Perspectives on MTF Power Plants

Size: px
Start display at page:

Download "Perspectives on MTF Power Plants"

Transcription

1 Perspectives on MTF Power Plants Ronald L. Miller Decysive Systems Santa Fe, NM Presented at ICC2006 Austin, TX Feb , /13/2006 -RLM 1

2 Magnetized Target Fusion (MTF) Intermediate regime between MFE [e.g., tokamak, stellarator, RFP, FRC] and IFE [e.g., laser, heavy-ion, Z-(pinch) IFE] Extrapolates from LANL P-24 FRX-L 2/13/2006 -RLM 2

3 1977 Science Court (Gong Show) Evaluated 11 AFCs 2/13/2006 -RLM 3

4 And the Score was 2/13/2006 -RLM 4

5 LANL Fast Liner Proposal (1977) 2/13/2006 -RLM 5

6 Fast Liner Reactor (FLR) 2/13/2006 -RLM 6

7 More FLR refs. R. W. Moses, R. A. Krakowski and R. L. Miller, Fast- Imploding Liner Fusion Power, Proceedings of the Third Topical Meeting on the Technology of Controlled Nuclear Fusion, (ANS, Santa Fe, NM, May 1978), CONF , 1, R. A. Krakowski, R. W. Moses, R. L. Miller and R. A. Gerwin, Fusion Power from Fast Imploding Liners, Fusion Reactor Design Concepts, IAEA-TC-145/21, , F. L. Ribe and A. R. Sherwood, Fast-Liner-Compression Fusion Systems, Fusion, E. Teller (ed.), Vol. 1, Magnetic Confinement Part B (1981). 2/13/2006 -RLM 7

8 NRL Slow Liner (LINUS) MEGAGAUSS PHYSICS AND TECHNOLOGY, P. J. Turchi (ed.) (1980). 2/13/2006 -RLM 8

9 LINUS Modelling D.C. Quimby, A. L. Hoffman, and G. C. Vlases, LINUS Cycle Calculations Including Plasma Transport and Resistive Flux Loss, Nuclear Fusion, 21, 5 (1981) 553. FRC target plasma. 2/13/2006 -RLM 9

10 Blast Confinement Jumbo (Trinity Test, 1945) [left] A. P. Fraas, The BLASCON An Exploding Pellet Fusion Reactor, ORNL-TM-3231 (July 1971). [right] 2/13/2006 -RLM 10

11 Shock, Debris Mitigation Chamber geometry and inner surface Periodicly (dominantly) open chamber -tritium containment Thick-liquid, primary coolant choice -Immiscibility? -Debris trap/removal -Fouling Stirring, bubbles(e.g., Ar cover gas) 2/13/2006 -RLM 11

12 Comparison to IFE HYLIFE-II (LLNL+) 2/13/2006 -RLM 12

13 Z-IFE C. L. Olson + Z-IFE Team, Z-Pinch Inertial Fusion Energy, Fusion Power Associates Annual Meeting and Symposium, Washington, D. C. (Oct 11-12, 2005). 2/13/2006 -RLM 13

14 Other FRC Power Plant Options R. L. Hagenson and R. A. Krakowski, Conceptual Physics Design of a Compact Torus Fusion Reactor (CTOR), LA-8448-MS (July 1980). R. L. Hagenson and R. A. Krakowski, A Compact-Toroid Fusion Reactor Based on the Field-Reversed Theta Pinch, LA-8758-MS (March 1981). H. Momota, et al., Conceptual Design of the D- 3 He Reactor Artemis, Fusion Technology, 21, 4 (July 1992) A. L. Hoffman, An Ideal Compact Fusion Reactor Based on a Field-Reversed Configuration, Fusion Technology, 30, (Dec. 1996) /13/2006 -RLM 14

15 Steady-State Thick-Liquid Wall Advanced Power Extraction (APEX) project: -tokamak, cf. ARIES-RS -FRC ref. R. W. Moir, et al., Fusion Technology, 39, 2, Part 2 (Mar. 2001) 758. Primary coolant candidate materials Reduces damage to FW/blanket structural materials, increases service life, reduces scheduled/unscheduled downtime. 2/13/2006 -RLM 15

16 Primary Coolant Candidates Li provides T 2 breeder function for DT fuel cycle Candidates: -Li -(LiAl) -Li 17 Pb 83 eutectic -Sn 80 Li 20 -Molten salts: --flibe: (LiF) n -BeF 2 where n=1,2 --flinabe: LiF-NaF-BeF 2 2/13/2006 -RLM 16

17 Field-Reversed Configuration (FRC) M. Tuszewski, Field Reversed Configurations, Nuclear Fusion, 28, 11 (1988) J. M. Taccetti, T. P. Intrator, G. A. Wurden, et al., FRX- L, Rev. Sci. Instruments, 74,10 (2003) /13/2006 -RLM 17

18 Operational Sequence Move RTL/Liner cartridge into position Mechanical/electrical connection to Plasma Formation Apparatus Vacuum pumpdown (Test)/insert/lock into chamber Form plasma/translate/stop in liner Fire! Chamber recovery RTL stump shearing, unlock, and removal [Energy storage recharge] 2/13/2006 -RLM 18

19 Sacrificial, Recyclable Transmission Line (RTL) FRC translation allows separation of permanent plasma formation apparatus from burn zone. Guide field could be supplied externally or locally by RTL. 2/13/2006 -RLM 19

20 RTL/Liner Destruction Moving (up/away) from destroyed liner front end: -vaporization -melting -deformation Leaving a stump to be withdrawn or sheared off 2/13/2006 -RLM 20

21 RTL/Liner Remanufacture Automated, mass (re)production using activated materials Cost must be small compared to energy value of pulse On-site factory versus off-site facility serving multiple plants with 2-way transportation burden 2/13/2006 -RLM 21

22 Simple Manufacturing Methods Extrusion Injection molding, casting Additive methods (laser sintering, nitridation, and infiltration) cf. T. Sercombe and G. B. Schaffer, Rapid Manufacture of Aluminum Components, Science, 301 (29 Aug 2003) Rate (kg/s) determines number of parallel production lines Heterogeneity (conductor/insulator/nmultiplier, etc.)? 2/13/2006 -RLM 22

23 Initial Liner Velocity Approximation Ribe & Sherwood (1981). Cu: 9.02E km/s Al: 3.05E km/s 2/13/2006 -RLM 23

24 Liner Implosion B B D MTF04d01 Test of freely imploding liner (W K = const) A B D 0.12 MTFd B A Test of flux compression and bounce. 2/13/2006 -RLM 24

25 FRC Plasma Model Radial profiles Adiabatic compression relations cf. Tuszewski (1988) Table V. 2/13/2006 -RLM 25

26 Alpha-particle plasma heating Apply multi-group model of fusion-product alphas cf. T. Oliphant, Fuel Burn-up and Direct Conversion of Energy in a D-T Plasma, B.N.E.S. Nuclear Fusion Reactor Conference, Culham (Sep. 1969) 306. Monitor alpha-particle loss along guide field as possible direct conversion opportunity. Trade-off between self-heating and liner back pressure. 2/13/2006 -RLM 26

27 Conclusions Argument that there is an alternative (faster, cheaper) route to fusion plasma burn or a better power plant may not be influential, even if true. Faced with this situation, an energy combatant would not surrender. 2/13/2006 -RLM 27

GA A22689 SLOW LINER FUSION

GA A22689 SLOW LINER FUSION GA A22689 SLOW LINER FUSION by AUGUST 1997 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any

More information

FUSION TECHNOLOGY INSTITUTE

FUSION TECHNOLOGY INSTITUTE FUSION TECHNOLOGY INSTITUTE Z-Pinch (LiF) 2 -BeF 2 (flibe) Preliminary Vaporization Estimation Using the BUCKY 1-D Radiation Hydrodynamics Code W I S C O N S I N T.A. Heltemes, E.P. Marriott, G.A. Moses,

More information

Magnetized Target Fusion collaboration 2004: recent progress

Magnetized Target Fusion collaboration 2004: recent progress Magnetized Target Fusion collaboration 2004: recent progress T. Intrator for the MTF collaboration Los Alamos National Laboratory Los Alamos, NM 87545 USA Innovative Confinement Concepts Workshop 25-28

More information

Magnetized Target Fusion: Prospects for low-cost fusion energy

Magnetized Target Fusion: Prospects for low-cost fusion energy Magnetized Target Fusion: Prospects for low-cost fusion energy Richard E. Siemon a, Peter J. Turchi a, Daniel C. Barnes a, James H. Degnan b, Paul Parks c, Dmitri D. Ryutov d, Francis Y. Thio e a) Los

More information

Measurements of Solid Liner Implosion for Magnetized Target Fusion

Measurements of Solid Liner Implosion for Magnetized Target Fusion Measurements of Solid Liner Implosion for Magnetized Target Fusion R. E. Siemon 1), T. Cavazos 3), D. Clark 1), S. K. Coffey 4), J.H. Degnan 2), R. J. Faehl 1), M. H. Frese 4), D. Fulton 1), J. C. Gueits

More information

Challenges for Achieving the Low-Cost Optimum for Fusion Power

Challenges for Achieving the Low-Cost Optimum for Fusion Power Challenges for Achieving the Low-Cost Optimum for Power Peter J. Turchi, Inc. Santa Fe, NM USA First IAEA Workshop on Enterprises 13 15 June 2018 Santa Fe, NM USA To confront challenges of new technology,

More information

Unpressurized steam reactor. Controlled Fission Reactors. The Moderator. Global energy production 2000

Unpressurized steam reactor. Controlled Fission Reactors. The Moderator. Global energy production 2000 From last time Fission of heavy elements produces energy Only works with 235 U, 239 Pu Fission initiated by neutron absorption. Fission products are two lighter nuclei, plus individual neutrons. These

More information

Aspects of Advanced Fuel FRC Fusion Reactors

Aspects of Advanced Fuel FRC Fusion Reactors Aspects of Advanced Fuel FRC Fusion Reactors John F Santarius and Gerald L Kulcinski Fusion Technology Institute Engineering Physics Department CT2016 Irvine, California August 22-24, 2016 santarius@engr.wisc.edu;

More information

D-D FUSION NEUTRONS FROM A STRONG SPHERICAL SHOCK WAVE FOCUSED ON A DEUTERIUM BUBBLE IN WATER. Dr. Michel Laberge General Fusion Inc.

D-D FUSION NEUTRONS FROM A STRONG SPHERICAL SHOCK WAVE FOCUSED ON A DEUTERIUM BUBBLE IN WATER. Dr. Michel Laberge General Fusion Inc. D-D FUSION NEUTRONS FROM A STRONG SPHERICAL SHOCK WAVE FOCUSED ON A DEUTERIUM BUBBLE IN WATER Dr. Michel Laberge General Fusion Inc. SONOFUSION Sonofusion is making some noise A bit short in energy, ~mj

More information

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets PFC/JA-91-5 Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets E. A. Chaniotakis L. Bromberg D. R. Cohn April 25, 1991 Plasma Fusion Center Massachusetts Institute of Technology

More information

FLIBE ASSESSMENTS ABSTRACT

FLIBE ASSESSMENTS ABSTRACT FLIBE ASSESSMENTS Dai-Kai Sze, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (630) 252-4838 USA Kathryn McCarthy, Idaho National Engineer & Environmental Laboratory, P.O. Box 1625,

More information

Safety considerations for Fusion Energy: From experimental facilities to Fusion Nuclear Science and beyond

Safety considerations for Fusion Energy: From experimental facilities to Fusion Nuclear Science and beyond Safety considerations for Fusion Energy: From experimental facilities to Fusion Nuclear Science and beyond 1st IAEA TM on the Safety, Design and Technology of Fusion Power Plants May 3, 2016 Susana Reyes,

More information

Z-Pinch Inertial Fusion Energy

Z-Pinch Inertial Fusion Energy Z-Pinch Inertial Fusion Energy Capsule compression Z-Pinch Power Plant Chamber Repetitive Driver experiments on Z LTD Technology Craig L. Olson Sandia National Laboratories Albuquerque, NM 87185 RCM on

More information

Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power

Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power Derek Sutherland HIT-SI Research Group University of Washington July 25, 2017 D.A. Sutherland -- EPR 2017, Vancouver,

More information

Magnetitzed Target Fusion: Prospects for Low-cost Fusion Energy

Magnetitzed Target Fusion: Prospects for Low-cost Fusion Energy J. Plasma Fusion Res. SERIES, Vol.5 (2002) 63-68 Magnetitzed Target Fusion: Prospects for Low-cost Fusion Energy SIEMON Richard E., TURCHI Peter J., BARNES Daniel C., DEGNAN James H.l PARKS Pau12, RYUTOV

More information

Helium Catalyzed D-D Fusion in a Levitated Dipole

Helium Catalyzed D-D Fusion in a Levitated Dipole Helium Catalyzed D-D Fusion in a Levitated Dipole Jay Kesner, L. Bromberg, MIT D.T. Garnier, A. Hansen, M.E. Mauel Columbia University APS 2003 DPP Meeting, Albuquerque October 27, 2003 Columbia University

More information

Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE

Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE In the beginning In the late fifties, alternative applications of nuclear explosions were being considered the number one suggestion

More information

INTRODUCTION TO MAGNETIC NUCLEAR FUSION

INTRODUCTION TO MAGNETIC NUCLEAR FUSION INTRODUCTION TO MAGNETIC NUCLEAR FUSION S.E. Sharapov Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK With acknowledgments to B.Alper for use of his transparencies

More information

Magnetized High-Energy-Density Plasma

Magnetized High-Energy-Density Plasma LLNL PRES 446057 Magnetized High-Energy-Density Plasma D.D. Ryutov Lawrence Livermore National Laboratory, Livermore, CA 94551, USA Presented at the 2010 Science with High-Power Lasers and Pulsed Power

More information

Summary of Thick Liquid FW/Blanket for High Power Density Fusion Devices

Summary of Thick Liquid FW/Blanket for High Power Density Fusion Devices Summary of Thick Liquid FW/Blanket for High Power Density Fusion Devices The replacement of the first wall with a flowing thick liquid offers the advantages of high power density, high reliability and

More information

Polar Direct-Drive Simulations for a Laser-Driven HYLIFE-II Fusion Reactor. Katherine Manfred

Polar Direct-Drive Simulations for a Laser-Driven HYLIFE-II Fusion Reactor. Katherine Manfred Polar Direct-Drive Simulations for a Laser-Driven HYLIFE-II Fusion Reactor Katherine Manfred Polar Direct-Drive Simulations for a Laser-Driven HYLIFE-II Fusion Reactor Katherine M. Manfred Fairport High

More information

Additional Heating Experiments of FRC Plasma

Additional Heating Experiments of FRC Plasma Additional Heating Experiments of FRC Plasma S. Okada, T. Asai, F. Kodera, K. Kitano, T. Suzuki, K. Yamanaka, T. Kanki, M. Inomoto, S. Yoshimura, M. Okubo, S. Sugimoto, S. Ohi, S. Goto, Plasma Physics

More information

Transmutation of Minor Actinides in a Spherical

Transmutation of Minor Actinides in a Spherical 1 Transmutation of Minor Actinides in a Spherical Torus Tokamak Fusion Reactor Feng Kaiming Zhang Guoshu Fusion energy will be a long-term energy source. Great efforts have been devoted to fusion research

More information

GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO

GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO by C.P.C. WONG and R.D. STAMBAUGH JULY 1999 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United

More information

Magnetic Toroidal Facility (MTOR) has been constructed. Multiple MHD experiments currently underway in FY02

Magnetic Toroidal Facility (MTOR) has been constructed. Multiple MHD experiments currently underway in FY02 Magnetic Toroidal Facility (MTOR) has been constructed Multiple MHD experiments currently underway in FY02 MHD effects on fluid flow and heat transfer are dominant issues for liquid metal walls Extensive

More information

Fusion/transmutation reactor studies based on the spherical torus concept

Fusion/transmutation reactor studies based on the spherical torus concept FT/P1-7, FEC 2004 Fusion/transmutation reactor studies based on the spherical torus concept K.M. Feng, J.H. Huang, B.Q. Deng, G.S. Zhang, G. Hu, Z.X. Li, X.Y. Wang, T. Yuan, Z. Chen Southwestern Institute

More information

ELECTROMAGNETIC LIQUID METAL WALL PHENOMENA

ELECTROMAGNETIC LIQUID METAL WALL PHENOMENA ELECTROMAGNETIC LIQUID METAL WALL PHENOMENA BY BOB WOOLLEY 15-19 FEBRUARY 1999 APEX-6 MEETING LIQUID WALLS A sufficiently thick, flowing, liquid first wall and tritium breeding blanket which almost completely

More information

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant

More information

Progress Report on Chamber Dynamics and Clearing

Progress Report on Chamber Dynamics and Clearing Progress Report on Chamber Dynamics and Clearing Farrokh Najmabadi, Rene Raffray, Mark S. Tillack, John Pulsifer, Zoran Dragovlovic (UCSD) Ahmed Hassanein (ANL) Laser-IFE Program Workshop May31-June 1,

More information

Overview of Pilot Plant Studies

Overview of Pilot Plant Studies Overview of Pilot Plant Studies and contributions to FNST Jon Menard, Rich Hawryluk, Hutch Neilson, Stewart Prager, Mike Zarnstorff Princeton Plasma Physics Laboratory Fusion Nuclear Science and Technology

More information

A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR

A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR A.N. Mauer, W.M. Stacey, J. Mandrekas and E.A. Hoffman Fusion Research Center Georgia Institute of Technology Atlanta, GA 30332 1. INTRODUCTION

More information

Magnetic Confinement Fusion and Tokamaks Chijin Xiao Department of Physics and Engineering Physics University of Saskatchewan

Magnetic Confinement Fusion and Tokamaks Chijin Xiao Department of Physics and Engineering Physics University of Saskatchewan The Sun Magnetic Confinement Fusion and Tokamaks Chijin Xiao Department of Physics and Engineering Physics University of Saskatchewan 2017 CNS Conference Niagara Falls, June 4-7, 2017 Tokamak Outline Fusion

More information

Mission Elements of the FNSP and FNSF

Mission Elements of the FNSP and FNSF Mission Elements of the FNSP and FNSF by R.D. Stambaugh PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION Presented at FNST Workshop August 3, 2010 In Addition to What Will Be Learned

More information

Nuclear Propulsion based on Inductively Driven Liner Compression of Fusion Plasmoids

Nuclear Propulsion based on Inductively Driven Liner Compression of Fusion Plasmoids Nuclear Propulsion based on Inductively Driven Liner Compression of Fusion Plasmoids John Slough 1 and David Kirtley University of Washington, Seattle, WA, 98195 A critical limitation for the exploration

More information

A Faster Way to Fusion

A Faster Way to Fusion A Faster Way to Fusion 2017 Tokamak Energy Tokamak Energy Ltd Company Overview April 2018 Our Mission To deliver to mankind a cheap, safe, secure and practically limitless source of clean energy fusion

More information

TWO FUSION TYPES NEUTRONIC ANEUTRONIC

TWO FUSION TYPES NEUTRONIC ANEUTRONIC October 2016 October 2016 WHAT IS FUSION? TWO FUSION TYPES NEUTRONIC ANEUTRONIC TWO FUSION TYPES NEUTRONIC ANEUTRONIC TWO FUSION TYPES NEUTRONIC ANEUTRONIC produces neutrons produces NO neutrons NEUTRONIC

More information

generalfusion Characterization of General Fusion's Plasma Devices 2015 Nimrod Summer Workshop

generalfusion Characterization of General Fusion's Plasma Devices 2015 Nimrod Summer Workshop Characterization of General Fusion's Plasma Devices 2015 Nimrod Summer Workshop Aaron Froese, Charlson Kim, Meritt Reynolds, Sandra Barsky, Victoria Suponitsky, Stephen Howard, Russ Ivanov, Peter O'Shea,

More information

Not Just Fusion: Exploring TWDEC Technology for Fission Fragment Direct Energy Conversion

Not Just Fusion: Exploring TWDEC Technology for Fission Fragment Direct Energy Conversion Not Just Fusion: Exploring TWDEC Technology for Fission Fragment Direct Energy Conversion A. G. Tarditi Electrical Power Research Institute, Knoxville, TN Introduction Fission fragments direct energy conversion

More information

STELLARATOR REACTOR OPTIMIZATION AND ASSESSMENT

STELLARATOR REACTOR OPTIMIZATION AND ASSESSMENT STELLARATOR REACTOR OPTIMIZATION AND ASSESSMENT J. F. Lyon, ORNL ARIES Meeting October 2-4, 2002 TOPICS Stellarator Reactor Optimization 0-D Spreadsheet Examples 1-D POPCON Examples 1-D Systems Optimization

More information

Spheromak magnetic fusion energy power plant with thick liquid-walls *

Spheromak magnetic fusion energy power plant with thick liquid-walls * Spheromak magnetic fusion energy power plant with thick liquid-walls * R. W. Moir a, R. H. Bulmer a, T. K. Fowler b, T. D. Rognlien a, & M. Z. Youssef c a Lawrence Livermore National Laboratory, Livermore,

More information

Fusion Energy: Pipe Dream or Panacea

Fusion Energy: Pipe Dream or Panacea Fusion Energy: Pipe Dream or Panacea Mike Mauel Columbia University Energy Options & Paths to Climate Stabilization Aspen, 9 July 2003 Fusion Energy: Pipe Dream or Panacea Promise, Progress, and the Challenge

More information

Critical Gaps between Tokamak Physics and Nuclear Science. Clement P.C. Wong General Atomics

Critical Gaps between Tokamak Physics and Nuclear Science. Clement P.C. Wong General Atomics Critical Gaps between Tokamak Physics and Nuclear Science (Step 1: Identifying critical gaps) (Step 2: Options to fill the critical gaps initiated) (Step 3: Success not yet) Clement P.C. Wong General Atomics

More information

A Distributed Radiator, Heavy Ion Driven Inertial Confinement Fusion Target with Realistic, Multibeam Illumination Geometry

A Distributed Radiator, Heavy Ion Driven Inertial Confinement Fusion Target with Realistic, Multibeam Illumination Geometry UCRL-JC-131974 PREPRINT A Distributed Radiator, Heavy Ion Driven Inertial Confinement Fusion Target with Realistic, Multibeam Illumination Geometry D. A. Callahan-Miller M. Tabak This paper was prepared

More information

Fusion Nuclear Science - Pathway Assessment

Fusion Nuclear Science - Pathway Assessment Fusion Nuclear Science - Pathway Assessment C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD July 29, 2010 Basic Flow of FNS-Pathways Assessment 1. Determination of DEMO/power plant parameters and requirements,

More information

Preliminary FLiNaK Mobilization Measurements and Implications for FLiNaBe Safety

Preliminary FLiNaK Mobilization Measurements and Implications for FLiNaBe Safety Preliminary FLiNaK Mobilization Measurements and Implications for FLiNaBe Safety B.J. Merrill, T.D. Marshall, G.R. Smolik INEEL Fusion Safety Program ALPS/APEX Meeting, Scottsdale, AZ, November 4-9, 2001

More information

Implementation of a long leg X-point target divertor in the ARC fusion pilot plant

Implementation of a long leg X-point target divertor in the ARC fusion pilot plant Implementation of a long leg X-point target divertor in the ARC fusion pilot plant A.Q. Kuang, N.M. Cao, A.J. Creely, C.A. Dennett, J. Hecla, H. Hoffman, M. Major, J. Ruiz Ruiz, R.A. Tinguely, E.A. Tolman

More information

Magnetic Confinement Fusion-Status and Challenges

Magnetic Confinement Fusion-Status and Challenges Chalmers energy conference 2012 Magnetic Confinement Fusion-Status and Challenges F. Wagner Max-Planck-Institute for Plasma Physics, Greifswald Germany, EURATOM Association RLPAT St. Petersburg Polytechnic

More information

Spacecraft Applications for Aneutronic Fusion and Direct Energy Conversion

Spacecraft Applications for Aneutronic Fusion and Direct Energy Conversion Spacecraft Applications for Aneutronic Fusion and Direct Energy Conversion Project Team: Jeff George NASA/JSC-Energy Conversion Systems Branch Paul March Engineering Support Contract Group/Houston George

More information

Plasma Wall Interactions in Tokamak

Plasma Wall Interactions in Tokamak Plasma Wall Interactions in Tokamak Dr. C Grisolia, Association Euratom/CEA sur la fusion, CEA/Cadarache Outline 1. Conditions for Fusion in Tokamaks 2. Consequences of plasma operation on in vessel materials:

More information

MAGNETIC FUSION m DO NOT CIRCULATE RESEARCH

MAGNETIC FUSION m DO NOT CIRCULATE RESEARCH L4SL &i?o-zf? MAGNETIC FUSION m DO NOT CIRCULATE RESEARCH i= PERMANENT RETENTION 1 I c1..- Post Office Box 1663 Los Alamos. New Mexico 87545 \ I \\.. Magnetic Fusion Research at the. Los Alamos Scientific

More information

The Dynomak Reactor System

The Dynomak Reactor System The Dynomak Reactor System An economically viable path to fusion power Derek Sutherland HIT-SI Research Group University of Washington November 7, 2013 Outline What is nuclear fusion? Why do we choose

More information

Target and Chamber Technologies for Direct-Drive Laser IFE

Target and Chamber Technologies for Direct-Drive Laser IFE University of California, San Diego UCSD-CER-10-01 Target and Chamber Technologies for Direct-Drive Laser IFE M. S. Tillack, A. R. Raffray, F. Najmabadi and L. C. Carlson 30 April 2010 Center for Energy

More information

Z-Pinch Driven Fusion Energy

Z-Pinch Driven Fusion Energy I Z-Pinch Driven Fusion Energy S A. Slutz, C. L. Olson, G. E. Rochau, and M. S. Derzon Sandia National Laboratories, USA, t. 9 P. F. Peterson @ University of California Berkelqy @ Y& $4 J. S. De Groot,

More information

Chapter IX: Nuclear fusion

Chapter IX: Nuclear fusion Chapter IX: Nuclear fusion 1 Summary 1. General remarks 2. Basic processes 3. Characteristics of fusion 4. Solar fusion 5. Controlled fusion 2 General remarks (1) Maximum of binding energy per nucleon

More information

MHD SIMULATIONS OF MTF IMPLOSIONS WITH TABULAR EOS AND CONDUCTIVITIES

MHD SIMULATIONS OF MTF IMPLOSIONS WITH TABULAR EOS AND CONDUCTIVITIES MHD SIMULATIONS OF MTF IMPLOSIONS WITH TABULAR EOS AND CONDUCTIVITIES R. J. Faehl, W.L. Atchison and I.R. Lindemuth Plasma Physics Group, Los Alamos National Laboratory, Los Alamos New Mexico 87545 ABSTRACT

More information

Burn Stabilization of a Tokamak Power Plant with On-Line Estimations of Energy and Particle Confinement Times

Burn Stabilization of a Tokamak Power Plant with On-Line Estimations of Energy and Particle Confinement Times Burn Stabilization of a Tokamak Power Plant with On-Line Estimations of Energy and Particle Confinement Times Javier E. Vitela vitela@nucleares.unam.mx Instituto de Ciencias Nucleares Universidad Nacional

More information

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 311-0102, Japan 1) University

More information

Where are we with laser fusion?

Where are we with laser fusion? Where are we with laser fusion? R. Betti Laboratory for Laser Energetics Fusion Science Center Dept. Mechanical Engineering and Physics & Astronomy University of Rochester HEDSA HEDP Summer School August

More information

A Community-based R&D Roadmap for Magnetized Target Fusion

A Community-based R&D Roadmap for Magnetized Target Fusion A Community-based R&D Roadmap for Magnetized Target Fusion Revised 7/1/99 for consideration at the Snowmass Fusion Summer Study R. Siemon, K. Schoenberg, D. Ryutov, I. Lindemuth, P. Turchi, G. Wurden,

More information

Path to a direct-drive ignition facility for fusion energy research that requires substantially less laser energy

Path to a direct-drive ignition facility for fusion energy research that requires substantially less laser energy Path to a direct-drive ignition facility for fusion energy research that requires substantially less laser energy NRL Laser Fusion High Average Power Laser Program Workshop Lawrence Livermore National

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 15: Alternate Concepts (with Darren Sarmer)

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 15: Alternate Concepts (with Darren Sarmer) 22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 15: Alternate Concepts (with Darren Sarmer) 1. In todays lecture we discuss the basic ideas behind the main alternate concepts to the tokamak.

More information

Summary Tritium Day Workshop

Summary Tritium Day Workshop Summary Tritium Day Workshop Presentations by M. Abdou, A. Loarte, L. Baylor, S. Willms, C. Day, P. Humrickhouse, M. Kovari 4th IAEA DEMO Programme Workshop November 18th, 2016 - Karlsruhe, Germany Overall

More information

The Path to Fusion Energy creating a star on earth. S. Prager Princeton Plasma Physics Laboratory

The Path to Fusion Energy creating a star on earth. S. Prager Princeton Plasma Physics Laboratory The Path to Fusion Energy creating a star on earth S. Prager Princeton Plasma Physics Laboratory The need for fusion energy is strong and enduring Carbon production (Gton) And the need is time urgent Goal

More information

THICK LIQUID-WALLED, FIELD-REVERSED CONFIGURATION*

THICK LIQUID-WALLED, FIELD-REVERSED CONFIGURATION* THICK LIQUID-WALLED, FIELD-REVERSED CONFIGURATION* R. W. Moir a, R. H. Bulmer a, K. Gulec b, P. Fogarty c, B. Nelson c, M. Ohnishi d, M. Rensink a, T. D. Rognlien a, J. F. Santarius e, and D. K. Sze f

More information

Introduction to Liquid-Wall Chamber Configurations and Phenomena

Introduction to Liquid-Wall Chamber Configurations and Phenomena Introduction to Liquid-Wall Chamber Configurations and Phenomena Per F. Peterson Department of Nuclear Engineering University of California, Berkeley IAEA TCM Meeting Vienna, Austria May 20-24, 2001 The

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 20 Modern Physics Nuclear Energy and Elementary Particles Fission, Fusion and Reactors Elementary Particles Fundamental Forces Classification of Particles Conservation

More information

Physics & Engineering Physics University of Saskatchewan. Supported by NSERC, CRC

Physics & Engineering Physics University of Saskatchewan. Supported by NSERC, CRC Fusion Energy Chijin Xiao and Akira Hirose Plasma Physics laboratory Physics & Engineering Physics University of Saskatchewan Supported by NSERC, CRC Trends in Nuclear & Medical Technologies April il6-7,

More information

Inertial Confinement Fusion

Inertial Confinement Fusion Inertial Confinement Fusion Prof. Dr. Mathias Groth Aalto University School of Science, Department of Applied Physics Outline Principles of inertial confinement fusion Implosion/compression physics Direct

More information

Neutronic Activation Analysis for ITER Fusion Reactor

Neutronic Activation Analysis for ITER Fusion Reactor Neutronic Activation Analysis for ITER Fusion Reactor Barbara Caiffi 100 Congresso Nazionale SIF 1 Outlook Nuclear Fusion International Thermonuclear Experimental Reactor (ITER) Neutronics Computational

More information

The Neutron Diagnostic Experiment for Alcator C-Mod

The Neutron Diagnostic Experiment for Alcator C-Mod PFC/JA-9-16 The Neutron Diagnostic Experiment for Alcator C-Mod C. L. Fiore, R. S. Granetz Plasma Fusion Center Massachusetts Institute of Technology -Cambridge, MA 2139 May, 199 To be published in Review

More information

Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source

Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source E. Hoffman, W. Stacey, G. Kessler, D. Ulevich, J. Mandrekas, A. Mauer, C. Kirby, D. Stopp, J. Noble

More information

Yuntao, SONG ( ) and Satoshi NISHIO ( Japan Atomic Energy Research Institute

Yuntao, SONG ( ) and Satoshi NISHIO ( Japan Atomic Energy Research Institute Conceptual design of liquid metal cooled power core components for a fusion power reactor Yuntao, SONG ( ) and Satoshi NISHIO ( Japan Atomic Energy Research Institute Japan-US workshop on Fusion Power

More information

Pellet Injector for Inertial Fusion

Pellet Injector for Inertial Fusion Abstract Pellet Injector for Inertial Fusion J. P. PERIN (*),(*), E BOULEAU (*), B. RUS (**) (*) CEA/INAC/SBT, 17 Rue des Martyrs 38054 GRENOBLE cedex 9 FRANCE (**) Institute of Physics of the ASCR, v.v.i.18221

More information

Elements of Strategy on Modelling Activities in the area of Test Blanket Systems

Elements of Strategy on Modelling Activities in the area of Test Blanket Systems Elements of Strategy on Modelling Activities in the area of Test Blanket Systems I. Ricapito, TBM & MD Project Team, ITER Department, F4E, Barcelona (Spain) Barcelona, Sept 17 th 2014 Information Day FPA-611

More information

Tritium Control and Safety

Tritium Control and Safety Tritium Control and Safety Brad Merrill Fusion Safety Program 1 st APEX Electronic Meeting, February 6, 2003 Presentation Outline Temperature & tritium control approach TMAP model of solid wall AFS/Flibe

More information

Status of the U. S. program in magneto-inertial fusion

Status of the U. S. program in magneto-inertial fusion Status of the U. S. program in magneto-inertial fusion Y. C. Francis Thio U. S. Department of Energy, Office of Fusion Energy Sciences, Germantown, MD, USA E-mail: Francis.thio@science.doe.gov Abstract.

More information

Fusion: The Ultimate Energy Source for the 21 st Century and Beyond

Fusion: The Ultimate Energy Source for the 21 st Century and Beyond Fusion: The Ultimate Energy Source for the 21 st Century and Beyond Mohamed Abdou Distinguished Professor of Engineering and Applied Science (UCLA) Director, Center for Energy Science & Technology (UCLA)

More information

Advanced Electric Propulsion Concepts Based on Magnetic Flux Compression and Expansion

Advanced Electric Propulsion Concepts Based on Magnetic Flux Compression and Expansion Advanced Electric Propulsion Concepts Based on Magnetic Flux Compression and Expansion IEPC-2005-049 Presented at the 29 th International Electric Propulsion Conference, Princeton University, P.J. Turchi

More information

Analysis of Experimental Asymmetries using Uncertainty Quantification: Inertial Confinement Fusion (ICF) & its Applications

Analysis of Experimental Asymmetries using Uncertainty Quantification: Inertial Confinement Fusion (ICF) & its Applications Analysis of Experimental Asymmetries using Uncertainty Quantification: Inertial Confinement Fusion (ICF) & its Applications Joshua Levin January 9, 2009 (Edited: June 15, 2009) 1 Contents 1. Uncertainty

More information

Status of UST_2 stellarator construction

Status of UST_2 stellarator construction Status of UST_2 stellarator construction Vicente M. Queral Mas Seminar given in National Fusion Laboratory CIEMAT Madrid, Spain 31 May 2013 Status of UST_2 construction Vicente Queral L 1 Outline Background.

More information

Tritium Management in FHRs

Tritium Management in FHRs Tritium Management in FHRs Ongoing and Planned Activities in Integrated Research Project Led by Georgia Tech Workshop on Tritium Control and Capture in Salt-Cooled Fission and Fusion Reactors: Experiments,

More information

Study of Current drive efficiency and its correlation with photon temperature in the HT-7 tokomak

Study of Current drive efficiency and its correlation with photon temperature in the HT-7 tokomak Study of Current drive efficiency and its correlation with photon temperature in the HT-7 tokomak Dr. Jawad Younis Senior Scientist Pakistan Atomic Energy Commission, P. O. Box, 2151,Islamabad Institute

More information

Review of Heavy-Ion Inertial Fusion Physics

Review of Heavy-Ion Inertial Fusion Physics Review of Heavy-Ion Inertial Fusion Physics S. Kawata 1, 2, *, T. Karino 1, and A. I. Ogoyski 3 1 Graduate School of Engineering, Utsunomiya University, Yohtoh 7-1-2, Utsunomiya 321-8585, Japan 2 CORE

More information

Fast Z-Pinch Experiments at the Kurchatov Institute Aimed at the Inertial Fusion Energy

Fast Z-Pinch Experiments at the Kurchatov Institute Aimed at the Inertial Fusion Energy 1 Fast Z-Pinch Experiments at the Kurchatov Institute Aimed at the Inertial Fusion Energy A. Kingsep 1), S.Anan ev 1), Yu. Bakshaev 1), A. Bartov 1), P. Blinov 1), A. Chernenko 1), S. Danko 1), Yu. Kalinin

More information

High-Performance Inertial Confinement Fusion Target Implosions on OMEGA

High-Performance Inertial Confinement Fusion Target Implosions on OMEGA High-Performance Inertial Confinement Fusion Target Implosions on OMEGA D.D. Meyerhofer 1), R.L. McCrory 1), R. Betti 1), T.R. Boehly 1), D.T. Casey, 2), T.J.B. Collins 1), R.S. Craxton 1), J.A. Delettrez

More information

Physics 30 Modern Physics Unit: Fission and Fusion

Physics 30 Modern Physics Unit: Fission and Fusion Physics 30 Modern Physics Unit: Fission and Fusion Nuclear Energy For years and years scientists struggled to describe where energy came from. They could see the uses of energy and the results of energy

More information

Disruption mitigation in ITER

Disruption mitigation in ITER Disruption mitigation in ITER S.Putvinski, R.Pitts, M.Sugihara, L.Zakharov Page 1 Outline Introduction Massive gas injection for mitigation of thermal loads Forces on VV and in vessel components Suppression

More information

Developing a Robust Compact Tokamak Reactor by Exploiting New Superconducting Technologies and the Synergistic Effects of High Field D.

Developing a Robust Compact Tokamak Reactor by Exploiting New Superconducting Technologies and the Synergistic Effects of High Field D. Developing a Robust Compact Tokamak Reactor by Exploiting ew Superconducting Technologies and the Synergistic Effects of High Field D. Whyte, MIT Steady-state tokamak fusion reactors would be substantially

More information

A MIRROR FUSION DEVICE FOR ADVANCED SPACE PROPULSION

A MIRROR FUSION DEVICE FOR ADVANCED SPACE PROPULSION A MIRROR FUSION DEVICE FOR ADVANCED SPACE PROPULSION Terry Kammash and Myoung-Jae Lee Department of Nuclear Engineering The University of Michigan Ann Arbor, M148109 (313) 764-0205 Abstract An open-ended

More information

Neutron Testing: What are the Options for MFE?

Neutron Testing: What are the Options for MFE? Neutron Testing: What are the Options for MFE? L. El-Guebaly Fusion Technology Institute University of Wisconsin - Madison http://fti.neep.wisc.edu/uwneutronicscenterofexcellence Contributors: M. Sawan

More information

Imposed Dynamo Current Drive

Imposed Dynamo Current Drive Imposed Dynamo Current Drive by T. R. Jarboe, C. Akcay, C. J. Hansen, A. C. Hossack, G. J. Marklin, K. Morgan, B. A. Nelson, D. A. Sutherland, B. S. Victor University of Washington, Seattle, WA 98195,

More information

A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current. John Sarff

A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current. John Sarff A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current John Sarff 12th IEA RFP Workshop Kyoto Institute of Technology, Kyoto, Japan Mar 26-28, 2007 The RFP fusion development

More information

Fusion Development Facility (FDF) Mission and Concept

Fusion Development Facility (FDF) Mission and Concept Fusion Development Facility (FDF) Mission and Concept Presented by R.D. Stambaugh PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION University of California Los Angeles FNST Workshop

More information

HIFLUX: OBLATE FRCs, DOUBLE HELICES, SPHEROMAKS AND RFPs IN ONE SYSTEM

HIFLUX: OBLATE FRCs, DOUBLE HELICES, SPHEROMAKS AND RFPs IN ONE SYSTEM GA A24391 HIFLUX: OBLATE FRCs, DOUBLE HELICES, SPHEROMAKS AND RFPs IN ONE SYSTEM by M.J. SCHAFFER and J.A. BOEDO JULY 2003 QTYUIOP DISCLAIMER This report was prepared as an account of work sponsored by

More information

Materials for Future Fusion Reactors under Severe Stationary and Transient Thermal Loads

Materials for Future Fusion Reactors under Severe Stationary and Transient Thermal Loads Mitglied der Helmholtz-Gemeinschaft Materials for Future Fusion Reactors under Severe Stationary and Transient Thermal Loads J. Linke, J. Du, N. Lemahieu, Th. Loewenhoff, G. Pintsuk, B. Spilker, T. Weber,

More information

What is. Inertial Confinement Fusion?

What is. Inertial Confinement Fusion? What is Inertial Confinement Fusion? Inertial Confinement Fusion: dense & short-lived plasma Fusing D and T requires temperature to overcome Coulomb repulsion density & confinement time to maximize number

More information

Microwave Spherical Torus Experiment and Prospect for Compact Fusion Reactor

Microwave Spherical Torus Experiment and Prospect for Compact Fusion Reactor Microwave Spherical Torus Experiment and Prospect for Compact Fusion Reactor Takashi Maekawa 1,*, Hitoshi Tanaka 1, Masaki Uchida 1, Tomokazu Yoshinaga 1, Satoshi Nishio 2 and Masayasu Sato 2 1 Graduate

More information

Chamber wall response to target implosion in inertial fusion reactors: new and critical assessments,

Chamber wall response to target implosion in inertial fusion reactors: new and critical assessments, Fusion Engineering and Design 63/64 (2002) 609/618 www.elsevier.com/locate/fusengdes Chamber wall response to target implosion in inertial fusion reactors: new and critical assessments, A. Hassanein, V.

More information

A Virtual Reactor Model for Inertial Fusion Energy. Michel Decroisette Noël Fleurot Marc Novaro Guy Schurtz Jacques Duysens

A Virtual Reactor Model for Inertial Fusion Energy. Michel Decroisette Noël Fleurot Marc Novaro Guy Schurtz Jacques Duysens A Virtual Reactor Model for Inertial Fusion Energy Michel Decroisette Noël Fleurot Marc Novaro Guy Schurtz Jacques Duysens 1 OUTLINE Introduction Fusion vs Fission Inertial Confinement Fusion Principle

More information

Tritium Fuel Cycle Safety

Tritium Fuel Cycle Safety Tritium Fuel Cycle Safety W Kirk Hollis 1, Craig MV Taylor 1, Scott Willms 2 1 Los Alamos National Laboratory, 2 ITER IAEA Workshop on Fusion Energy June 14 th, 2018 Slide 1 Overview What is a Tritium

More information