Not Just Fusion: Exploring TWDEC Technology for Fission Fragment Direct Energy Conversion

Size: px
Start display at page:

Download "Not Just Fusion: Exploring TWDEC Technology for Fission Fragment Direct Energy Conversion"

Transcription

1 Not Just Fusion: Exploring TWDEC Technology for Fission Fragment Direct Energy Conversion A. G. Tarditi Electrical Power Research Institute, Knoxville, TN

2 Introduction Fission fragments direct energy conversion has been considered in the past for increasing power plant efficiency [1-4] and for space propulsion [5-6] These concepts were focused on the direct conversion of the charged fragments utilizing high-voltage DC electrodes. [1] S. A. Slutz et al.,phys. Plasmas 10, 2983 (2003) [2] P. V. Tsvetkov, et al., Trans. American Nucl. Soc., 91, 927 (2004) [3] and 2004 annual reports [4] R. Clark and R. Sheldon, AIAA (2005) [5] G. Chapline and Y. Matsuda, Fusion Technology 20, 719 (1991) [6] P. V. Tsvetkov, et al., AIP Conference Proceedings 813.1, 803, (2006)

3 Introduction (II) Considering a different approach: direct energy conversion of charged fission fragments kinetic energy into alternating current via a traveling wave coupling This approach was first conceived application to fusion reactions (Traveling Wave Direct Energy Converter, TWDEC [7-9]) [7] Momota H. et al. Fusion Technology, 35, 60 (1999) [8] Momota, H., Miley, G.H., AIP, Conf. Proc., 608, 834, (2002) [9] Yasaka Y. et al., Nucl. Fusion 49, (2009)

4 Previous Work on Fission DEC

5 Previous Work on Fission DEC Fission fragments direct energy conversion has been considered in the past for increasing power plant efficiency [1-4] and for space propulsion [5-6] These concepts were focused on the direct conversion of the charged fragments utilizing high-voltage DC electrodes. [1] S. A. Slutz et al.,phys. Plasmas 10, 2983 (2003) [2] P. V. Tsvetkov, et al., Trans. American Nucl. Soc., 91, 927 (2004) [3] and 2004 annual reports [4] R. Clark and R. Sheldon, AIAA (2005) [5] G. Chapline and Y. Matsuda, Fusion Technology 20, 719 (1991) [6] P. V. Tsvetkov, et al., AIP Conference Proceedings 813.1, 803, (2006)

6 Previous Work on Fission DEC Figure 2. Schematic of proposed Fission Fragment Rocket. Fissile dusty plasma fuel is confned to dust chamber, where RF induction coils heat the plasma. Fission fragments are collimated by the magnetic field either to collection electrodes for power, or exit the reactor for thrust.

7 Previous Work on Fission DEC

8 Previous Work on Fission DEC Early JPL work:

9 Comparison w\fusion Design Momota-Miley Design [8] : Direct Energy Converter D- 3 He IEC fusion core (several units, each 10 MW/6,000 kg) : D- 3 He IEC units: power=10 MW, weight=6,000 kg TWDEC (pair) total weight=35,000 kg TWDEC power in=250 MW, power out=150 MW (h=0.6) Length=150 m, Diameter=6.6 m Heat removal 100 MW radiator panel 50x140m, temperature 600 K Specific mass: a=0.14 kg/kw

10 TWDEC Fission Conceptual Design Exploring of DEC configurations that could be implemented within a nuclear fission core Collecting and collimating a beam of charged fission fragments (e.g. thin solid core for optimal fragment extraction, [1]) Consider application to gas core (e.g. vortex confinement, [7]) [7] Sedwick, AIAA Journal of Propulsion and Power, Vol 23, No. 1, Jan-Feb 2007.

11 TWDEC Fission Conceptual Design Charged fission fragments (positively charged, about 20 electron charges) are magnetically collected and focused Fission fragment beam of relatively low density, to avoid significant space charge effects.

12 TWDEC Fission Example 235 U => 140 Xe + 94 Sr + 2n Consider a 100 MeV 140 Xe fragment with a +20e charge 140 Xe fragment speed v Xe = m/s For a inter-electrode TWDEC distance of d=1 m the frequency of the AC power is f 0 =v Xe /2d=5.85 MHz Alternating-gradient beam focusing

13 TWDEC Fission Example Solenoidal magnetic field B 0 = 0.5 T: Xe fragment gyroradius= 1.71 m B Collimated Fragment Beam Fragment at reduced drift speed into TWDEC Side injection can reduce drift speed and TWDEC frequency Bunching can provide the non-adiabatic injection required to capture the ions.

14 TWDEC Fission Example 235 U => 140 Xe + 94 Sr + 2n Consider a 100 MeV 140 Xe fragment with a +20e charge 140 Xe fragment speed v Xe = m/s Consider a magnetic field B 0 = 0.5 T: Xe fragment gyroradius= 1.71 m For a inter-electrode TWDEC distance of d=1 m the frequency of the AC power is f 0 =v Xe /2d=5.85 MHz In real life multiple products must be considered

15 TWDEC Fission Challenges In real life multiple fragment products (different masses and energies) must be considered Multiple channels may be required for efficiency Electron flow must be dealt with

16 Summary Fission fragments leave thin fissile fuel elements Fragments carry large positive charge ( 20 e) and are collimated into a beam by a magnetic field Traveling Wave DEC converts fragment energy into AC electric power

Spacecraft Applications for Aneutronic Fusion and Direct Energy Conversion

Spacecraft Applications for Aneutronic Fusion and Direct Energy Conversion Spacecraft Applications for Aneutronic Fusion and Direct Energy Conversion Project Team: Jeff George NASA/JSC-Energy Conversion Systems Branch Paul March Engineering Support Contract Group/Houston George

More information

New Challenges in DEC Research for Space Applications: High-density Regime and Beam Neutralization

New Challenges in DEC Research for Space Applications: High-density Regime and Beam Neutralization New Challenges in DEC Research for Space Applications: High-density Regime and Beam Neutralization A. G. Tarditi Electric Power Research Institute, Knoxville, TN (USA) 14 th US-Japan IECF Workshop - College

More information

Studies of Charge Separation Characteristics for Higher Density Plasma. in a Direct Energy Converter Using Slanted Cusp Magnetic Field

Studies of Charge Separation Characteristics for Higher Density Plasma. in a Direct Energy Converter Using Slanted Cusp Magnetic Field J. Plasma Fusion Res. SERES, Vol. 9 (1) Studies of Charge Separation Characteristics for Higher Density Plasma in a Direct Energy Converter Using Slanted Cusp Magnetic Field Akio TANGUCH, Norifumi SOTAN,

More information

Magnetically-Channeled SIEC Array (MCSA) Fusion Device for Interplanetary Missions

Magnetically-Channeled SIEC Array (MCSA) Fusion Device for Interplanetary Missions Magnetically-Channeled SIEC Array (MCSA) Fusion Device for Interplanetary Missions G. H. Miley, R. Stubbers, J. Webber, H. Momota University of Illinois, U-C,Department of Nuclear, Plasma and Radiological

More information

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT ABSTRACT A. G. Tarditi and J. V. Shebalin Advanced Space Propulsion Laboratory NASA Johnson Space Center Houston, TX

More information

Fission-Fusion Neutron Source

Fission-Fusion Neutron Source LLNL-CONF-415765 Fission-Fusion Neutron Source G. F. Chapline, R. Clarke August 18, 2009 DOE Fusion-Fission Workshop Gaithersburg, MD, United States September 30, 2009 through October 2, 2009 Disclaimer

More information

Inertial Electrostatic Confinement Amplified Fusion Propulsion. Jacob van de Lindt Kaylin Gopal Advising Professor: Dr.

Inertial Electrostatic Confinement Amplified Fusion Propulsion. Jacob van de Lindt Kaylin Gopal Advising Professor: Dr. Inertial Electrostatic Confinement Amplified Fusion Propulsion Jacob van de Lindt Kaylin Gopal Advising Professor: Dr. Brian Woods Getting to Mars and Beyond Why are we not there yet? Need Higher Specific

More information

1 (a) Define magnetic flux [1]

1 (a) Define magnetic flux [1] 1 (a) Define magnetic flux..... [1] (b) Fig. 4.1 shows a generator coil of 5 turns and cross-sectional area 2.5 1 3 m 2 placed in a magnetic field of magnetic flux density.35 T. The plane of the coil is

More information

DRIVEN SUBCRITICAL FISSION RESEARCH REACTOR USING A CYLINDRICAL INERTIAL ELECTROSTATIC CONFINEMENT NEUTRON SOURCE

DRIVEN SUBCRITICAL FISSION RESEARCH REACTOR USING A CYLINDRICAL INERTIAL ELECTROSTATIC CONFINEMENT NEUTRON SOURCE DRIVEN SUBCRITICAL FISSION RESEARCH REACTOR USING A CYLINDRICAL INERTIAL ELECTROSTATIC CONFINEMENT NEUTRON SOURCE 2 Miley G. H., Thomas R., Takeyama Y., Wu L., Percel I., Momota H., Hora H., Li X. Z. 3

More information

Planning for a mission to Pluto has shown that there is no such thing as a quick trip to the outer

Planning for a mission to Pluto has shown that there is no such thing as a quick trip to the outer 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July 10-13, 2005, Tucson, AZ Dusty Plasma Based Fission Fragment Nuclear Reactor Rodney A. Clark and Robert B. Sheldon Grassmere Dynamics

More information

Kinetic modelling of the jet extraction mechanism in spherical IEC devices

Kinetic modelling of the jet extraction mechanism in spherical IEC devices Kinetic modelling of the jet extraction mechanism in spherical IEC devices Type of activity: Standard study 1 Background & Study Motivation 1.1 Introduction Inertial Electrostatic Confinement (IEC) devices

More information

Atomic and Nuclear Physics Review (& other related physics questions)

Atomic and Nuclear Physics Review (& other related physics questions) Atomic and Nuclear Physics Review (& other related physics questions) 1. The minimum electron speed necessary to ionize xenon atoms is A. 2.66 10 31 m/s B. 5.15 10 15 m/s C. 4.25 10 12 m/s D. 2.06 10 6

More information

New targets for enhancing pb nuclear fusion reaction at the PALS facility

New targets for enhancing pb nuclear fusion reaction at the PALS facility New targets for enhancing pb nuclear fusion reaction at the PALS facility Lorenzo Giuffrida Institute of Physics ASCR, v.v.i (FZU), ELI- Beamlines project, Prague, Czech Republic Summary pb history and

More information

Building Inertial Electrostatic Confinement Fusion Device Aimed for a Small Neutron Source

Building Inertial Electrostatic Confinement Fusion Device Aimed for a Small Neutron Source International Journal of High Energy Physics 2017; 4(6): 88-92 http://www.sciencepublishinggroup.com/j/ijhep doi: 10.11648/j.ijhep.20170406.13 ISSN: 2376-7405 (Print); ISSN: 2376-7448 (Online) Building

More information

Neutral beam plasma heating

Neutral beam plasma heating Seminar I b 1 st year, 2 nd cycle program Neutral beam plasma heating Author: Gabrijela Ikovic Advisor: prof.dr. Tomaž Gyergyek Ljubljana, May 2014 Abstract For plasma to be ignited, external heating is

More information

(a) (i) State the proton number and the nucleon number of X.

(a) (i) State the proton number and the nucleon number of X. PhysicsAndMathsTutor.com 1 1. Nuclei of 218 84Po decay by the emission of an particle to form a stable isotope of an element X. You may assume that no emission accompanies the decay. (a) (i) State the

More information

[2] State in what form the energy is released in such a reaction.... [1]

[2] State in what form the energy is released in such a reaction.... [1] (a) The following nuclear reaction occurs when a slow-moving neutron is absorbed by an isotope of uranium-35. 0n + 35 9 U 4 56 Ba + 9 36Kr + 3 0 n Explain how this reaction is able to produce energy....

More information

1. What is the phenomenon that best explains why greenhouse gases absorb infrared radiation? D. Diffraction (Total 1 mark)

1. What is the phenomenon that best explains why greenhouse gases absorb infrared radiation? D. Diffraction (Total 1 mark) 1. What is the phenomenon that best explains why greenhouse gases absorb infrared radiation? A. Resonance B. Interference C. Refraction D. Diffraction 2. In which of the following places will the albedo

More information

Nuclear Physics 3 8 O+ B. always take place and the proton will be emitted with kinetic energy.

Nuclear Physics 3 8 O+ B. always take place and the proton will be emitted with kinetic energy. Name: Date: Nuclear Physics 3. A student suggests that the following transformation may take place. Measurement of rest masses shows that 7 7 N+ He 8 O+ total rest mass( N 7 + He ) < total rest mass( O

More information

Muon Front-End without Cooling

Muon Front-End without Cooling EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Muon Front-End without Cooling CERN-Nufact-Note-59 K. Hanke Abstract In this note a muon front-end without cooling is presented. The muons are captured, rotated

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

Chapter 7.1. Q4 (a) In 1 s the energy is 500 MJ or (i) 5.0! 10 J, (ii) 5.0! 10 kw! hr " 140 kwh or (iii) MWh. (b) In one year the energy is

Chapter 7.1. Q4 (a) In 1 s the energy is 500 MJ or (i) 5.0! 10 J, (ii) 5.0! 10 kw! hr  140 kwh or (iii) MWh. (b) In one year the energy is Chapter 7.1 Q1 The thermal energy discarded must be returned to a reservoir that has a lower temperature from where the energy was extracted. In this case the temperatures are the same and so this will

More information

Terry Kammash and Myoung-Jae Lee Department of Nuclear Engineering The University of Michigan Ann Arbor, MI (313)

Terry Kammash and Myoung-Jae Lee Department of Nuclear Engineering The University of Michigan Ann Arbor, MI (313) ANTIPROTON ANNIHILATION DYNAMICS IN FUSION ROCKET Terry Kammash and Myoung-Jae Lee Department of Nuclear Engineering The University of Michigan Ann Arbor, MI 4819 (313) 764-25 THE GASDYNAMIC Abstract The

More information

THE CONSERVATION EQUATIONS FOR A MAGNETICALLY CONFINED GAS CORE NUCLEAR ROCKET

THE CONSERVATION EQUATIONS FOR A MAGNETICALLY CONFINED GAS CORE NUCLEAR ROCKET THE CONSERVATION EQUATIONS FOR A MAGNETICALLY CONFINED GAS CORE NUCLEAR ROCKET Terry Kammash and David L. Galbraith Department of Nuclear Engineering The University of Michigan Ann Arbor, MI 48109 (313)

More information

A Six Component Model for Dusty Plasma Nuclear Fission Fragment Propulsion

A Six Component Model for Dusty Plasma Nuclear Fission Fragment Propulsion A Six Component Model for Dusty Plasma Nuclear Fission Fragment Propulsion Rodney L. Clark1, Robert B. Sheldon1,2 1 Grassmere Dynamics, LLC, Gurley, AL 35748-8909 256-776-9471 rod.clark@grassmeredynamics.com

More information

Proceedings of the 12th International Conference on Low Energy Antiproton Physics (LEAP216) Downloaded from journals.jps.jp by on 3/23/

Proceedings of the 12th International Conference on Low Energy Antiproton Physics (LEAP216) Downloaded from journals.jps.jp by on 3/23/ Proceedings of the 12th International Conference on Low Energy Antiproton Physics (LEAP216) Downloaded from journals.jps.jp by 128.141.46.242 on 3/23/18 Proc. 12th Int. Conf. Low Energy Antiproton Physics

More information

Additional Heating Experiments of FRC Plasma

Additional Heating Experiments of FRC Plasma Additional Heating Experiments of FRC Plasma S. Okada, T. Asai, F. Kodera, K. Kitano, T. Suzuki, K. Yamanaka, T. Kanki, M. Inomoto, S. Yoshimura, M. Okubo, S. Sugimoto, S. Ohi, S. Goto, Plasma Physics

More information

Operation of Inertial Electrostatic Confinement Fusion (IECF) Device Using Different Gases

Operation of Inertial Electrostatic Confinement Fusion (IECF) Device Using Different Gases Journal of Fusion Energy (2018) 37:37 44 https://doi.org/10.1007/s10894-018-0150-9 (0456789().,-volV)(0456789().,-volV) ORIGINAL RESEARCH Operation of Inertial Electrostatic Confinement Fusion (IECF) Device

More information

D- Charge Exchange Ionizer for the JINR Polarized Ion Source POLARIS

D- Charge Exchange Ionizer for the JINR Polarized Ion Source POLARIS D- Charge Exchange Ionizer for the JINR Polarized Ion Source POLARIS V.P. Ershov, V.V.Fimushkin, G.I.Gai, L.V.Kutuzova, Yu.K.Pilipenko, V.P.Vadeev, A.I.Valevich Λ and A.S. Belov Λ Joint Institute for Nuclear

More information

INTRODUCTION TO MAGNETIC NUCLEAR FUSION

INTRODUCTION TO MAGNETIC NUCLEAR FUSION INTRODUCTION TO MAGNETIC NUCLEAR FUSION S.E. Sharapov Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK With acknowledgments to B.Alper for use of his transparencies

More information

Nuclear Physics 2. D. atomic energy levels. (1) D. scattered back along the original direction. (1)

Nuclear Physics 2. D. atomic energy levels. (1) D. scattered back along the original direction. (1) Name: Date: Nuclear Physics 2. Which of the following gives the correct number of protons and number of neutrons in the nucleus of B? 5 Number of protons Number of neutrons A. 5 6 B. 5 C. 6 5 D. 5 2. The

More information

Nuclear Thermal Rockets Lecture 24 G. L. Kulcinski March 22, Rawlings-SAIC

Nuclear Thermal Rockets Lecture 24 G. L. Kulcinski March 22, Rawlings-SAIC Nuclear Thermal Rockets Lecture 24 G. L. Kulcinski March 22, 2004 Rawlings-SAIC 1 2 The Basis for Nuclear Thermal Propulsion is the Specific Impulse Equation I sp = F m = AC f T c M Where: I sp = Specific

More information

POLARIZED DEUTERONS AT THE NUCLOTRON 1

POLARIZED DEUTERONS AT THE NUCLOTRON 1 POLARIZED DEUTERONS AT THE NUCLOTRON 1 Yu.K.Pilipenko, S.V.Afanasiev, L.S.Azhgirey, A.Yu.Isupov, V.P.Ershov, V.V.Fimushkin, L.V.Kutuzova, V.F.Peresedov, V.P.Vadeev, V.N.Zhmyrov, L.S.Zolin Joint Institute

More information

Thermal Radiation Studies for an Electron-Positron Annihilation Propulsion System

Thermal Radiation Studies for an Electron-Positron Annihilation Propulsion System Thermal Radiation Studies for an Electron-Positron Annihilation Propulsion System Jonathan A. Webb Embry Riddle Aeronautical University Prescott, AZ 8631 Recent studies have shown the potential of antimatter

More information

A Course in Advanced Space

A Course in Advanced Space AlAA 94-31 12 A Course in Advanced Space Propulsion at The University of Michigan Terry Kammash Department of Nuclear Engineering The University of Michigan Ann Arbor, MI 48109 30th AIANASMWSAEIASEE Joint

More information

Lecture 31 Chapter 22, Sections 3-5 Nuclear Reactions. Nuclear Decay Kinetics Fission Reactions Fusion Reactions

Lecture 31 Chapter 22, Sections 3-5 Nuclear Reactions. Nuclear Decay Kinetics Fission Reactions Fusion Reactions Lecture Chapter, Sections -5 Nuclear Reactions Nuclear Decay Kinetics Fission Reactions Fusion Reactions Gamma Radiation Electromagnetic photons of very high energy Very penetrating can pass through the

More information

Neutralized Drift Compression

Neutralized Drift Compression Neutralized Drift Compression D. R. Welch, D. V. Rose Mission Research Corporation Albuquerque, NM 87110 S. S. Yu Lawrence Berkeley National Laboratory Berkeley, CA C. L. Olson Sandia National Laboratories

More information

GCSE 247/02 SCIENCE PHYSICS HIGHER TIER PHYSICS 3. A.M. FRIDAY, 27 May minutes. Candidate Name. Candidate Number.

GCSE 247/02 SCIENCE PHYSICS HIGHER TIER PHYSICS 3. A.M. FRIDAY, 27 May minutes. Candidate Name. Candidate Number. Candidate Name Centre Number Candidate Number GCSE 247/2 SCIENCE PHYSICS HIGHER TIER PHYSICS 3 A.M. FRIDAY, 27 May 211 45 minutes Question 1. For s use Maximum Mark 6 Mark awarded 2. 3. 4. 5. 6. 7. 4 9

More information

2011 Jason A. Webber. All rights reserved.

2011 Jason A. Webber. All rights reserved. 2011 Jason A. Webber. All rights reserved. COLLIMATION OF DEUTERIUM / 3-HELIUM FUSION PRODUCTS FOR ADVANCED SPACECRAFT PROPULSION AND POWER BY JASON A. WEBBER THESIS Submitted in partial fulfillment of

More information

Physical design of FEL injector based on performance-enhanced EC-ITC RF gun

Physical design of FEL injector based on performance-enhanced EC-ITC RF gun Accepted by Chinese Physics C Physical design of FEL injector based on performance-enhanced EC-ITC RF gun HU Tong-ning( 胡桐宁 ) 1, CHEN Qu-shan( 陈曲珊 ) 1, PEI Yuan-ji( 裴元吉 ) 2; 1), LI Ji( 李骥 ) 2, QIN Bin(

More information

Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power

Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power Derek Sutherland HIT-SI Research Group University of Washington July 25, 2017 D.A. Sutherland -- EPR 2017, Vancouver,

More information

The GDT-based fusion neutron source as a driver of subcritical nuclear fuel systems

The GDT-based fusion neutron source as a driver of subcritical nuclear fuel systems The GDT-based fusion neutron source as a driver of subcritical nuclear fuel systems Presented by A.A.Ivanov Budker Institute, FZD Rossendorf, Joint Institute for Nuclear,, VNIITF, Snejinsk Layout of the

More information

A MIRROR FUSION DEVICE FOR ADVANCED SPACE PROPULSION

A MIRROR FUSION DEVICE FOR ADVANCED SPACE PROPULSION A MIRROR FUSION DEVICE FOR ADVANCED SPACE PROPULSION Terry Kammash and Myoung-Jae Lee Department of Nuclear Engineering The University of Michigan Ann Arbor, M148109 (313) 764-0205 Abstract An open-ended

More information

Proton LINAC for the Frankfurt Neutron Source FRANZ

Proton LINAC for the Frankfurt Neutron Source FRANZ 1 Proton LINAC for the Frankfurt Neutron Source FRANZ O. Meusel 1, A. Bechtold 1, L.P. Chau 1, M. Heilmann 1, H. Podlech 1, U. Ratzinger 1, A. Schempp 1, C. Wiesner 1, S. Schmidt 1, K. Volk 1, M. Heil

More information

Introduction to accelerators for teachers (Korean program) Mariusz Sapiński CERN, Beams Department August 9 th, 2012

Introduction to accelerators for teachers (Korean program) Mariusz Sapiński CERN, Beams Department August 9 th, 2012 Introduction to accelerators for teachers (Korean program) Mariusz Sapiński (mariusz.sapinski@cern.ch) CERN, Beams Department August 9 th, 2012 Definition (Britannica) Particle accelerator: A device producing

More information

Study of High-energy Ion Tail Formation with Second Harmonic ICRF Heating and NBI in LHD

Study of High-energy Ion Tail Formation with Second Harmonic ICRF Heating and NBI in LHD 21st IAEA Fusion Energy Conference Chengdu, China, 16-21 October, 2006 IAEA-CN-149/ Study of High-energy Ion Tail Formation with Second Harmonic ICRF Heating and NBI in LHD K. Saito et al. NIFS-851 Oct.

More information

Nuclear Chemistry. Chapter 23

Nuclear Chemistry. Chapter 23 Nuclear Chemistry Chapter 23 n/p too large beta decay X Y n/p too small positron decay or electron capture Nuclear Stability Certain numbers of neutrons and protons are extra stable n or p = 2, 8, 20,

More information

Fusion-Enabled Pluto Orbiter and Lander

Fusion-Enabled Pluto Orbiter and Lander Fusion-Enabled Pluto Orbiter and Lander Presented by: Stephanie Thomas DIRECT FUSION DRIVE Team Members Stephanie Thomas Michael Paluszek Princeton Satellite Systems 6 Market St. Suite 926 Plainsboro,

More information

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY THE ATOMIC NUCLEUS / NUCLEAR RADIUS & DENSITY / PROPERTIES OF NUCLEAR RADIATION / INTENSITY & BACKGROUND RADIATION / EXPONENTIAL LAW OF DECAY

More information

INTERSTELLAR PRECURSOR MISSIONS USING ADVANCED DUAL-STAGE ION PROPULSION SYSTEMS

INTERSTELLAR PRECURSOR MISSIONS USING ADVANCED DUAL-STAGE ION PROPULSION SYSTEMS INTERSTELLAR PRECURSOR MISSIONS USING ADVANCED DUAL-STAGE ION PROPULSION SYSTEMS David G Fearn, 23 Bowenhurst Road, Church Crookham, Fleet, Hants, GU52 6HS, UK dg.fearn@virgin.net Roger Walker Advanced

More information

Control of the fission chain reaction

Control of the fission chain reaction Control of the fission chain reaction Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 April 8, 2011 NUCS 342 (Lecture 30) April 8, 2011 1 / 29 Outline 1 Fission chain reaction

More information

Unpressurized steam reactor. Controlled Fission Reactors. The Moderator. Global energy production 2000

Unpressurized steam reactor. Controlled Fission Reactors. The Moderator. Global energy production 2000 From last time Fission of heavy elements produces energy Only works with 235 U, 239 Pu Fission initiated by neutron absorption. Fission products are two lighter nuclei, plus individual neutrons. These

More information

Development of a Two-axis Dual Pendulum Thrust Stand for Thrust Vector Measurement of Hall Thrusters

Development of a Two-axis Dual Pendulum Thrust Stand for Thrust Vector Measurement of Hall Thrusters Development of a Two-axis Dual Pendulum Thrust Stand for Thrust Vector Measurement of Hall Thrusters Naoki Nagao, Shigeru Yokota, Kimiya Komurasaki, and Yoshihiro Arakawa The University of Tokyo, Tokyo,

More information

SC-ECR ion source for RIKEN RIBF

SC-ECR ion source for RIKEN RIBF SC-ECR ion source for RIKEN RIBF T. NAKAGAWA (RIKEN) 1. Introduction Requirements for RIKEN RIBF 2. Physics of ECR ion source Effects of the key components on the beam intensity and ECR plasma 3. RIKEN

More information

Future of Antiproton Triggered Fusion Propulsion

Future of Antiproton Triggered Fusion Propulsion 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 2-5 August 2009, Denver, Colorado AIAA 2009-4871 Future of Antiproton Triggered Fusion Propulsion Brice N. Cassenti * and Terry Kammash** University

More information

Conceptual design of an energy recovering divertor

Conceptual design of an energy recovering divertor Conceptual design of an energy recovering divertor Derek Baver Lodestar Research Corporation Conceptual design of an energy recovering divertor, D. A. Baver, Lodestar Research Corporation. Managing divertor

More information

GCSE 0247/02 SCIENCE HIGHER TIER PHYSICS 3

GCSE 0247/02 SCIENCE HIGHER TIER PHYSICS 3 Surname Centre Number Candidate Number Other Names GCSE 247/2 SCIENCE HIGHER TIER PHYSICS 3 A.M. WEDNESDAY, 3 January 213 45 minutes ADDITIONAL MATERIALS In addition to this paper you may require a calculator.

More information

ILC Particle Sources -Electron and PositronMasao KURIKI (Hiroshima University)

ILC Particle Sources -Electron and PositronMasao KURIKI (Hiroshima University) ILC Particle Sources -Electron and PositronMasao KURIKI (Hiroshima University) Introduction Electron Polarization is important for ILC. NEA GaAs is practically the only solution. Positron polarization

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title High current density beamlets from RF Argon source for heavy ion fusion applications Permalink https://escholarship.org/uc/item/6zh6c50m

More information

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e +

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e + β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Last Lecture: Radioactivity, Nuclear decay Radiation damage This lecture: nuclear physics in medicine and fusion and fission Final

More information

E. V. Samsonov, B. N. Gikal, O. N. Borisov, I. A. Ivanenko NUMERICAL SIMULATION OF ION ACCELERATION AND EXTRACTION IN CYCLOTRON DC-110

E. V. Samsonov, B. N. Gikal, O. N. Borisov, I. A. Ivanenko NUMERICAL SIMULATION OF ION ACCELERATION AND EXTRACTION IN CYCLOTRON DC-110 E9-2013-121 E. V. Samsonov, B. N. Gikal, O. N. Borisov, I. A. Ivanenko NUMERICAL SIMULATION OF ION ACCELERATION AND EXTRACTION IN CYCLOTRON DC-110 Submitted to Ó³ Ÿ ³ μ μ... E9-2013-121 ² μ ³μ ² μ Ê ±μ

More information

Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB

Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB K. M. Feng (Southwestern Institute of Physics, China) Presented at 8th IAEA Technical Meeting on Fusion Power Plant Safety

More information

Review A Z. a particle. proton. neutron. electron e -1. positron. e +1. Mass Number Atomic Number. Element Symbol

Review A Z. a particle. proton. neutron. electron e -1. positron. e +1. Mass Number Atomic Number. Element Symbol Nuclear Chemistry 1 Review Atomic number (Z) = number of protons in nucleus Mass number (A) = number of protons + number of neutrons = atomic number (Z) + number of neutrons Mass Number Atomic Number A

More information

A Fusion Propulsion System for Interstellar Missions

A Fusion Propulsion System for Interstellar Missions ICF: A Fusion Propulsion System for Interstellar issions Terry Kammash and Brice N. Cassenti Nuclear Engineering and Radiological Sciences Dept., University of ichigan, Ann Arbor, I 48109 United Technologies

More information

Wednesday 23 January 2013 Afternoon

Wednesday 23 January 2013 Afternoon Wednesday 23 January 2013 Afternoon A2 GCE PHYSICS A G485/01 Fields, Particles and Frontiers of Physics *G411600113* Candidates answer on the Question Paper. OCR supplied materials: Data, Formulae and

More information

Figure 1, Schematic Illustrating the Physics of Operation of a Single-Stage Hall 4

Figure 1, Schematic Illustrating the Physics of Operation of a Single-Stage Hall 4 A Proposal to Develop a Double-Stage Hall Thruster for Increased Efficiencies at Low Specific-Impulses Peter Y. Peterson Plasmadynamics and Electric Propulsion Laboratory (PEPL) Aerospace Engineering The

More information

DUBNA CYCLOTRONS STATUS AND PLANS

DUBNA CYCLOTRONS STATUS AND PLANS DUBNA CYCLOTRONS STATUS AND PLANS B.N. Gikal *, S.L. Bogomolov, S.N. Dmitriev, G.G. Gulbekyan, M.G. Itkis, V.V. Kalagin, Yu.Ts. Oganessian, V.A. Sokolov Joint Institute for Nuclear Research, Dubna, Moscow

More information

Chapter 32 Applied Nucleonics

Chapter 32 Applied Nucleonics Chapter 32 Applied Nucleonics GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and use each term

More information

Pulse Formation on the Anode of Frisch-Gridded Ionization Chamber

Pulse Formation on the Anode of Frisch-Gridded Ionization Chamber ulse Formation on the node of Frisch-Gridded Ionization hamber Jaksybekov., Svetov L., Sidorova O., Zeynalov Sh. Joint Institute for Nuclear Research, ubna, Russia Figure 1. hotograph and scheme of the

More information

ON THE DUST-CURTAIN MODEL OF A RADIATION SHIELD IN A GASEOUS-CORE REACTOR FOR SPACE. v. c. Liu. University of Michigan' ' Ann Arbor, Mich.

ON THE DUST-CURTAIN MODEL OF A RADIATION SHIELD IN A GASEOUS-CORE REACTOR FOR SPACE. v. c. Liu. University of Michigan' ' Ann Arbor, Mich. ON THE DUST-CURTAIN MODEL OF A RADIATION SHIELD IN A GASEOUS-CORE REACTOR FOR SPACE v. c. Liu,'! I Department of Aerospace Engineering ' FT University of Michigan' ' Ann Arbor, Mich. Introduction The interest

More information

Linac JUAS lecture summary

Linac JUAS lecture summary Linac JUAS lecture summary Part1: Introduction to Linacs Linac is the acronym for Linear accelerator, a device where charged particles acquire energy moving on a linear path. There are more than 20 000

More information

Plasma Diagnostics in an Applied Field MPD Thruster * #

Plasma Diagnostics in an Applied Field MPD Thruster * # Plasma Diagnostics in an Applied Field MPD Thruster * # G. Serianni, N. Vianello, F. Paganucci, P. Rossetti, V. Antoni, M. Bagatin, M. Andrenucci Consorzio RFX, Associazione Euratom-ENEA sulla Fusione

More information

Estimations of Beam-Beam Fusion Reaction Rates in the Deuterium Plasma Experiment on LHD )

Estimations of Beam-Beam Fusion Reaction Rates in the Deuterium Plasma Experiment on LHD ) Estimations of Beam-Beam Fusion Reaction Rates in the Deuterium Plasma Experiment on LHD ) Masayuki HOMMA, Sadayoshi MURAKAMI, Hideo NUGA and Hiroyuki YAMAGUCHI Department of Nuclear Engineering, Kyoto

More information

Physics 2D Lecture Slides Jan 21. Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Jan 21. Vivek Sharma UCSD Physics Physics D Lecture Slides Jan 1 Vivek Sharma UCSD Physics Particle Accelerators as Testing ground for S. Relativity When Electron Goes Fast it Gets Fat E = γ mc v As 1, γ c Apparent Mass approaches Relativistic

More information

Transmutation of Minor Actinides in a Spherical

Transmutation of Minor Actinides in a Spherical 1 Transmutation of Minor Actinides in a Spherical Torus Tokamak Fusion Reactor Feng Kaiming Zhang Guoshu Fusion energy will be a long-term energy source. Great efforts have been devoted to fusion research

More information

- 581 IEPC the ion beam diagnostics in detail such as measurements of xenon with double charges, Introduction

- 581 IEPC the ion beam diagnostics in detail such as measurements of xenon with double charges, Introduction - 581 IEPC-95-89 300 HOURS ENDURANCE TEST OF MICROWAVE ION THRUSTER Shin Satori*, Hitoshi Kuninaka* and Kyoichi Kuriki** Institute of Space and Astronautical Science 3-1-1, Yoshinodai, Sagamihara, Kanagawa

More information

Double Null Merging Start-up Experiments in the University of Tokyo Spherical Tokamak

Double Null Merging Start-up Experiments in the University of Tokyo Spherical Tokamak 1 EXS/P2-19 Double Null Merging Start-up Experiments in the University of Tokyo Spherical Tokamak T. Yamada 1), R. Imazawa 2), S. Kamio 1), R. Hihara 1), K. Abe 1), M. Sakumura 1), Q. H. Cao 1), H. Sakakita

More information

Generation of Neutron Beam with the Cylindrical Discharge type Fusion

Generation of Neutron Beam with the Cylindrical Discharge type Fusion 13 th US-Japan Workshop on Inertial Electrostatic Confinement Fusion December 7-8, Sydney, Australia Generation of Neutron Beam with the Cylindrical Discharge type Fusion Y. Yamamoto 1, T. Maegawa 2, K.

More information

PHB5. PHYSICS (SPECIFICATION B) Unit 5 Fields and their Applications. General Certificate of Education January 2004 Advanced Level Examination

PHB5. PHYSICS (SPECIFICATION B) Unit 5 Fields and their Applications. General Certificate of Education January 2004 Advanced Level Examination Surname Centre Number Other Names Candidate Number Leave blank Candidate Signature General Certificate of Education January 2004 Advanced Level Examination PHYSICS (SPECIFICATION B) Unit 5 Fields and their

More information

1.5-GeV FFAG Accelerator as Injector to the BNL-AGS

1.5-GeV FFAG Accelerator as Injector to the BNL-AGS 1.5-GeV FFAG Accelerator as Injector to the BNL-AGS Alessandro G. Ruggiero M. Blaskiewicz,, T. Roser, D. Trbojevic,, N. Tsoupas,, W. Zhang Oral Contribution to EPAC 04. July 5-9, 5 2004 Present BNL - AGS

More information

DEVELOPMENT OF JINR FLNR HEAVY-ION ACCELERATOR COMPLEX IN THE NEXT 7 YEARS

DEVELOPMENT OF JINR FLNR HEAVY-ION ACCELERATOR COMPLEX IN THE NEXT 7 YEARS Ó³ Ÿ. 2010.. 7, º 7(163).. 827Ä834 ˆ ˆŠ ˆ ˆŠ Š ˆ DEVELOPMENT OF JINR FLNR HEAVY-ION ACCELERATOR COMPLEX IN THE NEXT 7 YEARS G. Gulbekyan, B. Gikal, I. Kalagin, N. Kazarinov Joint Institute for Nuclear

More information

Reduction of Radioactive Waste by Accelerators

Reduction of Radioactive Waste by Accelerators October 9-10, 2014 International Symposium on Present Status and Future Perspective for Reducing Radioactive Waste - Aiming for Zero-Release - Reduction of Radioactive Waste by Accelerators Hiroyuki Oigawa

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 20 Modern Physics Nuclear Energy and Elementary Particles Fission, Fusion and Reactors Elementary Particles Fundamental Forces Classification of Particles Conservation

More information

TAMU-TRAP facility for Weak Interaction Physics. P.D. Shidling Cyclotron Institute, Texas A&M University

TAMU-TRAP facility for Weak Interaction Physics. P.D. Shidling Cyclotron Institute, Texas A&M University TAMU-TRAP facility for Weak Interaction Physics P.D. Shidling Cyclotron Institute, Texas A&M University Outline of the talk Low energy test of Standard Model T =2 Superallowed transition Facility T-REX

More information

Neutron Sources Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University

Neutron Sources Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University Neutron Sources Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University Neutrons: discovery In 1920, Rutherford postulated that there were neutral, massive particles in

More information

Atomic and Nuclear Physics. Topic 7.3 Nuclear Reactions

Atomic and Nuclear Physics. Topic 7.3 Nuclear Reactions Atomic and Nuclear Physics Topic 7.3 Nuclear Reactions Nuclear Reactions Rutherford conducted experiments bombarding nitrogen gas with alpha particles from bismuth-214. He discovered that fast-moving particles

More information

State the main interaction when an alpha particle is scattered by a gold nucleus

State the main interaction when an alpha particle is scattered by a gold nucleus Q1.(a) Scattering experiments are used to investigate the nuclei of gold atoms. In one experiment, alpha particles, all of the same energy (monoenergetic), are incident on a foil made from a single isotope

More information

Chapter IX: Nuclear fusion

Chapter IX: Nuclear fusion Chapter IX: Nuclear fusion 1 Summary 1. General remarks 2. Basic processes 3. Characteristics of fusion 4. Solar fusion 5. Controlled fusion 2 General remarks (1) Maximum of binding energy per nucleon

More information

MagBeam: R. Winglee, T. Ziemba, J. Prager, B. Roberson, J Carscadden Coherent Beaming of Plasma. Separation of Power/Fuel from Payload

MagBeam: R. Winglee, T. Ziemba, J. Prager, B. Roberson, J Carscadden Coherent Beaming of Plasma. Separation of Power/Fuel from Payload MagBeam: R. Winglee, T. Ziemba, J. Prager, B. Roberson, J Carscadden Coherent Beaming of Plasma Separation of Power/Fuel from Payload Fast, cost-efficient propulsion for multiple missions Plasma Propulsion

More information

Aspects of Advanced Fuel FRC Fusion Reactors

Aspects of Advanced Fuel FRC Fusion Reactors Aspects of Advanced Fuel FRC Fusion Reactors John F Santarius and Gerald L Kulcinski Fusion Technology Institute Engineering Physics Department CT2016 Irvine, California August 22-24, 2016 santarius@engr.wisc.edu;

More information

Multiple Choice Questions

Multiple Choice Questions Nuclear Physics & Nuclear Reactions Practice Problems PSI AP Physics B 1. The atomic nucleus consists of: (A) Electrons (B) Protons (C)Protons and electrons (D) Protons and neutrons (E) Neutrons and electrons

More information

Plasma instability during ITBs formation with pellet injection in tokamak

Plasma instability during ITBs formation with pellet injection in tokamak Plasma instability during ITBs formation with pellet injection in tokamak P. Klaywittaphat 1, B. Chatthong 2, T. Onjun. R. Picha 3, J. Promping 3 1 Faculty of Engineering, Thaksin University, Phatthalung,

More information

Compact Muon Production and Collection Scheme for High- Energy Physics Experiments

Compact Muon Production and Collection Scheme for High- Energy Physics Experiments Compact Muon Production and Collection Scheme for High- Energy Physics Experiments Diktys Stratakis Brookhaven National Laboratory, Upton NY 11973, USA David V. Neuffer Fermi National Accelerator Laboratory,

More information

Abstract. Objectives. Theory

Abstract. Objectives. Theory A Proposal to Develop a Two-Stage Gridless Ion Thruster with Closed Electron Drift Richard R. Hofer Plasmadynamics and Electric Propulsion Laboratory (PEPL) Department of Aerospace Engineering University

More information

Contents: 1) IEC and Helicon 2) What is HIIPER? 3) Analysis of Helicon 4) Coupling of the Helicon and the IEC 5) Conclusions 6) Acknowledgments

Contents: 1) IEC and Helicon 2) What is HIIPER? 3) Analysis of Helicon 4) Coupling of the Helicon and the IEC 5) Conclusions 6) Acknowledgments Contents: 1) IEC and Helicon 2) What is HIIPER? 3) Analysis of Helicon 4) Coupling of the Helicon and the IEC 5) Conclusions 6) Acknowledgments IEC:! IEC at UIUC modified into a space thruster.! IEC has

More information

Lecture 35 Chapter 22, Sections 4-6 Nuclear Reactions. Fission Reactions Fusion Reactions Stellar Radiation Radiation Damage

Lecture 35 Chapter 22, Sections 4-6 Nuclear Reactions. Fission Reactions Fusion Reactions Stellar Radiation Radiation Damage Lecture 35 Chapter, Sections 4-6 Nuclear Reactions Fission Reactions Fusion Reactions Stellar Radiation Radiation Damage Induced Nuclear Reactions Reactions in which a nuclear projectile collides and reacts

More information

Dark current at the Euro-XFEL

Dark current at the Euro-XFEL Dark current at the Euro-XFEL Jang-Hui Han DESY, MPY Observations at PITZ and FLASH Estimation for the European XFEL Ideas to reduce dark current at the gun DC at FLASH RF gun M1 M2 M3 M4 M5 M6 M7 6 undulator

More information

Spherical Torus Fusion Contributions and Game-Changing Issues

Spherical Torus Fusion Contributions and Game-Changing Issues Spherical Torus Fusion Contributions and Game-Changing Issues Spherical Torus (ST) research contributes to advancing fusion, and leverages on several game-changing issues 1) What is ST? 2) How does research

More information

Ignition Regime and Burn Dynamics of D T-Seeded D 3 He Fuel for Fast Ignition Inertial Confinement Fusion

Ignition Regime and Burn Dynamics of D T-Seeded D 3 He Fuel for Fast Ignition Inertial Confinement Fusion Ignition Regime and Burn Dynamics of D T-Seeded D 3 He Fuel for Fast Ignition Inertial Confinement Fusion Y. Nakao, K. Tsukida, K. Shinkoda, Y. Saito Department of Applied Quantum Physics and Nuclear Engineering,

More information

Chapter 12: Nuclear Reaction

Chapter 12: Nuclear Reaction Chapter 12: Nuclear Reaction A nuclear reaction occurs when a nucleus is unstable or is being bombarded by a nuclear particle. The product of a nuclear reaction is a new nuclide with an emission of a nuclear

More information