Multi-Assembly Problems for RNA Transcripts

Size: px
Start display at page:

Download "Multi-Assembly Problems for RNA Transcripts"

Transcription

1 Multi-Assembly Problems for RNA Transcripts Alexandru Tomescu Department of Computer Science University of Helsinki Joint work with Veli Mäkinen, Anna Kuosmanen, Romeo Rizzi, Travis Gagie, Alex Popa CiE July 3, / 33

2 CENTRAL DOGMA OF MOLECULAR BIOLOGY DNA gene 1 intron exon transcription pre-mrna alternative splicing mature mrna transcripts translation proteins 2 / 33

3 RNA-SEQUENCING DNA methylation gene mature mrna transcripts RNA sequencing proteins Problem: assemble the RNA transcripts from the RNA-Seq reads and quantify their expression levels 3 / 33

4 MULTI-ASSEMBLY Assembly of fragments from different, but related, sequences transcriptomics (RNA-Seq) viral quasi-species metagenomics Assumptions: " existing reference (genome-guided multi-assembly) $ no existing annotation 4 / 33

5 SPLICING GRAPHS / 33

6 SPLICING GRAPHS Splicing graphs: exons nodes 2 2 reads overlapping two exons arcs + coverage information Existing reference 7 = directed acyclic graphs (DAGs) / 33

7 OVERLAP GRAPHS reads nodes overlaps arcs coverage information 7 Existing reference = directed acyclic graphs (DAGs) 5 6 / 33

8 OUTLINE OF THE TALK Three problem formulations: 1. Assembly only 2. Simultaneous assembly and estimation of expression levels 3. Assembly only, with long reads, or paired-end reads 7 / 33

9 OUTLINE OF THE TALK Three problem formulations: 1. Assembly only 2. Simultaneous assembly and estimation of expression levels 3. Assembly only, with long reads, or paired-end reads 8 / 33

10 ASSEMBLY: MINIMUM PATH COVER (MPC) What is the minimum number of paths required to cover all nodes of a DAG? RNA-Seq: Cufflinks 2010, CLASS 2012, BRANCH 2013 Viral quasi-species: ShoRAH / 33

11 ASSEMBLY: MINIMUM PATH COVER (MPC) What is the minimum number of paths required to cover all nodes of a DAG? RNA-Seq: Cufflinks 2010, CLASS 2012, BRANCH 2013 Viral quasi-species: ShoRAH / 33

12 ASSEMBLY: MINIMUM PATH COVER (MPC) What is the minimum number of paths required to cover all nodes of a DAG? RNA-Seq: Cufflinks 2010, CLASS 2012, BRANCH 2013 Viral quasi-species: ShoRAH / 33

13 ASSEMBLY: MINIMUM PATH COVER (MPC) In general it is NP-hard (one path iff G has a Hamiltonian path) But it is solvable in polynomial-time on DAGs: Dilworth s theorem Fulkerson s constructive proof 1956 by a maximum matching algorithm, solvable in time O(t(G) n) the weighted version can be solved in time O(n 2 log n + t(g)n) where m t(g) n 2 is #arcs in the transitive closure of G. 11 / 33

14 MIN-COST MPC VIA MIN-COST FLOWS Unweighted case: MPC via min-flows, e.g. [Pijls, Potharst, 2013] Weighted case: MPC via min-cost flows 12 / 33

15 MIN-COST MPC VIA MIN-COST FLOWS Unweighted case: MPC via min-flows, [Pijls, Potharst, 2013] Weighted case: MPC via min-cost flows 13 / 33

16 MIN-COST MPC VIA MIN-COST FLOWS Unweighted case: MPC via min-flows, [Pijls, Potharst, 2013] Weighted case: MPC via min-cost flows 14 / 33

17 MPC VIA MIN-COST FLOWS This min-cost flow problem can be solved in time O(n 2 log n + nm) by [Gabow and Tarjan, 1991] observed in [Rizzi, T., Mäkinen, 2014] This is better than O(n 2 log n + nt(g)), since m t(g) n 2 as soon as there is a path of length O(n), we have t(g) = O(n 2 ) 15 / 33

18 OUTLINE OF THE TALK Three problem formulations: 1. Assembly only 2. Simultaneous assembly and estimation of expression levels 3. Assembly only, with long reads, or paired-end reads 16 / 33

19 ASSEMBLY AND ESTIMATION OF EXPRESSION LEVELS INPUT: An arc-weighted DAG G, and A superset S of the sources, and a superset T of the sinks TASK: Find a collection of paths P 1,..., P k in G, and their expression levels e 1,..., e k, such that: every P i starts in S, and ends in T, and the following cost is minimized w(x, y) (x,y) E j : (x,y) P j e j. Variants for RNA-Seq in: IsoInfer 2010, IsoLasso 2011, CLIIQ 2012, FlipFlop / 33

20 ASSEMBLY AND ESTIMATION OF EXPRESSION LEVELS a b c d e f g h a b c d e f g h Cost is / 33

21 ASSEMBLY AND ESTIMATION OF EXPRESSION LEVELS Previous solutions based on enumeration of all paths (+ILP) Solvable in polynomial-time by min-cost flows [T., Kuosmanen, Rizzi, Mäkinen, 2013] If number k of paths is given in input, then NP-hard But solvable in time O(W k aw(g) k n 2 ) [T., Gagie, Popa, Rizzi, Kuosmanen, Mäkinen, 2015] 19 / 33

22 OUTLINE OF THE TALK Three problem formulations: 1. Assembly only 2. Simultaneous assembly and estimation of expression levels 3. Assembly only, with long reads, or paired-end reads 20 / 33

23 ASSEMBLY WITH LONG READS / 33

24 ASSEMBLY WITH LONG READS (2) 22 / 33

25 ASSEMBLY WITH LONG READS 23 / 33

26 MIN-COST MPC WITH SUBPATH CONSTRAINTS INPUT: An arc-weighted DAG G, and 1. A superset S of the sources, and a superset T of the sinks 2. A family P in = {P in 1,..., Pin c } of directed paths in G TASK: Find a minimum number k of directed paths P sol 1,..., Psol k in G such that 1. Every node in V(G) occurs in some P sol i 2. Every path P in P in is a subpath of some P sol i 3. Every path P sol i starts in S and ends in T k 4. w(e) is minimum among all such k paths i=1 edge e P sol i introduced by [Bao, Jiang, Girke, 2013, BRANCH], but the case of overlapping constraints not solved 24 / 33

27 MIN-COST MPC WITH SUBPATH CONSTRAINTS s t 25 / 33

28 MIN-COST MPC WITH SUBPATH CONSTRAINTS Subpath constraints as arc demands: / 33

29 MIN-COST MPC WITH SUBPATH CONSTRAINTS Problem 1: a constraint P included in another constraint Q Remove P Can be implemented in time O(N) with a suffix tree for large alphabets, [Farach, 1997] N = sum of lengths of Subpath Constraints 27 / 33

30 MIN-COST MPC WITH SUBPATH CONSTRAINTS Problem 2: Suffix-prefix overlaps Iteratively merge constraints with longest suffix-prefix overlap All suffix-prefix overlaps can be found in optimal time O(N + overlaps ) by [Gusfield, Landau and Schieber, 1992] Our iterative merging also takes O(N + overlaps ) time 28 / 33

31 MIN-COST MPC WITH SUBPATH CONSTRAINTS Pre-processing phase O(N + overlaps ) The flow network has size: O(n) nodes and O(m + c) arcs Min-cost MPC with Subpath Constraints can be solved in time O(N + overlaps + n 2 log n + n(m + c)) using [Gabow and Tarjan, 1991] [Rizzi, T., Mäkinen, 2014] 29 / 33

32 MPC WITH PAIRED SUBPATH CONSTRAINTS INPUT: A DAG G and 1. A family P in = {(P in directed paths in G 1,1, Pin 1,2 ),..., (Pin t,1, Pin t,2 )} of pairs of TASK: Find a minimum number k of directed paths P sol 1,..., Psol k in G such that 1. Every node in V(G) occurs in some P sol i 2. For every pair (P in j,1, Pin j,2 ) Pin, there exists P sol i such that both P in j,1 and Pin j,2 are subpaths of Psol i introduced by [Song and Florea, 2013, CLASS] NP-hard [Rizzi, T., Mäkinen, 2014] [Beerenwinkel, Beretta, Bonizzoni, Dondi and Pirola, 2014] 30 / 33

33 CONCLUSIONS Min-cost Minimum Path Cover O(n 2 log n + nm) Simultaneous assembly and expression estimation polynomial-time, but NP-hard for given k Min-cost Minimum Path Cover with Subpath Constraints O(N + overlaps + n 2 log n + n(m + c)) c = number of Subpath Constraints N = sum of lengths of Subpath Constraints Minimum Path Cover with Pairs of Subpaths Constraints NP-hard 31 / 33

34 Multi-assembly Assembly Assembly and expression levels Long, and paired-end reads End A DVERTISEMENT data structures and algorithms, and for their applications in ly precise style, illustrated with a great collection of any exercises, makes it an ideal resource for researchers, d, Germany hematically precise, compelling explanations make the de bioinformatics accessible to a wide audience. tate University, USA ech, USA orithms and data structures that power modern sequence overs a range of topics from the foundations of biological and hidden Markov models), to classical index structures d suffix trees), Burrows Wheeler indexes, graph algorithms, cs applications. The chapters feature numerous examples, es, and problems, providing graduate students and lkit for the emerging applications of high-throughput website ( offers LaTeX source files evant links. he Department of Computer Science of the University of I MÄKINEN is also in charge of bioinformatics education in ELAZZOUGUI conducts research on hashing, space-efficient rithms. Dr FABIO CUNIAL focuses on string algorithms ANDRU I. TOMESCU s interests lie at the intersection of mputer science. tp://hillaryfayle.wordpress.com), eena Samela. GENOME-SCALE ALGORITHM DESIGN prehensive systematization of the concepts and tools at the matics The authors have created a rare, self-contained roduce the neophyte and assist the seasoned researcher urses directed at a mixed audience coming from diverse, Mäkinen, Belazzougui, Cunial and Tomescu ted book that fills a gap in the recent literature of textbooks a, Italy Veli Mäkinen, Djamal Belazzougui, Fabio Cunial and Alexandru I. Tomescu GENOME-SCALE ALGORITHM DESIGN BIOLOGICAL SEQUENCE ANALYSIS IN THE ERA OF HIGH-THROUGHPUT SEQUENCING 32 / 33

35 Multi-assembly Assembly Assembly and expression levels Long, and paired-end reads End Thank you 33 / 33

Proteomics. 2 nd semester, Department of Biotechnology and Bioinformatics Laboratory of Nano-Biotechnology and Artificial Bioengineering

Proteomics. 2 nd semester, Department of Biotechnology and Bioinformatics Laboratory of Nano-Biotechnology and Artificial Bioengineering Proteomics 2 nd semester, 2013 1 Text book Principles of Proteomics by R. M. Twyman, BIOS Scientific Publications Other Reference books 1) Proteomics by C. David O Connor and B. David Hames, Scion Publishing

More information

Towards More Effective Formulations of the Genome Assembly Problem

Towards More Effective Formulations of the Genome Assembly Problem Towards More Effective Formulations of the Genome Assembly Problem Alexandru Tomescu Department of Computer Science University of Helsinki, Finland DACS June 26, 2015 1 / 25 2 / 25 CENTRAL DOGMA OF BIOLOGY

More information

arxiv: v1 [cs.cc] 15 Nov 2016

arxiv: v1 [cs.cc] 15 Nov 2016 Diploid Alignment is NP-hard Romeo Rizzi 1, Massimo Cairo 1, Veli Mäkinen 2, and Daniel Valenzuela 2 1 Department of Computer Science, University of Verona, Italy 2 Helsinki Institute for Information echnology,

More information

Algorithms in Computational Biology (236522) spring 2008 Lecture #1

Algorithms in Computational Biology (236522) spring 2008 Lecture #1 Algorithms in Computational Biology (236522) spring 2008 Lecture #1 Lecturer: Shlomo Moran, Taub 639, tel 4363 Office hours: 15:30-16:30/by appointment TA: Ilan Gronau, Taub 700, tel 4894 Office hours:??

More information

Genome Assembly. Sequencing Output. High Throughput Sequencing

Genome Assembly. Sequencing Output. High Throughput Sequencing Genome High Throughput Sequencing Sequencing Output Example applications: Sequencing a genome (DNA) Sequencing a transcriptome and gene expression studies (RNA) ChIP (chromatin immunoprecipitation) Example

More information

Computational Biology: Basics & Interesting Problems

Computational Biology: Basics & Interesting Problems Computational Biology: Basics & Interesting Problems Summary Sources of information Biological concepts: structure & terminology Sequencing Gene finding Protein structure prediction Sources of information

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Biosystems Modeling and Control Lecture 24 Unregulated Gene Expression Model Dr. Zvi Roth (FAU) 1 The genetic material inside a cell, encoded in its DNA, governs the response of a cell to various

More information

What is Systems Biology

What is Systems Biology What is Systems Biology 2 CBS, Department of Systems Biology 3 CBS, Department of Systems Biology Data integration In the Big Data era Combine different types of data, describing different things or the

More information

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models 02-710 Computational Genomics Systems biology Putting it together: Data integration using graphical models High throughput data So far in this class we discussed several different types of high throughput

More information

GEP Annotation Report

GEP Annotation Report GEP Annotation Report Note: For each gene described in this annotation report, you should also prepare the corresponding GFF, transcript and peptide sequence files as part of your submission. Student name:

More information

A Multiobjective Approach to the Weighted Longest Common Subsequence Problem

A Multiobjective Approach to the Weighted Longest Common Subsequence Problem A Multiobjective Approach to the Weighted Longest Common Subsequence Problem David Becerra, Juan Mendivelso, and Yoan Pinzón Universidad Nacional de Colombia Facultad de Ingeniería Department of Computer

More information

Bioinformatics 2 - Lecture 4

Bioinformatics 2 - Lecture 4 Bioinformatics 2 - Lecture 4 Guido Sanguinetti School of Informatics University of Edinburgh February 14, 2011 Sequences Many data types are ordered, i.e. you can naturally say what is before and what

More information

10-810: Advanced Algorithms and Models for Computational Biology. microrna and Whole Genome Comparison

10-810: Advanced Algorithms and Models for Computational Biology. microrna and Whole Genome Comparison 10-810: Advanced Algorithms and Models for Computational Biology microrna and Whole Genome Comparison Central Dogma: 90s Transcription factors DNA transcription mrna translation Proteins Central Dogma:

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

Least Random Suffix/Prefix Matches in Output-Sensitive Time

Least Random Suffix/Prefix Matches in Output-Sensitive Time Least Random Suffix/Prefix Matches in Output-Sensitive Time Niko Välimäki Department of Computer Science University of Helsinki nvalimak@cs.helsinki.fi 23rd Annual Symposium on Combinatorial Pattern Matching

More information

Structure-Based Comparison of Biomolecules

Structure-Based Comparison of Biomolecules Structure-Based Comparison of Biomolecules Benedikt Christoph Wolters Seminar Bioinformatics Algorithms RWTH AACHEN 07/17/2015 Outline 1 Introduction and Motivation Protein Structure Hierarchy Protein

More information

arxiv: v1 [cs.ds] 2 Dec 2009

arxiv: v1 [cs.ds] 2 Dec 2009 Variants of Constrained Longest Common Subsequence arxiv:0912.0368v1 [cs.ds] 2 Dec 2009 Paola Bonizzoni Gianluca Della Vedova Riccardo Dondi Yuri Pirola Abstract In this work, we consider a variant of

More information

Jumbled String Matching: Motivations, Variants, Algorithms

Jumbled String Matching: Motivations, Variants, Algorithms Jumbled String Matching: Motivations, Variants, Algorithms Zsuzsanna Lipták University of Verona (Italy) Workshop Combinatorial structures for sequence analysis in bioinformatics Milano-Bicocca, 27 Nov

More information

Isoform discovery and quantification from RNA-Seq data

Isoform discovery and quantification from RNA-Seq data Isoform discovery and quantification from RNA-Seq data C. Toffano-Nioche, T. Dayris, Y. Boursin, M. Deloger November 2016 C. Toffano-Nioche, T. Dayris, Y. Boursin, M. Isoform Deloger discovery and quantification

More information

1/22/13. Example: CpG Island. Question 2: Finding CpG Islands

1/22/13. Example: CpG Island. Question 2: Finding CpG Islands I529: Machine Learning in Bioinformatics (Spring 203 Hidden Markov Models Yuzhen Ye School of Informatics and Computing Indiana Univerty, Bloomington Spring 203 Outline Review of Markov chain & CpG island

More information

GCD3033:Cell Biology. Transcription

GCD3033:Cell Biology. Transcription Transcription Transcription: DNA to RNA A) production of complementary strand of DNA B) RNA types C) transcription start/stop signals D) Initiation of eukaryotic gene expression E) transcription factors

More information

Introduction to de novo RNA-seq assembly

Introduction to de novo RNA-seq assembly Introduction to de novo RNA-seq assembly Introduction Ideal day for a molecular biologist Ideal Sequencer Any type of biological material Genetic material with high quality and yield Cutting-Edge Technologies

More information

Analysis and visualization of protein-protein interactions. Olga Vitek Assistant Professor Statistics and Computer Science

Analysis and visualization of protein-protein interactions. Olga Vitek Assistant Professor Statistics and Computer Science 1 Analysis and visualization of protein-protein interactions Olga Vitek Assistant Professor Statistics and Computer Science 2 Outline 1. Protein-protein interactions 2. Using graph structures to study

More information

Theoretical Computer Science

Theoretical Computer Science Theoretical Computer Science 410 (2009) 2759 2766 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Note Computing the longest topological

More information

Bioinformatics (GLOBEX, Summer 2015) Pairwise sequence alignment

Bioinformatics (GLOBEX, Summer 2015) Pairwise sequence alignment Bioinformatics (GLOBEX, Summer 2015) Pairwise sequence alignment Substitution score matrices, PAM, BLOSUM Needleman-Wunsch algorithm (Global) Smith-Waterman algorithm (Local) BLAST (local, heuristic) E-value

More information

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment Algorithms in Bioinformatics FOUR Sami Khuri Department of Computer Science San José State University Pairwise Sequence Alignment Homology Similarity Global string alignment Local string alignment Dot

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

Today s Lecture: HMMs

Today s Lecture: HMMs Today s Lecture: HMMs Definitions Examples Probability calculations WDAG Dynamic programming algorithms: Forward Viterbi Parameter estimation Viterbi training 1 Hidden Markov Models Probability models

More information

High-throughput sequencing: Alignment and related topic

High-throughput sequencing: Alignment and related topic High-throughput sequencing: Alignment and related topic Simon Anders EMBL Heidelberg HTS Platforms E s ta b lis h e d p la tfo rm s Illu m in a H is e q, A B I S O L id, R o c h e 4 5 4 N e w c o m e rs

More information

An External-Memory Algorithm for String Graph Construction

An External-Memory Algorithm for String Graph Construction An External-Memory Algorithm for String Graph Construction Paola Bonizzoni Gianluca Della Vedova Yuri Pirola Marco Previtali Raffaella Rizzi DISCo, Univ. Milano-Bicocca, Milan, Italy arxiv:1405.7520v2

More information

Exhaustive search. CS 466 Saurabh Sinha

Exhaustive search. CS 466 Saurabh Sinha Exhaustive search CS 466 Saurabh Sinha Agenda Two different problems Restriction mapping Motif finding Common theme: exhaustive search of solution space Reading: Chapter 4. Restriction Mapping Restriction

More information

Chapter 15 Active Reading Guide Regulation of Gene Expression

Chapter 15 Active Reading Guide Regulation of Gene Expression Name: AP Biology Mr. Croft Chapter 15 Active Reading Guide Regulation of Gene Expression The overview for Chapter 15 introduces the idea that while all cells of an organism have all genes in the genome,

More information

Translation Part 2 of Protein Synthesis

Translation Part 2 of Protein Synthesis Translation Part 2 of Protein Synthesis IN: How is transcription like making a jello mold? (be specific) What process does this diagram represent? A. Mutation B. Replication C.Transcription D.Translation

More information

Bioinformatics Chapter 1. Introduction

Bioinformatics Chapter 1. Introduction Bioinformatics Chapter 1. Introduction Outline! Biological Data in Digital Symbol Sequences! Genomes Diversity, Size, and Structure! Proteins and Proteomes! On the Information Content of Biological Sequences!

More information

1 Computational Problems

1 Computational Problems Stanford University CS254: Computational Complexity Handout 2 Luca Trevisan March 31, 2010 Last revised 4/29/2010 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

Weighted Acyclic Di-Graph Partitioning by Balanced Disjoint Paths

Weighted Acyclic Di-Graph Partitioning by Balanced Disjoint Paths Weighted Acyclic Di-Graph Partitioning by Balanced Disjoint Paths H. Murat AFSAR Olivier BRIANT Murat.Afsar@g-scop.inpg.fr Olivier.Briant@g-scop.inpg.fr G-SCOP Laboratory Grenoble Institute of Technology

More information

Searching Sear ( Sub- (Sub )Strings Ulf Leser

Searching Sear ( Sub- (Sub )Strings Ulf Leser Searching (Sub-)Strings Ulf Leser This Lecture Exact substring search Naïve Boyer-Moore Searching with profiles Sequence profiles Ungapped approximate search Statistical evaluation of search results Ulf

More information

Analytic Pattern Matching: From DNA to Twitter. AxA Workshop, Venice, 2016 Dedicated to Alberto Apostolico

Analytic Pattern Matching: From DNA to Twitter. AxA Workshop, Venice, 2016 Dedicated to Alberto Apostolico Analytic Pattern Matching: From DNA to Twitter Wojciech Szpankowski Purdue University W. Lafayette, IN 47907 June 19, 2016 AxA Workshop, Venice, 2016 Dedicated to Alberto Apostolico Joint work with Philippe

More information

Computational Structural Bioinformatics

Computational Structural Bioinformatics Computational Structural Bioinformatics ECS129 Instructor: Patrice Koehl http://koehllab.genomecenter.ucdavis.edu/teaching/ecs129 koehl@cs.ucdavis.edu Learning curve Math / CS Biology/ Chemistry Pre-requisite

More information

O 3 O 4 O 5. q 3. q 4. Transition

O 3 O 4 O 5. q 3. q 4. Transition Hidden Markov Models Hidden Markov models (HMM) were developed in the early part of the 1970 s and at that time mostly applied in the area of computerized speech recognition. They are first described in

More information

Notes for Lecture Notes 2

Notes for Lecture Notes 2 Stanford University CS254: Computational Complexity Notes 2 Luca Trevisan January 11, 2012 Notes for Lecture Notes 2 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

Going Beyond SNPs with Next Genera5on Sequencing Technology Personalized Medicine: Understanding Your Own Genome Fall 2014

Going Beyond SNPs with Next Genera5on Sequencing Technology Personalized Medicine: Understanding Your Own Genome Fall 2014 Going Beyond SNPs with Next Genera5on Sequencing Technology 02-223 Personalized Medicine: Understanding Your Own Genome Fall 2014 Next Genera5on Sequencing Technology (NGS) NGS technology Discover more

More information

HMM for modeling aligned multiple sequences: phylo-hmm & multivariate HMM

HMM for modeling aligned multiple sequences: phylo-hmm & multivariate HMM I529: Machine Learning in Bioinformatics (Spring 2017) HMM for modeling aligned multiple sequences: phylo-hmm & multivariate HMM Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington

More information

RNA Processing: Eukaryotic mrnas

RNA Processing: Eukaryotic mrnas RNA Processing: Eukaryotic mrnas Eukaryotic mrnas have three main parts (Figure 13.8): 5! untranslated region (5! UTR), varies in length. The coding sequence specifies the amino acid sequence of the protein

More information

Mathangi Thiagarajan Rice Genome Annotation Workshop May 23rd, 2007

Mathangi Thiagarajan Rice Genome Annotation Workshop May 23rd, 2007 -2 Transcript Alignment Assembly and Automated Gene Structure Improvements Using PASA-2 Mathangi Thiagarajan mathangi@jcvi.org Rice Genome Annotation Workshop May 23rd, 2007 About PASA PASA is an open

More information

Hidden Markov Models 1

Hidden Markov Models 1 Hidden Markov Models Dinucleotide Frequency Consider all 2-mers in a sequence {AA,AC,AG,AT,CA,CC,CG,CT,GA,GC,GG,GT,TA,TC,TG,TT} Given 4 nucleotides: each with a probability of occurrence of. 4 Thus, one

More information

Early History up to Schedule. Proteins DNA & RNA Schwann and Schleiden Cell Theory Charles Darwin publishes Origin of Species

Early History up to Schedule. Proteins DNA & RNA Schwann and Schleiden Cell Theory Charles Darwin publishes Origin of Species Schedule Bioinformatics and Computational Biology: History and Biological Background (JH) 0.0 he Parsimony criterion GKN.0 Stochastic Models of Sequence Evolution GKN 7.0 he Likelihood criterion GKN 0.0

More information

The Saguaro Genome. Toward the Ecological Genomics of a Sonoran Desert Icon. Dr. Dario Copetti June 30, 2015 STEMAZing workshop TCSS

The Saguaro Genome. Toward the Ecological Genomics of a Sonoran Desert Icon. Dr. Dario Copetti June 30, 2015 STEMAZing workshop TCSS The Saguaro Genome Toward the Ecological Genomics of a Sonoran Desert Icon Dr. Dario Copetti June 30, 2015 STEMAZing workshop TCSS Why study a genome? - the genome contains the genetic information of an

More information

Lecture 5: September Time Complexity Analysis of Local Alignment

Lecture 5: September Time Complexity Analysis of Local Alignment CSCI1810: Computational Molecular Biology Fall 2017 Lecture 5: September 21 Lecturer: Sorin Istrail Scribe: Cyrus Cousins Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes

More information

Hierarchical Overlap Graph

Hierarchical Overlap Graph Hierarchical Overlap Graph B. Cazaux and E. Rivals LIRMM & IBC, Montpellier 8. Feb. 2018 arxiv:1802.04632 2018 B. Cazaux & E. Rivals 1 / 29 Overlap Graph for a set of words Consider the set P := {abaa,

More information

Introduction to Molecular and Cell Biology

Introduction to Molecular and Cell Biology Introduction to Molecular and Cell Biology Molecular biology seeks to understand the physical and chemical basis of life. and helps us answer the following? What is the molecular basis of disease? What

More information

1. In most cases, genes code for and it is that

1. In most cases, genes code for and it is that Name Chapter 10 Reading Guide From DNA to Protein: Gene Expression Concept 10.1 Genetics Shows That Genes Code for Proteins 1. In most cases, genes code for and it is that determine. 2. Describe what Garrod

More information

SA-REPC - Sequence Alignment with a Regular Expression Path Constraint

SA-REPC - Sequence Alignment with a Regular Expression Path Constraint SA-REPC - Sequence Alignment with a Regular Expression Path Constraint Nimrod Milo Tamar Pinhas Michal Ziv-Ukelson Ben-Gurion University of the Negev, Be er Sheva, Israel Graduate Seminar, BGU 2010 Milo,

More information

Markov Models & DNA Sequence Evolution

Markov Models & DNA Sequence Evolution 7.91 / 7.36 / BE.490 Lecture #5 Mar. 9, 2004 Markov Models & DNA Sequence Evolution Chris Burge Review of Markov & HMM Models for DNA Markov Models for splice sites Hidden Markov Models - looking under

More information

A New Lightweight Algorithm to compute the BWT and the LCP array of a Set of Strings

A New Lightweight Algorithm to compute the BWT and the LCP array of a Set of Strings A New Lightweight Algorithm to compute the BWT and the LCP array of a Set of Strings arxiv:1607.08342v1 [cs.ds] 28 Jul 2016 Paola Bonizzoni Gianluca Della Vedova Serena Nicosia Marco Previtali Raffaella

More information

2012 Univ Aguilera Lecture. Introduction to Molecular and Cell Biology

2012 Univ Aguilera Lecture. Introduction to Molecular and Cell Biology 2012 Univ. 1301 Aguilera Lecture Introduction to Molecular and Cell Biology Molecular biology seeks to understand the physical and chemical basis of life. and helps us answer the following? What is the

More information

3/1/17. Content. TWINSCAN model. Example. TWINSCAN algorithm. HMM for modeling aligned multiple sequences: phylo-hmm & multivariate HMM

3/1/17. Content. TWINSCAN model. Example. TWINSCAN algorithm. HMM for modeling aligned multiple sequences: phylo-hmm & multivariate HMM I529: Machine Learning in Bioinformatics (Spring 2017) Content HMM for modeling aligned multiple sequences: phylo-hmm & multivariate HMM Yuzhen Ye School of Informatics and Computing Indiana University,

More information

On the Fixed Parameter Tractability and Approximability of the Minimum Error Correction problem

On the Fixed Parameter Tractability and Approximability of the Minimum Error Correction problem On the Fixed Parameter Tractability and Approximability of the Minimum Error Correction problem Paola Bonizzoni, Riccardo Dondi, Gunnar W. Klau, Yuri Pirola, Nadia Pisanti and Simone Zaccaria DISCo, computer

More information

CS Lecture 3. More Bayesian Networks

CS Lecture 3. More Bayesian Networks CS 6347 Lecture 3 More Bayesian Networks Recap Last time: Complexity challenges Representing distributions Computing probabilities/doing inference Introduction to Bayesian networks Today: D-separation,

More information

Eukaryotic vs. Prokaryotic genes

Eukaryotic vs. Prokaryotic genes BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 18: Eukaryotic genes http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Eukaryotic vs. Prokaryotic genes Like in prokaryotes,

More information

A. Soldier and Traveling

A. Soldier and Traveling A. Soldier and Traveling time limit per test: 1 second memory limit per test: 256 megabytes : standard : standard In the country there are n cities and m bidirectional roads between them. Each city has

More information

Hidden Markov Methods. Algorithms and Implementation

Hidden Markov Methods. Algorithms and Implementation Hidden Markov Methods. Algorithms and Implementation Final Project Report. MATH 127. Nasser M. Abbasi Course taken during Fall 2002 page compiled on July 2, 2015 at 12:08am Contents 1 Example HMM 5 2 Forward

More information

TRANSCRIPTION VS TRANSLATION FILE

TRANSCRIPTION VS TRANSLATION FILE 23 April, 2018 TRANSCRIPTION VS TRANSLATION FILE Document Filetype: PDF 352.85 KB 0 TRANSCRIPTION VS TRANSLATION FILE Get an answer for 'Compare and contrast transcription and translation in Prokaryotes

More information

Algorithms for Bioinformatics

Algorithms for Bioinformatics Adapted from slides by Alexandru Tomescu, Leena Salmela, Veli Mäkinen, Esa Pitkänen 582670 Algorithms for Bioinformatics Lecture 5: Combinatorial Algorithms and Genomic Rearrangements 1.10.2015 Background

More information

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday 1. What is the Central Dogma? 2. How does prokaryotic DNA compare to eukaryotic DNA? 3. How is DNA

More information

Dna Study Guide Biology READ ONLINE

Dna Study Guide Biology READ ONLINE Dna Study Guide Biology READ ONLINE IB Biology Notes - 3.3 DNA structure - IB Biology notes on 3.3 DNA structure. Tweet. IB Guides why fail? Home; Blog; Chat; Submit Content; Languages A1. English A1;

More information

Bias in RNA sequencing and what to do about it

Bias in RNA sequencing and what to do about it Bias in RNA sequencing and what to do about it Walter L. (Larry) Ruzzo Computer Science and Engineering Genome Sciences University of Washington Fred Hutchinson Cancer Research Center Seattle, WA, USA

More information

Annotation of Plant Genomes using RNA-seq. Matteo Pellegrini (UCLA) In collaboration with Sabeeha Merchant (UCLA)

Annotation of Plant Genomes using RNA-seq. Matteo Pellegrini (UCLA) In collaboration with Sabeeha Merchant (UCLA) Annotation of Plant Genomes using RNA-seq Matteo Pellegrini (UCLA) In collaboration with Sabeeha Merchant (UCLA) inuscu1-35bp 5 _ 0 _ 5 _ What is Annotation inuscu2-75bp luscu1-75bp 0 _ 5 _ Reconstruction

More information

A Simple Protein Synthesis Model

A Simple Protein Synthesis Model A Simple Protein Synthesis Model James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 3, 213 Outline A Simple Protein Synthesis Model

More information

Travelling Salesman Problem

Travelling Salesman Problem Travelling Salesman Problem Fabio Furini November 10th, 2014 Travelling Salesman Problem 1 Outline 1 Traveling Salesman Problem Separation Travelling Salesman Problem 2 (Asymmetric) Traveling Salesman

More information

Gene Ontology. Shifra Ben-Dor. Weizmann Institute of Science

Gene Ontology. Shifra Ben-Dor. Weizmann Institute of Science Gene Ontology Shifra Ben-Dor Weizmann Institute of Science Outline of Session What is GO (Gene Ontology)? What tools do we use to work with it? Combination of GO with other analyses What is Ontology? 1700s

More information

More Dynamic Programming

More Dynamic Programming CS 374: Algorithms & Models of Computation, Spring 2017 More Dynamic Programming Lecture 14 March 9, 2017 Chandra Chekuri (UIUC) CS374 1 Spring 2017 1 / 42 What is the running time of the following? Consider

More information

Lecture 2: Pairwise Alignment. CG Ron Shamir

Lecture 2: Pairwise Alignment. CG Ron Shamir Lecture 2: Pairwise Alignment 1 Main source 2 Why compare sequences? Human hexosaminidase A vs Mouse hexosaminidase A 3 www.mathworks.com/.../jan04/bio_genome.html Sequence Alignment עימוד רצפים The problem:

More information

Simulation of Gene Regulatory Networks

Simulation of Gene Regulatory Networks Simulation of Gene Regulatory Networks Overview I have been assisting Professor Jacques Cohen at Brandeis University to explore and compare the the many available representations and interpretations of

More information

BLAST Database Searching. BME 110: CompBio Tools Todd Lowe April 8, 2010

BLAST Database Searching. BME 110: CompBio Tools Todd Lowe April 8, 2010 BLAST Database Searching BME 110: CompBio Tools Todd Lowe April 8, 2010 Admin Reading: Read chapter 7, and the NCBI Blast Guide and tutorial http://www.ncbi.nlm.nih.gov/blast/why.shtml Read Chapter 8 for

More information

Efficient Haplotype Inference with Boolean Satisfiability

Efficient Haplotype Inference with Boolean Satisfiability Efficient Haplotype Inference with Boolean Satisfiability Joao Marques-Silva 1 and Ines Lynce 2 1 School of Electronics and Computer Science University of Southampton 2 INESC-ID/IST Technical University

More information

NP-Completeness. ch34 Hewett. Problem. Tractable Intractable Non-computable computationally infeasible super poly-time alg. sol. E.g.

NP-Completeness. ch34 Hewett. Problem. Tractable Intractable Non-computable computationally infeasible super poly-time alg. sol. E.g. NP-Completeness ch34 Hewett Problem Tractable Intractable Non-computable computationally infeasible super poly-time alg. sol. E.g., O(2 n ) computationally feasible poly-time alg. sol. E.g., O(n k ) No

More information

Constraint-based Subspace Clustering

Constraint-based Subspace Clustering Constraint-based Subspace Clustering Elisa Fromont 1, Adriana Prado 2 and Céline Robardet 1 1 Université de Lyon, France 2 Universiteit Antwerpen, Belgium Thursday, April 30 Traditional Clustering Partitions

More information

More Dynamic Programming

More Dynamic Programming Algorithms & Models of Computation CS/ECE 374, Fall 2017 More Dynamic Programming Lecture 14 Tuesday, October 17, 2017 Sariel Har-Peled (UIUC) CS374 1 Fall 2017 1 / 48 What is the running time of the following?

More information

Big Idea 1: Does the process of evolution drive the diversity and unit of life?

Big Idea 1: Does the process of evolution drive the diversity and unit of life? AP Biology Syllabus 2016-2017 Course Overview: AP Biology is equivalent to an introductory college level biology program in order to develop student led inquiry into science. The class is designed to go

More information

Behavioral Science, Math, Science, and Physical Education Fall COURSE OUTLINE Critical Concepts in Biology

Behavioral Science, Math, Science, and Physical Education Fall COURSE OUTLINE Critical Concepts in Biology Butler County Community College Susan Forrest/ William Langley Behavioral Science, Math, Science, and Physical Education Fall 2003 COURSE OUTLINE Critical Concepts in Biology Course Description: BI 106.

More information

Repeat resolution. This exposition is based on the following sources, which are all recommended reading:

Repeat resolution. This exposition is based on the following sources, which are all recommended reading: Repeat resolution This exposition is based on the following sources, which are all recommended reading: 1. Separation of nearly identical repeats in shotgun assemblies using defined nucleotide positions,

More information

Lecture 14: Multiple Sequence Alignment (Gene Finding, Conserved Elements) Scribe: John Ekins

Lecture 14: Multiple Sequence Alignment (Gene Finding, Conserved Elements) Scribe: John Ekins Lecture 14: Multiple Sequence Alignment (Gene Finding, Conserved Elements) 2 19 2015 Scribe: John Ekins Multiple Sequence Alignment Given N sequences x 1, x 2,, x N : Insert gaps in each of the sequences

More information

EVOLUTIONARY DISTANCES

EVOLUTIONARY DISTANCES EVOLUTIONARY DISTANCES FROM STRINGS TO TREES Luca Bortolussi 1 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste luca@dmi.units.it Trieste, 14 th November 2007 OUTLINE 1 STRINGS:

More information

Data Mining in Bioinformatics HMM

Data Mining in Bioinformatics HMM Data Mining in Bioinformatics HMM Microarray Problem: Major Objective n Major Objective: Discover a comprehensive theory of life s organization at the molecular level 2 1 Data Mining in Bioinformatics

More information

Theoretical aspects of ERa, the fastest practical suffix tree construction algorithm

Theoretical aspects of ERa, the fastest practical suffix tree construction algorithm Theoretical aspects of ERa, the fastest practical suffix tree construction algorithm Matevž Jekovec University of Ljubljana Faculty of Computer and Information Science Oct 10, 2013 Text indexing problem

More information

The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook

The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook Stony Brook University The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. Alll Rigghht tss

More information

Bayesian Clustering of Multi-Omics

Bayesian Clustering of Multi-Omics Bayesian Clustering of Multi-Omics for Cardiovascular Diseases Nils Strelow 22./23.01.2019 Final Presentation Trends in Bioinformatics WS18/19 Recap Intermediate presentation Precision Medicine Multi-Omics

More information

INTERACTIVE CLUSTERING FOR EXPLORATION OF GENOMIC DATA

INTERACTIVE CLUSTERING FOR EXPLORATION OF GENOMIC DATA INTERACTIVE CLUSTERING FOR EXPLORATION OF GENOMIC DATA XIUFENG WAN xw6@cs.msstate.edu Department of Computer Science Box 9637 JOHN A. BOYLE jab@ra.msstate.edu Department of Biochemistry and Molecular Biology

More information

Bio 1B Lecture Outline (please print and bring along) Fall, 2007

Bio 1B Lecture Outline (please print and bring along) Fall, 2007 Bio 1B Lecture Outline (please print and bring along) Fall, 2007 B.D. Mishler, Dept. of Integrative Biology 2-6810, bmishler@berkeley.edu Evolution lecture #5 -- Molecular genetics and molecular evolution

More information

CSE 549: Computational Biology. Computer Science for Biologists Biology

CSE 549: Computational Biology. Computer Science for Biologists Biology CSE 549: Computational Biology Computer Science for Biologists Biology What is Computer Science? http://people.cs.pitt.edu/~kirk/cs2110/computer_science_major.png What is Computer Science? Not actually

More information

DOWNLOAD OR READ : TEXTBOOK OF STRUCTURAL BIOLOGY SERIES IN STRUCTURAL BIOLOGY PDF EBOOK EPUB MOBI

DOWNLOAD OR READ : TEXTBOOK OF STRUCTURAL BIOLOGY SERIES IN STRUCTURAL BIOLOGY PDF EBOOK EPUB MOBI DOWNLOAD OR READ : TEXTBOOK OF STRUCTURAL BIOLOGY SERIES IN STRUCTURAL BIOLOGY PDF EBOOK EPUB MOBI Page 1 Page 2 textbook of structural biology series in structural biology textbook of structural biology

More information

Grundlagen der Bioinformatik Summer semester Lecturer: Prof. Daniel Huson

Grundlagen der Bioinformatik Summer semester Lecturer: Prof. Daniel Huson Grundlagen der Bioinformatik, SS 10, D. Huson, April 12, 2010 1 1 Introduction Grundlagen der Bioinformatik Summer semester 2010 Lecturer: Prof. Daniel Huson Office hours: Thursdays 17-18h (Sand 14, C310a)

More information

CMPSCI 311: Introduction to Algorithms Second Midterm Exam

CMPSCI 311: Introduction to Algorithms Second Midterm Exam CMPSCI 311: Introduction to Algorithms Second Midterm Exam April 11, 2018. Name: ID: Instructions: Answer the questions directly on the exam pages. Show all your work for each question. Providing more

More information

Hidden Markov Models. Three classic HMM problems

Hidden Markov Models. Three classic HMM problems An Introduction to Bioinformatics Algorithms www.bioalgorithms.info Hidden Markov Models Slides revised and adapted to Computational Biology IST 2015/2016 Ana Teresa Freitas Three classic HMM problems

More information

Supplemental Information

Supplemental Information Molecular Cell, Volume 52 Supplemental Information The Translational Landscape of the Mammalian Cell Cycle Craig R. Stumpf, Melissa V. Moreno, Adam B. Olshen, Barry S. Taylor, and Davide Ruggero Supplemental

More information

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 REVIEW: Signals that Start and Stop Transcription and Translation BUT, HOW DO CELLS CONTROL WHICH GENES ARE EXPRESSED AND WHEN? First of

More information

Organization of Genes Differs in Prokaryotic and Eukaryotic DNA Chapter 10 p

Organization of Genes Differs in Prokaryotic and Eukaryotic DNA Chapter 10 p Organization of Genes Differs in Prokaryotic and Eukaryotic DNA Chapter 10 p.110-114 Arrangement of information in DNA----- requirements for RNA Common arrangement of protein-coding genes in prokaryotes=

More information

Comparative Gene Finding. BMI/CS 776 Spring 2015 Colin Dewey

Comparative Gene Finding. BMI/CS 776  Spring 2015 Colin Dewey Comparative Gene Finding BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2015 Colin Dewey cdewey@biostat.wisc.edu Goals for Lecture the key concepts to understand are the following: using related genomes

More information

Analysis and Design of Algorithms Dynamic Programming

Analysis and Design of Algorithms Dynamic Programming Analysis and Design of Algorithms Dynamic Programming Lecture Notes by Dr. Wang, Rui Fall 2008 Department of Computer Science Ocean University of China November 6, 2009 Introduction 2 Introduction..................................................................

More information