The Dynomak Reactor System

Size: px
Start display at page:

Download "The Dynomak Reactor System"

Transcription

1 The Dynomak Reactor System An economically viable path to fusion power Derek Sutherland HIT-SI Research Group University of Washington November 7, 2013

2 Outline What is nuclear fusion? Why do we choose to pursue fusion? Current leading methods towards controlled fusion energy. The case for the spheromak configuration. The Dynomak reactor system. Next steps and conclusions

3 Fusion is the fundamental energy source of the universe Fusion is a nuclear process that combines light elements into heavier ones, which releases large amounts of energy via E = mc 2. Proton-proton fusion occurs in the sun and sustains life on earth very slow process.! Require fast fusion (i.e. DT) on Earth since we cannot use gravitational confinement magnetic and inertial fusion are two main choices. Gravitational Fusion Magnetic Fusion Inertial Fusion

4 DT fusion is the easiest type of fusion to achieve, though requires production of tritium Quantum resonance between deuterium and tritium provides large fusion cross section. D(t,n) 4 He helium heats the plasma and neutrons must be captured. Image source: La Fusion Magnetique, Euratom- CEA, Link Fast neutrons from fusion undergo reaction with lithium-6 to make tritium closed fuel cycle.

5 Magnetic fusion energy requires low densities and long confinement times Charged particles exhibit helical motion due to Lorentz force q(v x B). Lawson criterion dictates what product of density, temperature and confinement time is required for ignition. Image source: ITER and Fusion Energy, Link Anomalous transport and plasma instability has inhibited commercial fusion thus far.

6 Helical magnetic fields are required for toroidal confinement due to particle drifts Image source: Hong Kong Institute of Engineers, Link Wrapping magnetic fields into a torus enables confinement of charged particles requires helical fields. This magnetic structure is common to most magnetic fusion approaches method of generating fields differs. Plasma currents and/or external coils provide helical fields required for confinement.

7 Fusion has many motivating qualities as ultimate green energy source A nearly unlimited fuel supply on the planet that is mostly harvested from sea water no scarcity of resources. Zero greenhouse-gas emissions only unused product is helium. No risk of meltdowns and no long-lived radioactive waste like fission reactors. Intrinsic safety of fusion makes it attractive from an industrial safety standpoint. Need fusion propulsion to get to other solar systems in a reasonable amount of time.

8 High fusion power densities requires high pressure or large magnetic fields P fusion ~ β 2 B 4 high pressure or large magnetic fields can be used to reach attractive power densities. Large fields are safe, but require expensive coils. High beta is cheap, but are more dangerous plasma instability wise need to limit instability. A high-beta fusion reactor with a small amount of superconducting coils is ideal for fusion energy economics.

9 Current leading approaches to fusion are large, expensive machines with lots of complex superconducting coils W7-X Stellarator - ~ $5-6 billion in Griefswald, Germany Link ITER Tokamak - $25+ billion in Cadarache, France. 500 MWth. Link Both of these experiments are as expensive or an order of magnitude more than a 1 GWe power plant no electricity!

10 Spheromaks use plasma currents to generate magnetic fields instead of expensive superconducting coils Reduction of superconducting coil set to one, circular equilibrium coil set simplifies reactor design. Due to less superconducting coils to shield from neutrons in difficult areas, reactor is able to be shrunk down. Smaller reactors require less superconducting coils, along with less material overall. A spheromak reactor system enables economical fusion power, but requires clever sustainment that avoids instability poor confinement was typical in previous spheromak experiments. Need sustainment discovery to make spheromak fusion energy possible!

11 Imposed-dynamo current drive is discovery required for spheromak based magnetic fusion Previous spheromak experiments had poor confinement since sustainment required plasma instability to drive dynamo action instability degrades confinement. IDCD perturbs and sustains a stable magnetic equilibrium with small, non-axisymmetric magnetic fluctuations. Pressure-driven interchange and micro-tearing modes may be responsible for core current drive and impurity regulation.

12 The Dynomak Reactor System Imposeddynamo current drive (IDCD) enables the spheromak for controlled fusion energy ITER developed cryopumps for helium removal Fuel injection Thermonuclear plasma YBCO superconductors IDCD helicity injectors for sustainment ZrH2 neutron shielding Dual-chambered, molten-salt blanket system

13 Prescribed superconducting coil set provides toroidal force balance required for steady-state operation Coil Set MA-turns A B -5.2 C 0.4 D E 16.8 Z [m] βwall [%] F 2.6 Major Radius [m]

14 IDCD discovery provides a factor of 10 reduction in fusion capital cost ITER Large present fusion power producing experiment ( $25 billion) Dynomak 2.5 GWth, 1 GWe fusion reactor ( $2.7 billion)

15 Dynomak reactor system is competitive with conventional power sources Energy Source $ USD for 1 GWe Fuel Energy Density (MJ/kg) Annual Fuel Costs for 1 GWe Coal Fire > 3 billion 24 $267 million Natural Gas + No CO 2 Capture < 1 billion 53 $175 million Natural Gas + CO 2 Capture Gen III+ Nuclear Plant Dynomak Reactor System ~1.5 billion 53 $175 million > 3 4 billion 79.5 million $67 million 2.7 Billion 330 million $36,000 Schlissel, D. et al. Coal-Fire Power Plant Construction Costs, Synapse Energy Economics Inc., Cambridge, MA. July Schlissel, D. and Biewald, B. Nuclear Power Plant Construction Costs. Synapse Energy Economics Inc., Cambridge, MA. July Black, J. et al., Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity. National Energy Technology Laboratory, sponsored by U.S. DOE, November 2011.!! Updated Capital Cost Estimates for Electricity Generation Plants, U.S. Energy Information Administration: Independent Statistics and Analysis, U.S. Department of Energy, November 2010.!

16 An economical fusion development path is proposed to reach a dynomak scale device Exciting experimental results and computer simulations along with economic attractiveness of the dynomak justifies a Proof-Of-Principle (PoP) experiment. HIT-PoP will serve as the primary risk reduction experiment of development path confirm good confinement with IDCD on an inexpensive, pulsed machine. With a successful PoP experiment, remainder of development path entails steady-state operation and confirmation of satisfactory nuclear engineering.

17 PoP experiment is the genesis of an economical fusion energy development path R a Parameter Value Parameter Value Major radius (R) 1.5 m Density (ne) 4 x m -3 Minor radius (a) 1.0 m Max Temperature 3.0 kev Plasma Current (Ip) 3.2 MA Coil Material Copper Shot Length 10.0 s Plasma Type Deuterium

18 Conclusions Fusion is the energy of the future: zero greenhouse-gas emissions, nearly unlimited fuel, high energy density and is inherently safe. The spheromak, enabled by the IDCD mechanism, provides an economical path to fusion power The Dynomak reactor concept. The discovery of IDCD experimentally and encouraging computer simulations justifies a Proof-of-Principle Experiment (HIT-PoP). HIT-PoP will demonstrate the compatibility of IDCD and good confinement in a spheromak configuration.

19 Questions and Discussion

20 Experimental evidence of IDCD on HIT-SI Published, peer-reviewed IDCD model matches experimental measurements on HIT-SI very well.! Simulations suggest IDCD will provide plasma rotation in HIT- SI3 that is presently under construction.

21 HIT-PoP cost breakdown Component Cost ($M) Vacuum tank assembly 3.8 Injectors and mounting ring 6.7 Copper equilibrium coils 2.3 Power supply and controls 9.2 Building preparations 1.7 Contingency 7.8 Total Experiment Cost 31.5

22 Overnight capital cost breakdown for dynomak reactor Subsystem Cost ($M USD) Land and land rights 17.7 Structures and site facilities Reactor structural supports 45.0 First wall and blanket 60.0 ZrH2 neutron shielding IDCD and feedback systems 38.0 Copper flux exclusion coils 38.5 Pumping and fueling systems 91.7 Tritium processing plant Biological containment 50.0 YBCO superconducting coil set Supercritical CO2 cycle Unit direct cost 1696 Construction services and equipment 288 Home office engineering and services 132 Field office engineering and services 132 Owner s cost 465 Unit overnight capital cost 2713

23 Time lines to fusion power PoP Cost estimate (Includes Science and engineering programs) $130 M Power Gen Pilot DD-water DT-FLiBe Power Gen $800 M Tritium breeding Reactor year Revenue $1.5 B Design activity Construction and operations

24 Evidence that IDCD imposed fluctuations are compatible with good plasma confinement Computer simulations suggest that confinement degradation occurs due to plasma instabilities, not magnetic fluctuations as previously thought.! 2-fluid MHD simulation a = 0.62 m, T = 100 ev, Zero pressure!! IDCD does not drive the equilibrium unstable, but simply imposes the magnetic fluctuations required for sustainment good confinement expected to be compatible with this method of sustainment.!!

Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power

Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power Derek Sutherland HIT-SI Research Group University of Washington July 25, 2017 D.A. Sutherland -- EPR 2017, Vancouver,

More information

Imposed Dynamo Current Drive

Imposed Dynamo Current Drive Imposed Dynamo Current Drive by T. R. Jarboe, C. Akcay, C. J. Hansen, A. C. Hossack, G. J. Marklin, K. Morgan, B. A. Nelson, D. A. Sutherland, B. S. Victor University of Washington, Seattle, WA 98195,

More information

The Path to Fusion Energy creating a star on earth. S. Prager Princeton Plasma Physics Laboratory

The Path to Fusion Energy creating a star on earth. S. Prager Princeton Plasma Physics Laboratory The Path to Fusion Energy creating a star on earth S. Prager Princeton Plasma Physics Laboratory The need for fusion energy is strong and enduring Carbon production (Gton) And the need is time urgent Goal

More information

Magnetic Confinement Fusion and Tokamaks Chijin Xiao Department of Physics and Engineering Physics University of Saskatchewan

Magnetic Confinement Fusion and Tokamaks Chijin Xiao Department of Physics and Engineering Physics University of Saskatchewan The Sun Magnetic Confinement Fusion and Tokamaks Chijin Xiao Department of Physics and Engineering Physics University of Saskatchewan 2017 CNS Conference Niagara Falls, June 4-7, 2017 Tokamak Outline Fusion

More information

Unpressurized steam reactor. Controlled Fission Reactors. The Moderator. Global energy production 2000

Unpressurized steam reactor. Controlled Fission Reactors. The Moderator. Global energy production 2000 From last time Fission of heavy elements produces energy Only works with 235 U, 239 Pu Fission initiated by neutron absorption. Fission products are two lighter nuclei, plus individual neutrons. These

More information

INTRODUCTION TO MAGNETIC NUCLEAR FUSION

INTRODUCTION TO MAGNETIC NUCLEAR FUSION INTRODUCTION TO MAGNETIC NUCLEAR FUSION S.E. Sharapov Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK With acknowledgments to B.Alper for use of his transparencies

More information

Introduction to Fusion Physics

Introduction to Fusion Physics Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction

More information

Chapter IX: Nuclear fusion

Chapter IX: Nuclear fusion Chapter IX: Nuclear fusion 1 Summary 1. General remarks 2. Basic processes 3. Characteristics of fusion 4. Solar fusion 5. Controlled fusion 2 General remarks (1) Maximum of binding energy per nucleon

More information

Plasma & Fusion on Earth: merging age-old natural phenomena into your present and future

Plasma & Fusion on Earth: merging age-old natural phenomena into your present and future Plasma & Fusion on Earth: merging age-old natural phenomena into your present and future Presented by Rick Lee Chief Operator, DIII-D Operations Manager, Energy/Fusion Outreach Program General Atomics

More information

Derivation of dynamo current drive in a closed current volume and stable current sustainment in the HIT SI experiment

Derivation of dynamo current drive in a closed current volume and stable current sustainment in the HIT SI experiment Derivation of dynamo current drive and stable current sustainment in the HIT SI experiment 1 Derivation of dynamo current drive in a closed current volume and stable current sustainment in the HIT SI experiment

More information

GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO

GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO by C.P.C. WONG and R.D. STAMBAUGH JULY 1999 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United

More information

JET and Fusion Energy for the Next Millennia

JET and Fusion Energy for the Next Millennia JET and Fusion Energy for the Next Millennia JET Joint Undertaking Abingdon, Oxfordshire OX14 3EA JG99.294/1 Talk Outline What is Nuclear Fusion? How can Fusion help our Energy needs? Progress with Magnetic

More information

Developing a Robust Compact Tokamak Reactor by Exploiting New Superconducting Technologies and the Synergistic Effects of High Field D.

Developing a Robust Compact Tokamak Reactor by Exploiting New Superconducting Technologies and the Synergistic Effects of High Field D. Developing a Robust Compact Tokamak Reactor by Exploiting ew Superconducting Technologies and the Synergistic Effects of High Field D. Whyte, MIT Steady-state tokamak fusion reactors would be substantially

More information

Physics of fusion power. Lecture 14: Anomalous transport / ITER

Physics of fusion power. Lecture 14: Anomalous transport / ITER Physics of fusion power Lecture 14: Anomalous transport / ITER Thursday.. Guest lecturer and international celebrity Dr. D. Gericke will give an overview of inertial confinement fusion.. Instabilities

More information

A Faster Way to Fusion

A Faster Way to Fusion A Faster Way to Fusion 2017 Tokamak Energy Tokamak Energy Ltd Company Overview April 2018 Our Mission To deliver to mankind a cheap, safe, secure and practically limitless source of clean energy fusion

More information

Aspects of Advanced Fuel FRC Fusion Reactors

Aspects of Advanced Fuel FRC Fusion Reactors Aspects of Advanced Fuel FRC Fusion Reactors John F Santarius and Gerald L Kulcinski Fusion Technology Institute Engineering Physics Department CT2016 Irvine, California August 22-24, 2016 santarius@engr.wisc.edu;

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 20 Modern Physics Nuclear Energy and Elementary Particles Fission, Fusion and Reactors Elementary Particles Fundamental Forces Classification of Particles Conservation

More information

Magnetic Confinement Fusion-Status and Challenges

Magnetic Confinement Fusion-Status and Challenges Chalmers energy conference 2012 Magnetic Confinement Fusion-Status and Challenges F. Wagner Max-Planck-Institute for Plasma Physics, Greifswald Germany, EURATOM Association RLPAT St. Petersburg Polytechnic

More information

Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO

Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO Mohamed Abdou Distinguished Professor of Engineering and Applied Science (UCLA) Director, Center for Energy Science & Technology

More information

MHD. Jeff Freidberg MIT

MHD. Jeff Freidberg MIT MHD Jeff Freidberg MIT 1 What is MHD MHD stands for magnetohydrodynamics MHD is a simple, self-consistent fluid description of a fusion plasma Its main application involves the macroscopic equilibrium

More information

Jacob s Ladder Controlling Lightning

Jacob s Ladder Controlling Lightning Host: Fusion specialist: Jacob s Ladder Controlling Lightning PART 1 Jacob s ladder demonstration Video Teacher resources Phil Dooley European Fusion Development Agreement Peter de Vries European Fusion

More information

Small Spherical Tokamaks and their potential role in development of fusion power

Small Spherical Tokamaks and their potential role in development of fusion power Small Spherical Tokamaks and their potential role in development of fusion power Dr David Kingham, Nuclear Futures, 26 March 2013 Plasma in START tokamak, Courtesy Euratom/CCFE Fusion Association 1 Introduction

More information

Physics & Engineering Physics University of Saskatchewan. Supported by NSERC, CRC

Physics & Engineering Physics University of Saskatchewan. Supported by NSERC, CRC Fusion Energy Chijin Xiao and Akira Hirose Plasma Physics laboratory Physics & Engineering Physics University of Saskatchewan Supported by NSERC, CRC Trends in Nuclear & Medical Technologies April il6-7,

More information

How Is Nuclear Fusion Going?

How Is Nuclear Fusion Going? How Is Nuclear Fusion Going? Kehan Chen 2017/7/16 Math 190S Duke Summer College 1.Introduction In nuclear physics, nuclear fusion is a reaction in which two or more atomic nuclei come close enough to form

More information

purposes is highly encouraged.

purposes is highly encouraged. The following slide show is a compilation of slides from many previous similar slide shows that have been produced by different members of the fusion and plasma physics education community. We realize

More information

Polywell Fusion J A E YO UNG PA R K E NN F USION SYMPOSIUM, A P R I L

Polywell Fusion J A E YO UNG PA R K E NN F USION SYMPOSIUM, A P R I L Polywell Fusion J A E YO UNG PA R K E NERGY MAT T E R CONVERSION CORPORATION E NN F USION SYMPOSIUM, A P R I L 20 20 1 8 History of EMC2 1985 Energy Matter Conversion Corporation is a US-incorporated,

More information

Nuclear Energy. Nuclear Structure and Radioactivity

Nuclear Energy. Nuclear Structure and Radioactivity Nuclear Energy Nuclear Structure and Radioactivity I. Review - Periodic Table A. Atomic Number: The number of protons in the nucleus of an atom B. Atomic Mass: The sum of the mass of protons, neutrons

More information

Smaller & Sooner: How a new generation of superconductors can accelerate fusion s development

Smaller & Sooner: How a new generation of superconductors can accelerate fusion s development Smaller & Sooner: How a new generation of superconductors can accelerate fusion s development Dennis Whyte MIT Nuclear Science & Engineering Plasma Science Fusion Center June 2012 American Security Project

More information

Helium Catalyzed D-D Fusion in a Levitated Dipole

Helium Catalyzed D-D Fusion in a Levitated Dipole Helium Catalyzed D-D Fusion in a Levitated Dipole Jay Kesner, L. Bromberg, MIT D.T. Garnier, A. Hansen, M.E. Mauel Columbia University APS 2003 DPP Meeting, Albuquerque October 27, 2003 Columbia University

More information

Prospects of Nuclear Fusion Energy Research in Lebanon and the Middle-East

Prospects of Nuclear Fusion Energy Research in Lebanon and the Middle-East Prospects of Nuclear Fusion Energy Research in Lebanon and the Middle-East Ghassan Antar Physics Department American University of Beirut http://www.aub.edu.lb/physics/lpfd Outline 1. Introduction and

More information

Overview of Pilot Plant Studies

Overview of Pilot Plant Studies Overview of Pilot Plant Studies and contributions to FNST Jon Menard, Rich Hawryluk, Hutch Neilson, Stewart Prager, Mike Zarnstorff Princeton Plasma Physics Laboratory Fusion Nuclear Science and Technology

More information

Toward the Realization of Fusion Energy

Toward the Realization of Fusion Energy Toward the Realization of Fusion Energy Nuclear fusion is the energy source of the sun and stars, in which light atomic nuclei fuse together, releasing a large amount of energy. Fusion power can be generated

More information

Plasma Wall Interactions in Tokamak

Plasma Wall Interactions in Tokamak Plasma Wall Interactions in Tokamak Dr. C Grisolia, Association Euratom/CEA sur la fusion, CEA/Cadarache Outline 1. Conditions for Fusion in Tokamaks 2. Consequences of plasma operation on in vessel materials:

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 15: Alternate Concepts (with Darren Sarmer)

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 15: Alternate Concepts (with Darren Sarmer) 22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 15: Alternate Concepts (with Darren Sarmer) 1. In todays lecture we discuss the basic ideas behind the main alternate concepts to the tokamak.

More information

ELECTROMAGNETIC LIQUID METAL WALL PHENOMENA

ELECTROMAGNETIC LIQUID METAL WALL PHENOMENA ELECTROMAGNETIC LIQUID METAL WALL PHENOMENA BY BOB WOOLLEY 15-19 FEBRUARY 1999 APEX-6 MEETING LIQUID WALLS A sufficiently thick, flowing, liquid first wall and tritium breeding blanket which almost completely

More information

0 Magnetically Confined Plasma

0 Magnetically Confined Plasma 0 Magnetically Confined Plasma 0.1 Particle Motion in Prescribed Fields The equation of motion for species s (= e, i) is written as d v ( s m s dt = q s E + vs B). The motion in a constant magnetic field

More information

A Technology Review of Electricity Generation from Nuclear Fusion Reaction in Future

A Technology Review of Electricity Generation from Nuclear Fusion Reaction in Future International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) 3 A Technology Review of Electricity Generation from Nuclear Fusion Reaction in Future 1 Joydeep Sarkar, 2 Karishma P. Patil, 3

More information

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets PFC/JA-91-5 Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets E. A. Chaniotakis L. Bromberg D. R. Cohn April 25, 1991 Plasma Fusion Center Massachusetts Institute of Technology

More information

Tokamak Fusion Basics and the MHD Equations

Tokamak Fusion Basics and the MHD Equations MHD Simulations for Fusion Applications Lecture 1 Tokamak Fusion Basics and the MHD Equations Stephen C. Jardin Princeton Plasma Physics Laboratory CEMRACS 1 Marseille, France July 19, 21 1 Fusion Powers

More information

MAGNETIC FUSION m DO NOT CIRCULATE RESEARCH

MAGNETIC FUSION m DO NOT CIRCULATE RESEARCH L4SL &i?o-zf? MAGNETIC FUSION m DO NOT CIRCULATE RESEARCH i= PERMANENT RETENTION 1 I c1..- Post Office Box 1663 Los Alamos. New Mexico 87545 \ I \\.. Magnetic Fusion Research at the. Los Alamos Scientific

More information

Current Drive Experiments in the HIT-II Spherical Tokamak

Current Drive Experiments in the HIT-II Spherical Tokamak Current Drive Experiments in the HIT-II Spherical Tokamak T. R. Jarboe, P. Gu, V. A. Izzo, P. E. Jewell, K. J. McCollam, B. A. Nelson, R. Raman, A. J. Redd, P. E. Sieck, and R. J. Smith, Aerospace & Energetics

More information

PHYSICS BASIS FOR THE GASDYNAMIC MIRROR (GDM) FUSION ROCKET. Abstract

PHYSICS BASIS FOR THE GASDYNAMIC MIRROR (GDM) FUSION ROCKET. Abstract PHYSICS BASIS FOR THE GASDYNAMIC MIRROR (GDM) FUSION ROCKET T. Kammash Department of Nuclear Engineering and Radiological Sciences University of Michigan Ann Arbor, MI 48109 (313) 764-0205 W. Emrich Jr.

More information

TWO FUSION TYPES NEUTRONIC ANEUTRONIC

TWO FUSION TYPES NEUTRONIC ANEUTRONIC October 2016 October 2016 WHAT IS FUSION? TWO FUSION TYPES NEUTRONIC ANEUTRONIC TWO FUSION TYPES NEUTRONIC ANEUTRONIC TWO FUSION TYPES NEUTRONIC ANEUTRONIC produces neutrons produces NO neutrons NEUTRONIC

More information

Nuclear Fusion 1 of 24 Boardworks Ltd 2011

Nuclear Fusion 1 of 24 Boardworks Ltd 2011 Nuclear Fusion 1 of 24 Boardworks Ltd 2011 2 of 24 Boardworks Ltd 2011 How do we get energy from atoms? 3 of 24 Boardworks Ltd 2011 Energy is produced from atoms in power stations using the process of

More information

Nuclear Fission & Fusion

Nuclear Fission & Fusion Nuclear Fission & Fusion 1 Nuclear Fission 2 There is a delicate balance between nuclear attraction and electrical repulsion between protons in the nucleus. Nuclear Fission If the uranium nucleus is stretched

More information

240NU211 - Fusion Technology

240NU211 - Fusion Technology Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 240 - ETSEIB - Barcelona School of Industrial Engineering 748 - FIS - Department of Physics MASTER'S DEGREE IN INDUSTRIAL ENGINEERING

More information

Lecture 14, 8/9/2017. Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion

Lecture 14, 8/9/2017. Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion Lecture 14, 8/9/2017 Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion Nuclear Reactions and the Transmutation of Elements A nuclear reaction takes place

More information

Fusion: The Ultimate Energy Source for the 21 st Century and Beyond

Fusion: The Ultimate Energy Source for the 21 st Century and Beyond Fusion: The Ultimate Energy Source for the 21 st Century and Beyond Mohamed Abdou Distinguished Professor of Engineering and Applied Science (UCLA) Director, Center for Energy Science & Technology (UCLA)

More information

Perspective on Fusion Energy

Perspective on Fusion Energy Perspective on Fusion Energy Mohamed Abdou Distinguished Professor of Engineering and Applied Science (UCLA) Director, Center for Energy Science & Technology (UCLA) President, Council of Energy Research

More information

A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current. John Sarff

A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current. John Sarff A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current John Sarff 12th IEA RFP Workshop Kyoto Institute of Technology, Kyoto, Japan Mar 26-28, 2007 The RFP fusion development

More information

Experimental Facility to Study MHD effects at Very High Hartmann and Interaction parameters related to Indian Test Blanket Module for ITER

Experimental Facility to Study MHD effects at Very High Hartmann and Interaction parameters related to Indian Test Blanket Module for ITER Experimental Facility to Study MHD effects at Very High Hartmann and Interaction parameters related to Indian Test Blanket Module for ITER P. Satyamurthy Bhabha Atomic Research Centre, India P. Satyamurthy,

More information

Is the Troyon limit a beta limit?

Is the Troyon limit a beta limit? Is the Troyon limit a beta limit? Pierre-Alexandre Gourdain 1 1 Extreme State Physics Laboratory, Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA The plasma beta,

More information

JET JET JET EFDA THE JOINT EUROPEAN TORUS A EUROPEAN SUCCESS STORY

JET JET JET EFDA THE JOINT EUROPEAN TORUS A EUROPEAN SUCCESS STORY EFDA LEAD ING DEVICE FOR FUSION STUDIES HOLDER OF THE WORLD RECORD OF FUSION POWER PRODUCTION EXPERIMENTS STRONGLY FOCUSSED ON THE PREPARATION FOR ITER EXPERIMENTAL DEVICE USED UNDER THE EUROPEAN FUSION

More information

Design window analysis of LHD-type Heliotron DEMO reactors

Design window analysis of LHD-type Heliotron DEMO reactors Design window analysis of LHD-type Heliotron DEMO reactors Fusion System Research Division, Department of Helical Plasma Research, National Institute for Fusion Science Takuya GOTO, Junichi MIYAZAWA, Teruya

More information

Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE

Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE In the beginning In the late fifties, alternative applications of nuclear explosions were being considered the number one suggestion

More information

The Power of the Universe on Earth: Plasma Physics and Fusion Energy

The Power of the Universe on Earth: Plasma Physics and Fusion Energy Educating Kids & Exciting Teachers about Science: A Model from the Plasma Science Community The Power of the Universe on Earth: Plasma Physics and Fusion Energy David Newman Physics Department University

More information

Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk

Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk Max-Planck-Institut für Plasmaphysik Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk Robert Wolf robert.wolf@ipp.mpg.de www.ipp.mpg.de Contents Magnetic confinement The stellarator

More information

Active MHD Control Needs in Helical Configurations

Active MHD Control Needs in Helical Configurations Active MHD Control Needs in Helical Configurations M.C. Zarnstorff 1 Presented by E. Fredrickson 1 With thanks to A. Weller 2, J. Geiger 2, A. Reiman 1, and the W7-AS Team and NBI-Group. 1 Princeton Plasma

More information

Nuclear Reactions and E = mc 2. L 38 Modern Physics [4] Hazards of radiation. Radiation sickness. Biological effects of nuclear radiation

Nuclear Reactions and E = mc 2. L 38 Modern Physics [4] Hazards of radiation. Radiation sickness. Biological effects of nuclear radiation L 38 Modern Physics [4] Nuclear physics what s s inside the nucleus and what holds it together what is radioactivity, halflife carbon dating Nuclear energy nuclear fission nuclear fusion nuclear reactors

More information

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant

More information

Nuclear Energy Learning Outcomes

Nuclear Energy Learning Outcomes 1 Nuclear Energy Learning Outcomes Describe the principles underlying fission and fusion. Interpret nuclear reactions. Discuss nuclear weapons. Describe the structure and operation of a nuclear reactor.

More information

Nuclear Energy Learning Outcomes. Nuclear Fission. Chain Reaction

Nuclear Energy Learning Outcomes. Nuclear Fission. Chain Reaction by fastfission public domain by fastfission public domain 1 Nuclear Energy Learning Outcomes Describe the principles underlying fission and fusion. Interpret nuclear reactions. Discuss nuclear weapons.

More information

Physics 30 Modern Physics Unit: Fission and Fusion

Physics 30 Modern Physics Unit: Fission and Fusion Physics 30 Modern Physics Unit: Fission and Fusion Nuclear Energy For years and years scientists struggled to describe where energy came from. They could see the uses of energy and the results of energy

More information

Fusion Energy: How it works, Why we want it, & How to get it sooner

Fusion Energy: How it works, Why we want it, & How to get it sooner MIT Plasma Science & Fusion Center Fusion Energy: How it works, Why we want it, & How to get it sooner Dennis Whyte MIT Plasma Science and Fusion Center IAP seminar, MIT January 2015 1 How It Works 2 The

More information

Plasma and Fusion Research: Regular Articles Volume 10, (2015)

Plasma and Fusion Research: Regular Articles Volume 10, (2015) Possibility of Quasi-Steady-State Operation of Low-Temperature LHD-Type Deuterium-Deuterium (DD) Reactor Using Impurity Hole Phenomena DD Reactor Controlled by Solid Boron Pellets ) Tsuguhiro WATANABE

More information

Fusion Energy: Pipe Dream or Panacea

Fusion Energy: Pipe Dream or Panacea Fusion Energy: Pipe Dream or Panacea Mike Mauel Columbia University Energy Options & Paths to Climate Stabilization Aspen, 9 July 2003 Fusion Energy: Pipe Dream or Panacea Promise, Progress, and the Challenge

More information

Plasma Physics and Fusion Energy Research

Plasma Physics and Fusion Energy Research Plasma Physics and Fusion Energy Research Paddy Mc Carthy, Physics Department, UCC, 1/11/2011 Research Group: Plasma Data Analysis Group: PhD Students: MSc Students: P. J. Mc Carthy (Group Leader) R. Armstrong

More information

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e +

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e + β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Last Lecture: Radioactivity, Nuclear decay Radiation damage This lecture: nuclear physics in medicine and fusion and fission Final

More information

10.4 Fission and Fusion

10.4 Fission and Fusion This painting of an alchemist s laboratory was made around 1570. For centuries, these early scientists, known as alchemists, tried to use chemical reactions to make gold. The alchemists failed in their

More information

Chapter 10 Section 4 Notes

Chapter 10 Section 4 Notes Chapter 10 Section 4 Notes This painting of an alchemist s laboratory was made around 1570. For centuries, these early scientists, known as alchemists, tried to use chemical reactions to make gold. The

More information

Radioactivity. L 38 Modern Physics [4] Hazards of radiation. Nuclear Reactions and E = mc 2 Einstein: a little mass goes a long way

Radioactivity. L 38 Modern Physics [4] Hazards of radiation. Nuclear Reactions and E = mc 2 Einstein: a little mass goes a long way L 38 Modern Physics [4] Nuclear physics what s inside the nucleus and what holds it together what is radioactivity, halflife carbon dating Nuclear energy nuclear fission nuclear fusion nuclear reactors

More information

Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics October Introduction to Fusion Leading to ITER

Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics October Introduction to Fusion Leading to ITER 2267-1 Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics 3-14 October 2011 Introduction to Fusion Leading to ITER SNIPES Joseph Allan Directorate for Plasma Operation Plasma Operations

More information

Studies of Next-Step Spherical Tokamaks Using High-Temperature Superconductors Jonathan Menard (PPPL)

Studies of Next-Step Spherical Tokamaks Using High-Temperature Superconductors Jonathan Menard (PPPL) Studies of Next-Step Spherical Tokamaks Using High-Temperature Superconductors Jonathan Menard (PPPL) 22 nd Topical Meeting on the Technology of Fusion Energy (TOFE) Philadelphia, PA August 22-25, 2016

More information

Nuclear Fusion and ITER

Nuclear Fusion and ITER Nuclear Fusion and ITER C. Alejaldre ITER Deputy Director-General Cursos de Verano UPM Julio 2, 2007 1 ITER the way to fusion power ITER ( the way in Latin) is the essential next step in the development

More information

240 ETSEIB Escola Tècnica Superior d Enginyeria Industrial de. European Master in Innovation in Nuclear Energy (EMINE)

240 ETSEIB Escola Tècnica Superior d Enginyeria Industrial de. European Master in Innovation in Nuclear Energy (EMINE) Course Name: Code: Fusion Technology 240NU211 Crèdits ECTS: 4.5 Responsible unit: Barcelona Department: 240 ETSEIB Escola Tècnica Superior d Enginyeria Industrial de 721 Physics and Nuclear Engineering

More information

Turbulence and Transport The Secrets of Magnetic Confinement

Turbulence and Transport The Secrets of Magnetic Confinement Turbulence and Transport The Secrets of Magnetic Confinement Presented by Martin Greenwald MIT Plasma Science & Fusion Center IAP January 2005 FUSION REACTIONS POWER THE STARS AND PRODUCE THE ELEMENTS

More information

References and Figures from: - Basdevant, Fundamentals in Nuclear Physics

References and Figures from: - Basdevant, Fundamentals in Nuclear Physics Lecture 22 Fusion Experimental Nuclear Physics PHYS 741 heeger@wisc.edu References and Figures from: - Basdevant, Fundamentals in Nuclear Physics 1 Reading for Next Week Phys. Rev. D 57, 3873-3889 (1998)

More information

1. What is the phenomenon that best explains why greenhouse gases absorb infrared radiation? D. Diffraction (Total 1 mark)

1. What is the phenomenon that best explains why greenhouse gases absorb infrared radiation? D. Diffraction (Total 1 mark) 1. What is the phenomenon that best explains why greenhouse gases absorb infrared radiation? A. Resonance B. Interference C. Refraction D. Diffraction 2. In which of the following places will the albedo

More information

Principles of Nuclear Fusion & Fusion research in Belgium R. R. Weynants

Principles of Nuclear Fusion & Fusion research in Belgium R. R. Weynants Principles of Nuclear Fusion & Fusion research in Belgium R. R. Weynants Laboratorium voor Plasmafysica - Laboratoire de Physique des Plasmas Koninklijke Militaire School - Ecole Royale Militaire 1040

More information

The Power of the Stars How Nuclear Fusion Could Power the Future

The Power of the Stars How Nuclear Fusion Could Power the Future Western Oregon University Digital Commons@WOU Academic Excellence Showcase Proceedings Student Scholarship 2018-06-01 The Power of the Stars How Nuclear Fusion Could Power the Future Ted Jones Western

More information

Introduction to Nuclear Fusion. Prof. Dr. Yong-Su Na

Introduction to Nuclear Fusion. Prof. Dr. Yong-Su Na Introduction to Nuclear Fusion Prof. Dr. Yong-Su Na What is a stellarator? M. Otthe, Stellarator: Experiments, IPP Summer School (2008) 2 Closed Magnetic System ion +++ ExB drift Electric field, E - -

More information

A Virtual Reactor Model for Inertial Fusion Energy. Michel Decroisette Noël Fleurot Marc Novaro Guy Schurtz Jacques Duysens

A Virtual Reactor Model for Inertial Fusion Energy. Michel Decroisette Noël Fleurot Marc Novaro Guy Schurtz Jacques Duysens A Virtual Reactor Model for Inertial Fusion Energy Michel Decroisette Noël Fleurot Marc Novaro Guy Schurtz Jacques Duysens 1 OUTLINE Introduction Fusion vs Fission Inertial Confinement Fusion Principle

More information

Issues for Neutron Calculations for ITER Fusion Reactor

Issues for Neutron Calculations for ITER Fusion Reactor Introduction Issues for Neutron Calculations for ITER Fusion Reactor Erik Nonbøl and Bent Lauritzen Risø DTU, National Laboratory for Sustainable Energy Roskilde, Denmark Outline 1. Fusion development

More information

GA A22689 SLOW LINER FUSION

GA A22689 SLOW LINER FUSION GA A22689 SLOW LINER FUSION by AUGUST 1997 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any

More information

Matter and Energy. Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law.

Matter and Energy. Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. Fission & Fusion Matter and Energy Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. 2 H 2 O 2 H 2 + O 2 We now need to understand

More information

Controlled Thermonuclear Fusion

Controlled Thermonuclear Fusion Controlled Thermonuclear Fusion Roscoe White Plasma Physics Laboratory, Princeton University The promise of cheap clean energy Consistently twenty years off, for the last 60 years Research began at Princeton

More information

Neutral beam plasma heating

Neutral beam plasma heating Seminar I b 1 st year, 2 nd cycle program Neutral beam plasma heating Author: Gabrijela Ikovic Advisor: prof.dr. Tomaž Gyergyek Ljubljana, May 2014 Abstract For plasma to be ignited, external heating is

More information

The Physics of Nuclear Reactors. Heather King Physics 420

The Physics of Nuclear Reactors. Heather King Physics 420 The Physics of Nuclear Reactors Heather King Physics 420 Nuclear Reactions A nuclear reaction is a reaction that involves atomic nuclei, or nuclear particles (protons, neutrons), producing products different

More information

ª 10 KeV. In 2XIIB and the tandem mirrors built to date, in which the plug radius R p. ª r Li

ª 10 KeV. In 2XIIB and the tandem mirrors built to date, in which the plug radius R p. ª r Li Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies R. F. Post, T. K. Fowler*, R. Bulmer, J. Byers, D. Hua, L. Tung Lawrence Livermore National Laboratory *Consultant, Presenter This talk

More information

Physics and Operations Plan for LDX

Physics and Operations Plan for LDX Physics and Operations Plan for LDX Columbia University A. Hansen D.T. Garnier, M.E. Mauel, T. Sunn Pedersen, E. Ortiz Columbia University J. Kesner, C.M. Jones, I. Karim, P. Michael, J. Minervini, A.

More information

Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system

Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system J.M. Ané 1, V. Grandgirard, F. Albajar 1, J.Johner 1 1Euratom-CEA Association, Cadarache, France Euratom-EPFL

More information

Neutronic Activation Analysis for ITER Fusion Reactor

Neutronic Activation Analysis for ITER Fusion Reactor Neutronic Activation Analysis for ITER Fusion Reactor Barbara Caiffi 100 Congresso Nazionale SIF 1 Outlook Nuclear Fusion International Thermonuclear Experimental Reactor (ITER) Neutronics Computational

More information

Microwave Spherical Torus Experiment and Prospect for Compact Fusion Reactor

Microwave Spherical Torus Experiment and Prospect for Compact Fusion Reactor Microwave Spherical Torus Experiment and Prospect for Compact Fusion Reactor Takashi Maekawa 1,*, Hitoshi Tanaka 1, Masaki Uchida 1, Tomokazu Yoshinaga 1, Satoshi Nishio 2 and Masayasu Sato 2 1 Graduate

More information

PLASMA: WHAT IT IS, HOW TO MAKE IT AND HOW TO HOLD IT. Felix I. Parra Rudolf Peierls Centre for Theoretical Physics, University of Oxford

PLASMA: WHAT IT IS, HOW TO MAKE IT AND HOW TO HOLD IT. Felix I. Parra Rudolf Peierls Centre for Theoretical Physics, University of Oxford 1 PLASMA: WHAT IT IS, HOW TO MAKE IT AND HOW TO HOLD IT Felix I. Parra Rudolf Peierls Centre for Theoretical Physics, University of Oxford 2 Overview Why do we need plasmas? For fusion, among other things

More information

BUBBLE POWER SYNOPSIS: 1. ABSTRACT INTRODUCTION 3. AN IDEA OF SONOFUSION 4. CONSTRUCTION & WORKING 5. FORMATION OF BUBBLES

BUBBLE POWER SYNOPSIS: 1. ABSTRACT INTRODUCTION 3. AN IDEA OF SONOFUSION 4. CONSTRUCTION & WORKING 5. FORMATION OF BUBBLES BUBBLE POWER (BASED ON: RENEWABLE AND NON-CONVENTIONAL SOURCE OF ELECTRICAL ENERGY) SYNOPSIS: 1. ABSTRACT INTRODUCTION 3. AN IDEA OF SONOFUSION 4. CONSTRUCTION & WORKING 5. FORMATION OF BUBBLES Page 1

More information

The RFP: Plasma Confinement with a Reversed Twist

The RFP: Plasma Confinement with a Reversed Twist The RFP: Plasma Confinement with a Reversed Twist JOHN SARFF Department of Physics University of Wisconsin-Madison Invited Tutorial 1997 Meeting APS DPP Pittsburgh Nov. 19, 1997 A tutorial on the Reversed

More information

Chapter 12. Magnetic Fusion Toroidal Machines: Principles, results, perspective

Chapter 12. Magnetic Fusion Toroidal Machines: Principles, results, perspective Chapter 12 Magnetic Fusion Toroidal Machines: Principles, results, perspective S. Atzeni May 10, 2010; rev.: May 16, 2012 English version: May 17, 2017 1 Magnetic confinement fusion plasmas low density

More information

The Effects of Noise and Time Delay on RWM Feedback System Performance

The Effects of Noise and Time Delay on RWM Feedback System Performance The Effects of Noise and Time Delay on RWM Feedback System Performance O. Katsuro-Hopkins, J. Bialek, G. Navratil (Department of Applied Physics and Applied Mathematics, Columbia University, New York,

More information

Neutron Sources Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University

Neutron Sources Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University Neutron Sources Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University Neutrons: discovery In 1920, Rutherford postulated that there were neutral, massive particles in

More information

Configuration Optimization of a Planar-Axis Stellarator with a Reduced Shafranov Shift )

Configuration Optimization of a Planar-Axis Stellarator with a Reduced Shafranov Shift ) Configuration Optimization of a Planar-Axis Stellarator with a Reduced Shafranov Shift ) Shoichi OKAMURA 1,2) 1) National Institute for Fusion Science, Toki 509-5292, Japan 2) Department of Fusion Science,

More information