicitly 0 1 1 1 0 (Carries) 1 0 1 1 (Augend) + 1 1 1 0

More information

Downloaded from

Downloaded from Topic : Real Numbers Class : X Concepts 1. Euclid's Division Lemma 2. Euclid's Division Algorithm 3. Prime Factorization 4. Fundamental Theorem of Arithmetic 5. Decimal expansion of rational numbers A

More information

GCSE AQA Mathematics. Numbers

GCSE AQA Mathematics. Numbers GCSE Mathematics Numbers Md Marufur Rahman Msc Sustainable Energy Systems Beng (Hons) Mechanical Engineering Bsc (Hons) Computer science & engineering GCSE AQA Mathematics 215/16 Table of Contents Introduction:...

More information

Cs302 Quiz for MID TERM Exam Solved

Cs302 Quiz for MID TERM Exam Solved Question # 1 of 10 ( Start time: 01:30:33 PM ) Total Marks: 1 Caveman used a number system that has distinct shapes: 4 5 6 7 Question # 2 of 10 ( Start time: 01:31:25 PM ) Total Marks: 1 TTL based devices

More information

ZEROS OF POLYNOMIAL FUNCTIONS ALL I HAVE TO KNOW ABOUT POLYNOMIAL FUNCTIONS

ZEROS OF POLYNOMIAL FUNCTIONS ALL I HAVE TO KNOW ABOUT POLYNOMIAL FUNCTIONS ZEROS OF POLYNOMIAL FUNCTIONS ALL I HAVE TO KNOW ABOUT POLYNOMIAL FUNCTIONS TOOLS IN FINDING ZEROS OF POLYNOMIAL FUNCTIONS Synthetic Division and Remainder Theorem (Compressed Synthetic Division) Fundamental

More information

2.5 정수와알고리즘 (Integers and Algorithms)

2.5 정수와알고리즘 (Integers and Algorithms) 이산수학 () 2.5 정수와알고리즘 (Integers and Algorithms) 2006 년봄학기 문양세강원대학교컴퓨터과학과 Introduction Base-b representations of integers. (b진법표현 ) Especially: binary, hexadecimal, octal. Also, two s complement representation

More information

REAL NUMBERS. Any positive integer a can be divided by another positive integer b in such a way that it leaves a remainder r that is smaller than b.

REAL NUMBERS. Any positive integer a can be divided by another positive integer b in such a way that it leaves a remainder r that is smaller than b. REAL NUMBERS Introduction Euclid s Division Algorithm Any positive integer a can be divided by another positive integer b in such a way that it leaves a remainder r that is smaller than b. Fundamental

More information

Base-b representations of integers. (b 진법표현 ) Algorithms for computer arithmetic: Euclidean algorithm for finding GCD s.

Base-b representations of integers. (b 진법표현 ) Algorithms for computer arithmetic: Euclidean algorithm for finding GCD s. 이산수학 () 정수와알고리즘 (Integers and Algorithms) 2011년봄학기 강원대학교컴퓨터과학전공문양세 Introduction Base-b representations of integers. (b 진법표현 ) Especially: binary, hexadecimal, octal. Also, two s complement representation

More information

Order of Operations. Real numbers

Order of Operations. Real numbers Order of Operations When simplifying algebraic expressions we use the following order: 1. Perform operations within a parenthesis. 2. Evaluate exponents. 3. Multiply and divide from left to right. 4. Add

More information

CIS102 Mathematics for Computing Volume 1

CIS102 Mathematics for Computing Volume 1 CIS102 Mathematics for Computing Volume 1 Update of 2nd Edition 2004 Carol Whitehead 3 December 2003 Contents Introduction iii 1 Numbers Systems 1 1.1 Number Bases.......................................

More information

1 Numbers. exponential functions, such as x 7! a x ; where a; x 2 R; trigonometric functions, such as x 7! sin x; where x 2 R; ffiffi x ; where x 0:

1 Numbers. exponential functions, such as x 7! a x ; where a; x 2 R; trigonometric functions, such as x 7! sin x; where x 2 R; ffiffi x ; where x 0: Numbers In this book we study the properties of real functions defined on intervals of the real line (possibly the whole real line) and whose image also lies on the real line. In other words, they map

More information

Numbers and their divisors

Numbers and their divisors Chapter 1 Numbers and their divisors 1.1 Some number theoretic functions Theorem 1.1 (Fundamental Theorem of Arithmetic). Every positive integer > 1 is uniquely the product of distinct prime powers: n

More information

THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS

THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS The real number SySTeM C O M P E T E N C Y 1 THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS This competency section reviews some of the fundamental

More information

ALGEBRA. COPYRIGHT 1996 Mark Twain Media, Inc. ISBN Printing No EB

ALGEBRA. COPYRIGHT 1996 Mark Twain Media, Inc. ISBN Printing No EB ALGEBRA By Don Blattner and Myrl Shireman COPYRIGHT 1996 Mark Twain Media, Inc. ISBN 978-1-58037-826-0 Printing No. 1874-EB Mark Twain Media, Inc., Publishers Distributed by Carson-Dellosa Publishing Company,

More information

Identify the specified numbers by circling. 1) The integers in the following list: 8 16, 8, -10, 0, 9, - 9

Identify the specified numbers by circling. 1) The integers in the following list: 8 16, 8, -10, 0, 9, - 9 MAT 105-01C TEST 1 REVIEW NAME Identify the specified numbers by circling. 1) The integers in the following list: 8 16, 8, -10, 0, 9, - 9, 5.5, 16 8 2) The rational numbers in the following list: 0 14,

More information

Natural Numbers Positive Integers. Rational Numbers

Natural Numbers Positive Integers. Rational Numbers Chapter A - - Real Numbers Types of Real Numbers, 2,, 4, Name(s) for the set Natural Numbers Positive Integers Symbol(s) for the set, -, - 2, - Negative integers 0,, 2,, 4, Non- negative integers, -, -

More information

Chapter 2 (Part 3): The Fundamentals: Algorithms, the Integers & Matrices. Integers & Algorithms (2.5)

Chapter 2 (Part 3): The Fundamentals: Algorithms, the Integers & Matrices. Integers & Algorithms (2.5) CSE 54 Discrete Mathematics & Chapter 2 (Part 3): The Fundamentals: Algorithms, the Integers & Matrices Integers & Algorithms (Section 2.5) by Kenneth H. Rosen, Discrete Mathematics & its Applications,

More information

Numbers. 2.1 Integers. P(n) = n(n 4 5n 2 + 4) = n(n 2 1)(n 2 4) = (n 2)(n 1)n(n + 1)(n + 2); 120 =

Numbers. 2.1 Integers. P(n) = n(n 4 5n 2 + 4) = n(n 2 1)(n 2 4) = (n 2)(n 1)n(n + 1)(n + 2); 120 = 2 Numbers 2.1 Integers You remember the definition of a prime number. On p. 7, we defined a prime number and formulated the Fundamental Theorem of Arithmetic. Numerous beautiful results can be presented

More information

THE REAL NUMBERS Chapter #4

THE REAL NUMBERS Chapter #4 FOUNDATIONS OF ANALYSIS FALL 2008 TRUE/FALSE QUESTIONS THE REAL NUMBERS Chapter #4 (1) Every element in a field has a multiplicative inverse. (2) In a field the additive inverse of 1 is 0. (3) In a field

More information