NP-Completeness. ch34 Hewett. Problem. Tractable Intractable Non-computable computationally infeasible super poly-time alg. sol. E.g.

Size: px
Start display at page:

Download "NP-Completeness. ch34 Hewett. Problem. Tractable Intractable Non-computable computationally infeasible super poly-time alg. sol. E.g."

Transcription

1 NP-Completeness ch34 Hewett Problem Tractable Intractable Non-computable computationally infeasible super poly-time alg. sol. E.g., O(2 n ) computationally feasible poly-time alg. sol. E.g., O(n k ) No alg sol. E.g., halting problem But n high degree poly-time alg is computationally infeasible So why do we still associate poly-time to tractable? Reasons: high degree poly-time is very rare in practice poly-time alg has useful properties: poly-time sol is tranferable in different computational models (e.g., poly-time on RAM is also poly-time on TM) poly-time alg has closure property on +,., composition --> can combine poly-time sol to get another poly-time sol 1

2 Problem Types Two problem types: Decision Problems (DP): sol is yes/no Optimization Problems (OP): sol is min/max value Imposing a bound to OP gives a related DP, e.g., 1) Shortest-path problem <G, u, v>: find shortest path between u & v in an unweighted undirected graph 2) Path-problem <G, u, v, k>: Is there a path between u & v whose length is k? Here, imposing a bound k on an OP, 1) to get a DP, 2) DP ~ Verification Problem E.g., To solve the Path problem: For each path u v, verify if its length is k If true then return yes Solving DP is easier than OP 2

3 Complexity Classes P = a class of probs solvable in determ poly-time alg NP = a class of probs solvable in non-determ poly-time alg f: Problems Formal Languages Problem instance L, a language (set of words - binary string) Time to encode problem instances to binary strings should not effect efficiency of problem solution ~ assume poly-time Another definition: NP = a class of probs solvable by non-deter alg in poly-time Ls accepted by non-tm in poly-time Similarly for P. Intuitively, P ~ Problems that can be solved quickly NP ~ Problems that can be verified quickly Which is easier P or NP? Example HAM-CYCLE (Hamiltonian cycle problem): Does an undirected graph contain a hamiltonian cycle? (i.e., a cycle that contains every vertex of a graph exactly once) yes no Goal: find a hamiltonian cycle of a given graph if it exists 3

4 HAM-CYCLE Find a hamiltonian cycle (i.e., a cycle that contains every vertex of a graph exactly once) of a given graph if it exists Claim: a non-det poly-time alg sol for HAM-CYCLE i.e., HAM-CYCLE NP Idea: 1) guess edges in a cycle to be p[1..n] 2) verify that p[1..n] forms a hamiltonian cycle O(1) O(n) O(n 2 ) a) check path starts and ends at the same vertex i.e., p[1] = p[n] b) each edge in the path exists in graph i.e., (p[i], p[i+1]) E c) no duplicate vertex on the path 3) Finite # of guesses (since E is finite) and each guess takes poly-time to verify --> total takes poly-time HAM-CYCLE Note: HAM-CYCLE can be verified quickly ~ NP Step 1) --> non-determinism Step 2) & 3) --> verification in poly-time HAM-CYCLE is DP (implicit bound = # all vertices) Is HAM-CYCLE P? Since no det poly-time alg sol has been found yet Thus, the answer is don t know 4

5 P vs. NP To show L NP is easier than to show L P (i.e., verified quickly vs. solved quickly) Clearly, P NP (problem that can be solved quickly can be verified quickly) But is NP P? -- Open problem: P NP? There exists many problems in NP but we don t know if they are in P (e.g., HAM-CYCLE) Fact: P is closed under compliment (i.e., L P L P) But we don t know if NP is closed under compliment Open problem: L NP L NP? or NP = co-np? NP-Completeness (NPC) Intuitively: NPB problems are those that if they are in NP then they are as hard as any problem in NP Implications: If any one NPC problem can be solved in poly-time = (*) then 1) all NP problems can be solved in poly-time (by def) and so, 2) NP P --> NP = P!!!! (see more details later in Result2) But (*) is unlikely to be true. There are many NPC problems with no poly-time sol found so far... At the moment, we can t prove or disprove (*) 5

6 NPC - formal definition To show L NPC - we want to show how hard L is NPC vs. NP-Hard (NPH) Reduction: L is polynomially reducible to L, denoted by L p L if a poly-time computational function f: L L s.t. x L iff f(x) L x L f L L NPC vs. NPH Def: L NPC if 1) L NP, and 2) L p L for all L NP Def: L NPH if L p L for all L NP L NPC means L NP and L NPH L NPH means every NP prob is polynomially reducible to L Result 1: L and L are languages representing DPs If L p L then L P L P (lemma 34.3) x B f by function f by Alg A by Alg B (constructed as below) x L iff f(x) L A decides if a given input L or not f(x) A f(x) L yes x L yes x L f(x) L no no B correctly decides if x L or not in poly-time. Therefore, L P. 6

7 NPC vs. NPH Def: L NPC if 1) L NP, and 2) L p L for all L NP Def: L NPH if L p L for all L NP Result 1: If L p L then L P L P Result 2: If we can solve any NPC problem in poly-time then P = NP (this is why NPC is important!) I.e., If L NPC and L P then P = NP (lemma 34.4) Only need to show NP P. Suppose S NP. To show S P. L NPC L p L for all L NP (definition of NPC part 2)) S p L (since S NP) S P (since S p L and L P and by Result 1) To show P NPC Def: L NPC if 1) L NP, and 2) L p L for all L NP Result 1: If L p L then L P L P Result 2: If L NPC and L P then P = NP To show L NPH directly is difficult (Why?) Can we prove this indirectly? YES How? 1. Show L NP 2. Select one known L NPC 3. Show L p L Why? 2. S p L for all S NP (by def) S p L p L for all S NP (by the above, 3. and transitivity of p ) S p L for all S NP L NPH L NPC (since 1.) 7

8 Traveling Salesman Problem (TSP) TSP Find a min cost of tsp-tour (route that visits each of n cities once and back at the starting city) Notes: TSP is an OP Putting the bound on OP gives a related DP I.e., a TSP <G, cost, k>, where G is a complete graph ( an edge between any two vertices) cost is a function corresponding to each edge, and k is a bound of travel cost To show TSP NPC How to show L NPC 1. Show L NP 2. Select one known L NPC 3. Show L p L 1. Show TSP NP (~ TSP can be verified quickly) Given an instance of a TSP <G, cost, k> and a sequence of n vertices (cities), S Can we verify that S is a tsp-tour with cost k in poly-time? Answer: Yes. Check if 1. V = n (same size as S) tsp-tour? 2. S[i] V and S[i+1] Adj [S[i]] for all i = 1, 2,...n-1 3. S[n] V and S[1] Adj [S[n]] cost k? 4. Sum up the edge costs and check if it is bounded by k. The above takes poly-time (O(n)). Since there are finitely many k s... thus, total time for Alg to verify TSP takes poly-time TSP NP 8

9 To show TSP NPC How to show L NPC 1. Show L NP 2. Select one known L NPC 3. Show L p L By finding poly-time alg A that computes f s.t. x L iff f(x) L 2. Select HAM-CYCLE which is known to be NPC 3. To show HAM-CYCLE p TSP Idea: Given an instance of HAM-CYCLE, G. Construct G, a corresponding instance TSP s.t. the construction takes poly-time. E.g., G = (V, E): A C B D f G = (V, E ): a complete graph, where A 0 1 B C D c(i, j) = 0 if (i, j) E 1 o.w. HAM-CYCLE p TSP To show that the construction f takes poly-time copy V in G to V in G create complete graph G (for each v V, Adj[v] V {v}) assign cost to each edge (can you write pseudocode?) O(V) O(V) O(E) To show that G HAM-CYCLE iff f(g) = G TSP G contains a hamiltonian cycle h Each edge in h is in E and has cost 0 in G. G contains a tsp-tour, namely h with cost 0. This is min cost possible. Thus, G TSP. G has a tsp-tour h of cost at most 0 (possible min route cost) Since cost of edges in E can be 0 or 1 (no -ve cost), each edge on h must have cost 0 each edge on h must be in E tsp-tour h (hamiltonian h ) is in G 9

10 Other NPCs Hamiltonian path circuit satisfiability satisfiability 3-CNF satisfiability vertex-cover TSP Graph-coloring problem Why learn this? Why do CS students need to learn about problem classes in complexity theory? Why good algorithm designers must understand NP-completeness? Reasons: Different complexity classes of problems effect how we design alg to solve them: P ~ can find alg to solve the problem quickly NP ~ can find alg to verify the problem quickly NPC ~ no hope to find fast alg. Must either find approx sol find tractable sol in special case 10

CS 320, Fall Dr. Geri Georg, Instructor 320 NP 1

CS 320, Fall Dr. Geri Georg, Instructor 320 NP 1 NP CS 320, Fall 2017 Dr. Geri Georg, Instructor georg@colostate.edu 320 NP 1 NP Complete A class of problems where: No polynomial time algorithm has been discovered No proof that one doesn t exist 320

More information

NP-completeness. Chapter 34. Sergey Bereg

NP-completeness. Chapter 34. Sergey Bereg NP-completeness Chapter 34 Sergey Bereg Oct 2017 Examples Some problems admit polynomial time algorithms, i.e. O(n k ) running time where n is the input size. We will study a class of NP-complete problems

More information

NP-Completeness. Andreas Klappenecker. [based on slides by Prof. Welch]

NP-Completeness. Andreas Klappenecker. [based on slides by Prof. Welch] NP-Completeness Andreas Klappenecker [based on slides by Prof. Welch] 1 Prelude: Informal Discussion (Incidentally, we will never get very formal in this course) 2 Polynomial Time Algorithms Most of the

More information

CMSC 441: Algorithms. NP Completeness

CMSC 441: Algorithms. NP Completeness CMSC 441: Algorithms NP Completeness Intractable & Tractable Problems Intractable problems: As they grow large, we are unable to solve them in reasonable time What constitutes reasonable time? Standard

More information

NP-Complete problems

NP-Complete problems NP-Complete problems NP-complete problems (NPC): A subset of NP. If any NP-complete problem can be solved in polynomial time, then every problem in NP has a polynomial time solution. NP-complete languages

More information

NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University

NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University NP-Completeness CptS 223 Advanced Data Structures Larry Holder School of Electrical Engineering and Computer Science Washington State University 1 Hard Graph Problems Hard means no known solutions with

More information

NP-Completeness. Until now we have been designing algorithms for specific problems

NP-Completeness. Until now we have been designing algorithms for specific problems NP-Completeness 1 Introduction Until now we have been designing algorithms for specific problems We have seen running times O(log n), O(n), O(n log n), O(n 2 ), O(n 3 )... We have also discussed lower

More information

P is the class of problems for which there are algorithms that solve the problem in time O(n k ) for some constant k.

P is the class of problems for which there are algorithms that solve the problem in time O(n k ) for some constant k. Complexity Theory Problems are divided into complexity classes. Informally: So far in this course, almost all algorithms had polynomial running time, i.e., on inputs of size n, worst-case running time

More information

Automata Theory CS Complexity Theory I: Polynomial Time

Automata Theory CS Complexity Theory I: Polynomial Time Automata Theory CS411-2015-17 Complexity Theory I: Polynomial Time David Galles Department of Computer Science University of San Francisco 17-0: Tractable vs. Intractable If a problem is recursive, then

More information

1. Introduction Recap

1. Introduction Recap 1. Introduction Recap 1. Tractable and intractable problems polynomial-boundness: O(n k ) 2. NP-complete problems informal definition 3. Examples of P vs. NP difference may appear only slightly 4. Optimization

More information

VIII. NP-completeness

VIII. NP-completeness VIII. NP-completeness 1 / 15 NP-Completeness Overview 1. Introduction 2. P and NP 3. NP-complete (NPC): formal definition 4. How to prove a problem is NPC 5. How to solve a NPC problem: approximate algorithms

More information

Summer School on Introduction to Algorithms and Optimization Techniques July 4-12, 2017 Organized by ACMU, ISI and IEEE CEDA.

Summer School on Introduction to Algorithms and Optimization Techniques July 4-12, 2017 Organized by ACMU, ISI and IEEE CEDA. Summer School on Introduction to Algorithms and Optimization Techniques July 4-12, 2017 Organized by ACMU, ISI and IEEE CEDA NP Completeness Susmita Sur-Kolay Advanced Computing and Microelectronics Unit

More information

NP Completeness and Approximation Algorithms

NP Completeness and Approximation Algorithms Winter School on Optimization Techniques December 15-20, 2016 Organized by ACMU, ISI and IEEE CEDA NP Completeness and Approximation Algorithms Susmita Sur-Kolay Advanced Computing and Microelectronic

More information

NP-Complete Problems. More reductions

NP-Complete Problems. More reductions NP-Complete Problems More reductions Definitions P: problems that can be solved in polynomial time (typically in n, size of input) on a deterministic Turing machine Any normal computer simulates a DTM

More information

NP-Complete Problems and Approximation Algorithms

NP-Complete Problems and Approximation Algorithms NP-Complete Problems and Approximation Algorithms Efficiency of Algorithms Algorithms that have time efficiency of O(n k ), that is polynomial of the input size, are considered to be tractable or easy

More information

Algorithms and Theory of Computation. Lecture 19: Class P and NP, Reduction

Algorithms and Theory of Computation. Lecture 19: Class P and NP, Reduction Algorithms and Theory of Computation Lecture 19: Class P and NP, Reduction Xiaohui Bei MAS 714 October 29, 2018 Nanyang Technological University MAS 714 October 29, 2018 1 / 26 Decision Problems Revisited

More information

Chapter 34: NP-Completeness

Chapter 34: NP-Completeness Graph Algorithms - Spring 2011 Set 17. Lecturer: Huilan Chang Reference: Cormen, Leiserson, Rivest, and Stein, Introduction to Algorithms, 2nd Edition, The MIT Press. Chapter 34: NP-Completeness 2. Polynomial-time

More information

CS 583: Algorithms. NP Completeness Ch 34. Intractability

CS 583: Algorithms. NP Completeness Ch 34. Intractability CS 583: Algorithms NP Completeness Ch 34 Intractability Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time? Standard working

More information

Computational Intractability 2010/4/15. Lecture 2

Computational Intractability 2010/4/15. Lecture 2 Computational Intractability 2010/4/15 Professor: David Avis Lecture 2 Scribe:Naoki Hatta 1 P and NP 1.1 Definition of P and NP Decision problem it requires yes/no answer. Example: X is a set of strings.

More information

NP-Complete Reductions 2

NP-Complete Reductions 2 x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 CS 447 11 13 21 23 31 33 Algorithms NP-Complete Reductions 2 Prof. Gregory Provan Department of Computer Science University College Cork 1 Lecture Outline NP-Complete

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms CSE 5311 Lecture 25 NP Completeness Junzhou Huang, Ph.D. Department of Computer Science and Engineering CSE5311 Design and Analysis of Algorithms 1 NP-Completeness Some

More information

Introduction to Complexity Theory

Introduction to Complexity Theory Introduction to Complexity Theory Read K & S Chapter 6. Most computational problems you will face your life are solvable (decidable). We have yet to address whether a problem is easy or hard. Complexity

More information

Tractability. Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time?

Tractability. Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time? Tractability Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time?» Standard working definition: polynomial time» On an input

More information

Topics in Complexity Theory

Topics in Complexity Theory Topics in Complexity Theory Announcements Final exam this Friday from 12:15PM-3:15PM Please let us know immediately after lecture if you want to take the final at an alternate time and haven't yet told

More information

Easy Problems vs. Hard Problems. CSE 421 Introduction to Algorithms Winter Is P a good definition of efficient? The class P

Easy Problems vs. Hard Problems. CSE 421 Introduction to Algorithms Winter Is P a good definition of efficient? The class P Easy Problems vs. Hard Problems CSE 421 Introduction to Algorithms Winter 2000 NP-Completeness (Chapter 11) Easy - problems whose worst case running time is bounded by some polynomial in the size of the

More information

Comparison of several polynomial and exponential time complexity functions. Size n

Comparison of several polynomial and exponential time complexity functions. Size n Comparison of several polynomial and exponential time complexity functions Time complexity function n n 2 n 3 n 5 2 n 3 n Size n 10 20 30 40 50 60.00001.00002.00003.00004.00005.00006 second second second

More information

Algorithms Design & Analysis. Approximation Algorithm

Algorithms Design & Analysis. Approximation Algorithm Algorithms Design & Analysis Approximation Algorithm Recap External memory model Merge sort Distribution sort 2 Today s Topics Hard problem Approximation algorithms Metric traveling salesman problem A

More information

NP and Computational Intractability

NP and Computational Intractability NP and Computational Intractability 1 Polynomial-Time Reduction Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time? don't confuse with reduces from Reduction.

More information

4/12/2011. Chapter 8. NP and Computational Intractability. Directed Hamiltonian Cycle. Traveling Salesman Problem. Directed Hamiltonian Cycle

4/12/2011. Chapter 8. NP and Computational Intractability. Directed Hamiltonian Cycle. Traveling Salesman Problem. Directed Hamiltonian Cycle Directed Hamiltonian Cycle Chapter 8 NP and Computational Intractability Claim. G has a Hamiltonian cycle iff G' does. Pf. Suppose G has a directed Hamiltonian cycle Γ. Then G' has an undirected Hamiltonian

More information

Lecture #14: NP-Completeness (Chapter 34 Old Edition Chapter 36) Discussion here is from the old edition.

Lecture #14: NP-Completeness (Chapter 34 Old Edition Chapter 36) Discussion here is from the old edition. Lecture #14: 0.0.1 NP-Completeness (Chapter 34 Old Edition Chapter 36) Discussion here is from the old edition. 0.0.2 Preliminaries: Definition 1 n abstract problem Q is a binary relations on a set I of

More information

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2)

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2) Algorithms and Theory of Computation Lecture 22: NP-Completeness (2) Xiaohui Bei MAS 714 November 8, 2018 Nanyang Technological University MAS 714 November 8, 2018 1 / 20 Set Cover Set Cover Input: a set

More information

NP-Completeness I. Lecture Overview Introduction: Reduction and Expressiveness

NP-Completeness I. Lecture Overview Introduction: Reduction and Expressiveness Lecture 19 NP-Completeness I 19.1 Overview In the past few lectures we have looked at increasingly more expressive problems that we were able to solve using efficient algorithms. In this lecture we introduce

More information

Tractable & Intractable Problems

Tractable & Intractable Problems Tractable & Intractable Problems We will be looking at : What is a P and NP problem NP-Completeness The question of whether P=NP The Traveling Salesman problem again Programming and Data Structures 1 Polynomial

More information

DESIGN AND ANALYSIS OF ALGORITHMS. Unit 6 Chapter 17 TRACTABLE AND NON-TRACTABLE PROBLEMS

DESIGN AND ANALYSIS OF ALGORITHMS. Unit 6 Chapter 17 TRACTABLE AND NON-TRACTABLE PROBLEMS DESIGN AND ANALYSIS OF ALGORITHMS Unit 6 Chapter 17 TRACTABLE AND NON-TRACTABLE PROBLEMS http://milanvachhani.blogspot.in COMPLEXITY FOR THE IMPATIENT You are a senior software engineer in a large software

More information

Unit 6 Chapter 17 TRACTABLE AND NON-TRACTABLE PROBLEMS

Unit 6 Chapter 17 TRACTABLE AND NON-TRACTABLE PROBLEMS DESIGN AND ANALYSIS OF ALGORITHMS Unit 6 Chapter 17 TRACTABLE AND NON-TRACTABLE PROBLEMS http://milanvachhani.blogspot.in COMPLEXITY FOR THE IMPATIENT You are a senior software engineer in a large software

More information

NP and Computational Intractability

NP and Computational Intractability NP and Computational Intractability 1 Review Basic reduction strategies. Simple equivalence: INDEPENDENT-SET P VERTEX-COVER. Special case to general case: VERTEX-COVER P SET-COVER. Encoding with gadgets:

More information

Outline. 1 NP-Completeness Theory. 2 Limitation of Computation. 3 Examples. 4 Decision Problems. 5 Verification Algorithm

Outline. 1 NP-Completeness Theory. 2 Limitation of Computation. 3 Examples. 4 Decision Problems. 5 Verification Algorithm Outline 1 NP-Completeness Theory 2 Limitation of Computation 3 Examples 4 Decision Problems 5 Verification Algorithm 6 Non-Deterministic Algorithm 7 NP-Complete Problems c Hu Ding (Michigan State University)

More information

Admin NP-COMPLETE PROBLEMS. Run-time analysis. Tractable vs. intractable problems 5/2/13. What is a tractable problem?

Admin NP-COMPLETE PROBLEMS. Run-time analysis. Tractable vs. intractable problems 5/2/13. What is a tractable problem? Admin Two more assignments No office hours on tomorrow NP-COMPLETE PROBLEMS Run-time analysis Tractable vs. intractable problems We ve spent a lot of time in this class putting algorithms into specific

More information

Limitations of Algorithm Power

Limitations of Algorithm Power Limitations of Algorithm Power Objectives We now move into the third and final major theme for this course. 1. Tools for analyzing algorithms. 2. Design strategies for designing algorithms. 3. Identifying

More information

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam Limits to Approximability: When Algorithms Won't Help You Note: Contents of today s lecture won t be on the exam Outline Limits to Approximability: basic results Detour: Provers, verifiers, and NP Graph

More information

NP-Complete Problems. Complexity Class P. .. Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar..

NP-Complete Problems. Complexity Class P. .. Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar.. .. Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar.. Complexity Class P NP-Complete Problems Abstract Problems. An abstract problem Q is a binary relation on sets I of input instances

More information

BBM402-Lecture 11: The Class NP

BBM402-Lecture 11: The Class NP BBM402-Lecture 11: The Class NP Lecturer: Lale Özkahya Resources for the presentation: http://ocw.mit.edu/courses/electrical-engineering-andcomputer-science/6-045j-automata-computability-andcomplexity-spring-2011/syllabus/

More information

Algorithms, Lecture 3 on NP : Nondeterminis7c Polynomial Time

Algorithms, Lecture 3 on NP : Nondeterminis7c Polynomial Time Algorithms, Lecture 3 on NP : Nondeterminis7c Polynomial Time Last week: Defined Polynomial Time Reduc7ons: Problem X is poly 7me reducible to Y X P Y if can solve X using poly computa7on and a poly number

More information

Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death

Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death Nathan Brunelle Department of Computer Science University of Virginia www.cs.virginia.edu/~njb2b/theory

More information

NP-Complete Reductions 1

NP-Complete Reductions 1 x x x 2 x 2 x 3 x 3 x 4 x 4 CS 4407 2 22 32 Algorithms 3 2 23 3 33 NP-Complete Reductions Prof. Gregory Provan Department of Computer Science University College Cork Lecture Outline x x x 2 x 2 x 3 x 3

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Announcements Problem Set 9 due right now. Final exam this Monday, Hewlett 200 from 12:15PM- 3:15PM Please let us know immediately after lecture if you want to take the final at

More information

The Complexity Classes P and NP. Andreas Klappenecker [partially based on slides by Professor Welch]

The Complexity Classes P and NP. Andreas Klappenecker [partially based on slides by Professor Welch] The Complexity Classes P and NP Andreas Klappenecker [partially based on slides by Professor Welch] P Polynomial Time Algorithms Most of the algorithms we have seen so far run in time that is upper bounded

More information

Topics in Complexity

Topics in Complexity Topics in Complexity Please evaluate this course on Axess! Your feedback really does make a difference. Applied Complexity Theory Complexity theory has enormous practical relevance across various domains

More information

Data Structures in Java

Data Structures in Java Data Structures in Java Lecture 21: Introduction to NP-Completeness 12/9/2015 Daniel Bauer Algorithms and Problem Solving Purpose of algorithms: find solutions to problems. Data Structures provide ways

More information

Harvard CS 121 and CSCI E-121 Lecture 22: The P vs. NP Question and NP-completeness

Harvard CS 121 and CSCI E-121 Lecture 22: The P vs. NP Question and NP-completeness Harvard CS 121 and CSCI E-121 Lecture 22: The P vs. NP Question and NP-completeness Harry Lewis November 19, 2013 Reading: Sipser 7.4, 7.5. For culture : Computers and Intractability: A Guide to the Theory

More information

COP 4531 Complexity & Analysis of Data Structures & Algorithms

COP 4531 Complexity & Analysis of Data Structures & Algorithms COP 4531 Complexity & Analysis of Data Structures & Algorithms Lecture 18 Reductions and NP-completeness Thanks to Kevin Wayne and the text authors who contributed to these slides Classify Problems According

More information

Unit 1A: Computational Complexity

Unit 1A: Computational Complexity Unit 1A: Computational Complexity Course contents: Computational complexity NP-completeness Algorithmic Paradigms Readings Chapters 3, 4, and 5 Unit 1A 1 O: Upper Bounding Function Def: f(n)= O(g(n)) if

More information

NP-Completeness Theory

NP-Completeness Theory NP-Completeness Theory The topics we discussed so far are positive results: Given a problem, how to design efficient algorithms for solving it. NP-Completeness (NPC for sort) Theory is negative results.

More information

CS 301: Complexity of Algorithms (Term I 2008) Alex Tiskin Harald Räcke. Hamiltonian Cycle. 8.5 Sequencing Problems. Directed Hamiltonian Cycle

CS 301: Complexity of Algorithms (Term I 2008) Alex Tiskin Harald Räcke. Hamiltonian Cycle. 8.5 Sequencing Problems. Directed Hamiltonian Cycle 8.5 Sequencing Problems Basic genres. Packing problems: SET-PACKING, INDEPENDENT SET. Covering problems: SET-COVER, VERTEX-COVER. Constraint satisfaction problems: SAT, 3-SAT. Sequencing problems: HAMILTONIAN-CYCLE,

More information

Polynomial-time reductions. We have seen several reductions:

Polynomial-time reductions. We have seen several reductions: Polynomial-time reductions We have seen several reductions: Polynomial-time reductions Informal explanation of reductions: We have two problems, X and Y. Suppose we have a black-box solving problem X in

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURES 30-31 NP-completeness Definition NP-completeness proof for CIRCUIT-SAT Adam Smith 11/3/10 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova,

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 25 Last time Class NP Today Polynomial-time reductions Adam Smith; Sofya Raskhodnikova 4/18/2016 L25.1 The classes P and NP P is the class of languages decidable

More information

Complexity Theory: The P vs NP question

Complexity Theory: The P vs NP question The $1M question Complexity Theory: The P vs NP question Lecture 28 (December 1, 2009) The Clay Mathematics Institute Millenium Prize Problems 1. Birch and Swinnerton-Dyer Conjecture 2. Hodge Conjecture

More information

NP Complete Problems. COMP 215 Lecture 20

NP Complete Problems. COMP 215 Lecture 20 NP Complete Problems COMP 215 Lecture 20 Complexity Theory Complexity theory is a research area unto itself. The central project is classifying problems as either tractable or intractable. Tractable Worst

More information

Analysis of Algorithms. Unit 5 - Intractable Problems

Analysis of Algorithms. Unit 5 - Intractable Problems Analysis of Algorithms Unit 5 - Intractable Problems 1 Intractable Problems Tractable Problems vs. Intractable Problems Polynomial Problems NP Problems NP Complete and NP Hard Problems 2 In this unit we

More information

In complexity theory, algorithms and problems are classified by the growth order of computation time as a function of instance size.

In complexity theory, algorithms and problems are classified by the growth order of computation time as a function of instance size. 10 2.2. CLASSES OF COMPUTATIONAL COMPLEXITY An optimization problem is defined as a class of similar problems with different input parameters. Each individual case with fixed parameter values is called

More information

NP-Completeness. NP-Completeness 1

NP-Completeness. NP-Completeness 1 NP-Completeness Reference: Computers and Intractability: A Guide to the Theory of NP-Completeness by Garey and Johnson, W.H. Freeman and Company, 1979. NP-Completeness 1 General Problems, Input Size and

More information

SAT, Coloring, Hamiltonian Cycle, TSP

SAT, Coloring, Hamiltonian Cycle, TSP 1 SAT, Coloring, Hamiltonian Cycle, TSP Slides by Carl Kingsford Apr. 28, 2014 Sects. 8.2, 8.7, 8.5 2 Boolean Formulas Boolean Formulas: Variables: x 1, x 2, x 3 (can be either true or false) Terms: t

More information

Polynomial-Time Reductions

Polynomial-Time Reductions Reductions 1 Polynomial-Time Reductions Classify Problems According to Computational Requirements Q. Which problems will we be able to solve in practice? A working definition. [von Neumann 1953, Godel

More information

The Beauty and Joy of Computing

The Beauty and Joy of Computing The Beauty and Joy of Computing Lecture #23 Limits of Computing UC Berkeley EECS Sr Lecturer SOE Dan Researchers at CMU have built a system which searches the Web for images constantly and tries to decide

More information

CMPT307: Complexity Classes: P and N P Week 13-1

CMPT307: Complexity Classes: P and N P Week 13-1 CMPT307: Complexity Classes: P and N P Week 13-1 Xian Qiu Simon Fraser University xianq@sfu.ca Strings and Languages an alphabet Σ is a finite set of symbols {0, 1}, {T, F}, {a, b,..., z}, N a string x

More information

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Limitations of Algorithms

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Limitations of Algorithms Computer Science 385 Analysis of Algorithms Siena College Spring 2011 Topic Notes: Limitations of Algorithms We conclude with a discussion of the limitations of the power of algorithms. That is, what kinds

More information

Computational Complexity and Intractability: An Introduction to the Theory of NP. Chapter 9

Computational Complexity and Intractability: An Introduction to the Theory of NP. Chapter 9 1 Computational Complexity and Intractability: An Introduction to the Theory of NP Chapter 9 2 Objectives Classify problems as tractable or intractable Define decision problems Define the class P Define

More information

NP Completeness. CS 374: Algorithms & Models of Computation, Spring Lecture 23. November 19, 2015

NP Completeness. CS 374: Algorithms & Models of Computation, Spring Lecture 23. November 19, 2015 CS 374: Algorithms & Models of Computation, Spring 2015 NP Completeness Lecture 23 November 19, 2015 Chandra & Lenny (UIUC) CS374 1 Spring 2015 1 / 37 Part I NP-Completeness Chandra & Lenny (UIUC) CS374

More information

from notes written mostly by Dr. Matt Stallmann: All Rights Reserved

from notes written mostly by Dr. Matt Stallmann: All Rights Reserved CSC 505, Fall 000: Week 0 Objectives: understand problem complexity and classes defined by it understand relationships among decision, witness, evaluation, and optimization problems understand what it

More information

ECS122A Handout on NP-Completeness March 12, 2018

ECS122A Handout on NP-Completeness March 12, 2018 ECS122A Handout on NP-Completeness March 12, 2018 Contents: I. Introduction II. P and NP III. NP-complete IV. How to prove a problem is NP-complete V. How to solve a NP-complete problem: approximate algorithms

More information

NP-Completeness. Subhash Suri. May 15, 2018

NP-Completeness. Subhash Suri. May 15, 2018 NP-Completeness Subhash Suri May 15, 2018 1 Computational Intractability The classical reference for this topic is the book Computers and Intractability: A guide to the theory of NP-Completeness by Michael

More information

Classes of Problems. CS 461, Lecture 23. NP-Hard. Today s Outline. We can characterize many problems into three classes:

Classes of Problems. CS 461, Lecture 23. NP-Hard. Today s Outline. We can characterize many problems into three classes: Classes of Problems We can characterize many problems into three classes: CS 461, Lecture 23 Jared Saia University of New Mexico P is the set of yes/no problems that can be solved in polynomial time. Intuitively

More information

CS 350 Algorithms and Complexity

CS 350 Algorithms and Complexity CS 350 Algorithms and Complexity Winter 2019 Lecture 15: Limitations of Algorithmic Power Introduction to complexity theory Andrew P. Black Department of Computer Science Portland State University Lower

More information

Lecture 15 - NP Completeness 1

Lecture 15 - NP Completeness 1 CME 305: Discrete Mathematics and Algorithms Instructor: Professor Aaron Sidford (sidford@stanford.edu) February 29, 2018 Lecture 15 - NP Completeness 1 In the last lecture we discussed how to provide

More information

1 Computational Problems

1 Computational Problems Stanford University CS254: Computational Complexity Handout 2 Luca Trevisan March 31, 2010 Last revised 4/29/2010 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

CS 350 Algorithms and Complexity

CS 350 Algorithms and Complexity 1 CS 350 Algorithms and Complexity Fall 2015 Lecture 15: Limitations of Algorithmic Power Introduction to complexity theory Andrew P. Black Department of Computer Science Portland State University Lower

More information

CS151 Complexity Theory. Lecture 1 April 3, 2017

CS151 Complexity Theory. Lecture 1 April 3, 2017 CS151 Complexity Theory Lecture 1 April 3, 2017 Complexity Theory Classify problems according to the computational resources required running time storage space parallelism randomness rounds of interaction,

More information

Intractable Problems Part One

Intractable Problems Part One Intractable Problems Part One Announcements Problem Set Five due right now. Solutions will be released at end of lecture. Correction posted for Guide to Dynamic Programming, sorry about that! Please evaluate

More information

Lecture 4: NP and computational intractability

Lecture 4: NP and computational intractability Chapter 4 Lecture 4: NP and computational intractability Listen to: Find the longest path, Daniel Barret What do we do today: polynomial time reduction NP, co-np and NP complete problems some examples

More information

1 Reductions and Expressiveness

1 Reductions and Expressiveness 15-451/651: Design & Analysis of Algorithms November 3, 2015 Lecture #17 last changed: October 30, 2015 In the past few lectures we have looked at increasingly more expressive problems solvable using efficient

More information

Notes for Lecture Notes 2

Notes for Lecture Notes 2 Stanford University CS254: Computational Complexity Notes 2 Luca Trevisan January 11, 2012 Notes for Lecture Notes 2 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

The Beauty and Joy of Computing

The Beauty and Joy of Computing The Beauty and Joy of Computing Lecture #23 Limits of Computing UC Berkeley EECS Sr Lecturer SOE Dan You ll have the opportunity for extra credit on your project! After you submit it, you can make a 5min

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 31 P and NP Self-reducibility NP-completeness Adam Smith 12/1/2008 S. Raskhodnikova; based on slides by K. Wayne Central ideas we ll cover Poly-time as feasible most

More information

} } } Lecture 23: Computational Complexity. Lecture Overview. Definitions: EXP R. uncomputable/ undecidable P C EXP C R = = Examples

} } } Lecture 23: Computational Complexity. Lecture Overview. Definitions: EXP R. uncomputable/ undecidable P C EXP C R = = Examples Lecture 23 Computational Complexity 6.006 Fall 2011 Lecture 23: Computational Complexity Lecture Overview P, EXP, R Most problems are uncomputable NP Hardness & completeness Reductions Definitions: P =

More information

Essential facts about NP-completeness:

Essential facts about NP-completeness: CMPSCI611: NP Completeness Lecture 17 Essential facts about NP-completeness: Any NP-complete problem can be solved by a simple, but exponentially slow algorithm. We don t have polynomial-time solutions

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Analysis of Algorithms Professor Eric Aaron Lecture T Th 9:00am Lecture Meeting Location: OLB 205 Business Grading updates: HW5 back today HW7 due Dec. 10 Reading: Ch. 22.1-22.3, Ch. 25.1-2, Ch.

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: NP-Completeness I Date: 11/13/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: NP-Completeness I Date: 11/13/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: NP-Completeness I Date: 11/13/18 20.1 Introduction Definition 20.1.1 We say that an algorithm runs in polynomial time if its running

More information

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013 Chapter 2 Reductions and NP CS 573: Algorithms, Fall 2013 August 29, 2013 2.1 Reductions Continued 2.1.1 The Satisfiability Problem SAT 2.1.1.1 Propositional Formulas Definition 2.1.1. Consider a set of

More information

NP and NP-Completeness

NP and NP-Completeness 0/2/206 Algorithms NP-Completeness 7- Algorithms NP-Completeness 7-2 Efficient Certification NP and NP-Completeness By a solution of a decision problem X we understand a certificate witnessing that an

More information

4/30/14. Chapter Sequencing Problems. NP and Computational Intractability. Hamiltonian Cycle

4/30/14. Chapter Sequencing Problems. NP and Computational Intractability. Hamiltonian Cycle Chapter 8 NP and Computational Intractability Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 2 Hamiltonian Cycle 8.5 Sequencing Problems HAM-CYCLE: given an undirected

More information

Travelling Salesman Problem

Travelling Salesman Problem Travelling Salesman Problem Fabio Furini November 10th, 2014 Travelling Salesman Problem 1 Outline 1 Traveling Salesman Problem Separation Travelling Salesman Problem 2 (Asymmetric) Traveling Salesman

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 24 Last time Relationship between models: deterministic/nondeterministic Class P Today Class NP Sofya Raskhodnikova Homework 9 due Homework 0 out 4/5/206 L24. I-clicker

More information

CS Fall 2011 P and NP Carola Wenk

CS Fall 2011 P and NP Carola Wenk CS3343 -- Fall 2011 P and NP Carola Wenk Slides courtesy of Piotr Indyk with small changes by Carola Wenk 11/29/11 CS 3343 Analysis of Algorithms 1 We have seen so far Algorithms for various problems Running

More information

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan August 30, Notes for Lecture 1

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan August 30, Notes for Lecture 1 U.C. Berkeley CS278: Computational Complexity Handout N1 Professor Luca Trevisan August 30, 2004 Notes for Lecture 1 This course assumes CS170, or equivalent, as a prerequisite. We will assume that the

More information

NP-COMPLETE PROBLEMS. 1. Characterizing NP. Proof

NP-COMPLETE PROBLEMS. 1. Characterizing NP. Proof T-79.5103 / Autumn 2006 NP-complete problems 1 NP-COMPLETE PROBLEMS Characterizing NP Variants of satisfiability Graph-theoretic problems Coloring problems Sets and numbers Pseudopolynomial algorithms

More information

Geometric Steiner Trees

Geometric Steiner Trees Geometric Steiner Trees From the book: Optimal Interconnection Trees in the Plane By Marcus Brazil and Martin Zachariasen Part 3: Computational Complexity and the Steiner Tree Problem Marcus Brazil 2015

More information

Data Structures and Algorithms (CSCI 340)

Data Structures and Algorithms (CSCI 340) University of Wisconsin Parkside Fall Semester 2008 Department of Computer Science Prof. Dr. F. Seutter Data Structures and Algorithms (CSCI 340) Homework Assignments The numbering of the problems refers

More information

Lecture 25: Cook s Theorem (1997) Steven Skiena. skiena

Lecture 25: Cook s Theorem (1997) Steven Skiena.   skiena Lecture 25: Cook s Theorem (1997) Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Prove that Hamiltonian Path is NP

More information

Chapter 8. NP and Computational Intractability. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 8. NP and Computational Intractability. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 8 NP and Computational Intractability Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 8.5 Sequencing Problems Basic genres.! Packing problems: SET-PACKING,

More information