THREE DIMENSIONAL GEOMETRY. skew lines

Size: px
Start display at page:

Download "THREE DIMENSIONAL GEOMETRY. skew lines"

Transcription

1 Class XII - Math Unit: s and Three Dimensial Geometry Ccepts and Formulae VECTORS Positio n Directi cosines Directi ratios Additio n Definiti Definiti Relati betwee n drs dcs and magnit ude of the vector Laws The positi vector of point P (x,y,z ) with respect to the origin is given by: OP = r = x + y + z If the positi vector OP of a point P makes angles α, β and γ with x, y and z axis respectively, then α, β and γ are called the directi angles and cosα, cosβ and cosγ are called the Directi cosines of the positi vector. The magnitude (r), directi ratios (a, b, c) and directi cosines ( l, m, n) of any vector are related as: a m c l=, m=, n= r r r Triangle Law: Suppose two vectors are represented by two sides of a triangle in sequence, then the third closing side of the triangle represents the sum of the two vectors PQ + QR = PR Parallelogram Law: If two vectors a and b are represented by two adjacent sides of a parallelogram in magnitude and directi, then their sum a +b is represented in magnitude and directi by the diagal of the parallelogram. OA??+ OB = OC

2 Prcpert ies of vector a`ditio n Multipli catiof of a vec 0or by a scalar joining two points Compo nent Form Commu tative ropert y Associa tive propert y Definiti Properti es Definiti Magnitu de Operati s For any two vectors a and b, a + b = b + a For any three vectors a,b and c, ( a + b) + c = a + ( b + c) If a is a vector and λ a scalar. Product of vector a by the scalar λis λa. Also, λa = λ a Let a and b be any two vectors and k and m being two scalars then (i)ka +ma =(k+m) a (ii)k(ma )= (km) a (iii)k(a +b )=ka +kb The vector PP joining points P (x, y, z ) and P (x, y, z ) (O is the origin) is given by: PP = OP OP The magnitude of vector PP is given by PP = (x x ) + (y y ) + (z z ) r = x i+ y j + z k in compent form Equality of vectors a = a î + a ĵ+ a3 k b = b î + b ĵ+ b3 k a = b a = b, a = b and a 3 = b 3 a a = î a + ĵ a + 3 k and b b = î b + ĵ b + 3 k

3 Additi of vectors a + b a =( + ) î a +( b + ) ĵ a +( 3 b + 3 ) k Subtracti of vectors a - b a b =( - ) î a +( b - ) ĵ a +( 3 - b 3 ) k a and b are collinear b = λ a. where λ is a n zero scalar. Product of Two s Scalar (or dot) product of two vectors Properti es of scalar Product Projecti of a vector Scalar product of two nzero vectors a and b, denoted by a.b= a b cos θ,where θ is the angle a and b, 0 (i)a b is a real number. (ii)if a and b are n zero vectors then a b =0 a b. (iii) Scalar product is commutative :a b =b.a (iv)if θ =0 then a b= a.b (v) If θ =π then a b=- a. b (vi) scalar product distributeover additi Let a, b and cbethree vectors, then a (b+c)= a b + a c (vii)let a and b be two vectors, and λ be any scalar. Then ( λa).b=( λa).b= λ(a.b)=a.( λb) (viii) Angle two n zero vectors a and b is given by cos θ = a.b a. b Projecti of a vector a other vector b is given by ˆ b a.b or a. or ( a.b ) b b

4 Secti formula Inequali ties (or cross) product of two vectors Properti es of cross product of vectors The positi vector of a point R dividing a line segment join P and Q whose positi vectors are a and b respectively, in na+mb (i) internally, is given by m + n mb-na (ii) externally, is given by m n Cauchy-Schwartz Inequality a.b a. b Triangle Inequality: The vector product of two nzero vectors a and b, denoted by a band defined as a b= a b sinθnˆ where, θ is the angle a and b,0 θ π and ˆn is a unit vector perpendicular to both a and b such thata,b and ˆn form a right handed system. (i) a b is a vector (ii) If a and b are n zero vectors then a b =0 iff a and b are collinear. π (iii) If θ =, then a b = a. b (iv) vector product distribute over additi If a,b andc are three vectors and λis a scalar, then (i) a (b+c)= ( a b ) + ( a c) (ii) λ (a b)=( λ a) b=a ( λb) (v) If we have two vectors a and b given in compent form as a=a ˆi+a ˆj+a kˆ and b=b ˆi+b ˆj+b kˆ 3 3 ˆi ˆj kˆ then a b= a a a 3 b b b 3

5 THREE DIMENSIONAL GEOMETRY Directi Cosines Definiti The directi cosines of the line joining P( x,y,z ) and Q( x,y,z ) are x -x y -y z z,, PQ PQ PQ where PQ= (x -x ) +(y -y ) +(z -z ) Skew Lines Definiti Skew lines are lines in space which are neither parallel nor intersecting. They lie in different s. Angle skew lines Angle skew lines is the angle two intersecting lines drawn from any point (preferably through the origin) parallel to each of the skew lines. Angle two lines The angle θ two vectors OA = a i + b j + c k and OB = a i + b j + c k is given b cos θ = a a +b b +c c a +b +c a +b +c a line Equati Cartesian Equati line passing through two given points equati of a line that passes through the given point whose positi vector is a and parallel to a given vector b is r=a+ λb Directi ratios of the line L are a, b, c. Then, cartesian form of equati of the line L is: x-x y-y z-z = = ) Equati The vector equati of a line which passes through two points whose positi vectors are a and b is r=a+ λ(b-a) ) Cartesian Equati

6 Cartesian equati of a line that passes through tw points (x, y, z ) and (x, y, z ) is x-x y-y z-z = = x -x y -y z -z Cditi for perpendicu larity Cditi for parallel lines Two lines with directi ratios a, a, a 3 and b, b, b 3 respectively are perpendicular if: a b + a b c c 0 Two lines with directi ratios a, a, a 3 and b, a b, b 3 respectively are parallel if a = b b = c c Shortest Distance two lines in space Distance two skew lines: ) form: Shortest distance two skew lines L and m, r = a + λb and r = a + µb is b b.(a - a ) d= b b ) Cartesian form The equatis of the lines in Cartesian form x-x a = y-y b = z-z x-x y-y z-z and = = c Then the shortest distance them is x -x y -y z -z d= (b c -b c ) +(c a -c a ) +(a b -a b ) Distance parallel lines Distance parallel lines b (a -a ) r = a + λb and r = a + µb is d= b In the vector form, equati of a which is at a distance d from the origin, and ˆn is the unit vector normal to the through the origin is

7 r.n ˆ = d a which is at a distance of d from the origin and the directi cosines of the normal to the as l, m, n is lx + my + nz = d. a perpendicular to a given line with directi ratios A, B, C and passing through a given point (x, y, z ) is A (x x ) + B (y y ) + C (z z ) = 0 a passing through three n collinear points (x, y, z ), (x, y, z ) and (x 3, y 3, z 3 ) is x-x y-y z-z x x y y z z x x y y z z =0 Intercept form of equati of. a passing through the intersectio n of two given s. Coplanarity of two lines a that makes intercepts a, b and c with x, y and z-axes respectively is x a + y b + z c = Any passing thru the intersecti of two s r. n =d and r. n =d is given by, r. n + λn = d + λd ( ) ) form: The given lines r = a + λb and r = a + µb are coplanar if and ly a a. b b = ( ) ( ) 0 ) Cartesian Form Let (x,y,z ) and (x,y,z ) be the coordinates of the points M and N respectively. Let a, b, c and a, b, c be the directi ratios

8 Angle two s form of b and respectively. The given lines are coplanar if and ly if x -x y -y z -z =0 If n and n are normals to the s r.n =d and r.n = d and θ is the angle the normals drawn from some comm point. n.n cos θ= n n Angle a line and a Distance of a point from a Cartesian form Let θ is the angle two s A x+b y+c z+d =0, A x+b y+c z+d =0 The directi ratios of the normal to the s are. cos θ = OP = r = x + y + z Let the angle the line and the normal to the = θ cosθ= b.n b n Distance of point P with positi vector a from a r.n =d is a.n-d where N is the normal to N the

For more information visit here:

For more information visit here: The length or the magnitude of the vector = (a, b, c) is defined by w = a 2 +b 2 +c 2 A vector may be divided by its own length to convert it into a unit vector, i.e.? = u / u. (The vectors have been denoted

More information

Prepared by: M. S. KumarSwamy, TGT(Maths) Page

Prepared by: M. S. KumarSwamy, TGT(Maths) Page Prepared by: M S KumarSwamy, TGT(Maths) Page - 119 - CHAPTER 10: VECTOR ALGEBRA QUICK REVISION (Important Concepts & Formulae) MARKS WEIGHTAGE 06 marks Vector The line l to the line segment AB, then a

More information

VECTORS IN COMPONENT FORM

VECTORS IN COMPONENT FORM VECTORS IN COMPONENT FORM In Cartesian coordinates any D vector a can be written as a = a x i + a y j + a z k a x a y a x a y a z a z where i, j and k are unit vectors in x, y and z directions. i = j =

More information

Quantities which have only magnitude are called scalars. Quantities which have magnitude and direction are called vectors.

Quantities which have only magnitude are called scalars. Quantities which have magnitude and direction are called vectors. Vectors summary Quantities which have only magnitude are called scalars. Quantities which have magnitude and direction are called vectors. AB is the position vector of B relative to A and is the vector

More information

VECTORS. Vectors OPTIONAL - I Vectors and three dimensional Geometry

VECTORS. Vectors OPTIONAL - I Vectors and three dimensional Geometry Vectors OPTIONAL - I 32 VECTORS In day to day life situations, we deal with physical quantities such as distance, speed, temperature, volume etc. These quantities are sufficient to describe change of position,

More information

What you will learn today

What you will learn today What you will learn today The Dot Product Equations of Vectors and the Geometry of Space 1/29 Direction angles and Direction cosines Projections Definitions: 1. a : a 1, a 2, a 3, b : b 1, b 2, b 3, a

More information

6.1.1 Angle between Two Lines Intersection of Two lines Shortest Distance from a Point to a Line

6.1.1 Angle between Two Lines Intersection of Two lines Shortest Distance from a Point to a Line CHAPTER 6 : VECTORS 6. Lines in Space 6.. Angle between Two Lines 6.. Intersection of Two lines 6..3 Shortest Distance from a Point to a Line 6. Planes in Space 6.. Intersection of Two Planes 6.. Angle

More information

CHAPTER 10 VECTORS POINTS TO REMEMBER

CHAPTER 10 VECTORS POINTS TO REMEMBER For more important questions visit : www4onocom CHAPTER 10 VECTORS POINTS TO REMEMBER A quantity that has magnitude as well as direction is called a vector It is denoted by a directed line segment Two

More information

UNIT 1 VECTORS INTRODUCTION 1.1 OBJECTIVES. Stucture

UNIT 1 VECTORS INTRODUCTION 1.1 OBJECTIVES. Stucture UNIT 1 VECTORS 1 Stucture 1.0 Introduction 1.1 Objectives 1.2 Vectors and Scalars 1.3 Components of a Vector 1.4 Section Formula 1.5 nswers to Check Your Progress 1.6 Summary 1.0 INTRODUCTION In this unit,

More information

Definition: A vector is a directed line segment which represents a displacement from one point P to another point Q.

Definition: A vector is a directed line segment which represents a displacement from one point P to another point Q. THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH Algebra Section : - Introduction to Vectors. You may have already met the notion of a vector in physics. There you will have

More information

Created by T. Madas VECTOR PRACTICE Part B Created by T. Madas

Created by T. Madas VECTOR PRACTICE Part B Created by T. Madas VECTOR PRACTICE Part B THE CROSS PRODUCT Question 1 Find in each of the following cases a) a = 2i + 5j + k and b = 3i j b) a = i + 2j + k and b = 3i j k c) a = 3i j 2k and b = i + 3j + k d) a = 7i + j

More information

Worksheet A VECTORS 1 G H I D E F A B C

Worksheet A VECTORS 1 G H I D E F A B C Worksheet A G H I D E F A B C The diagram shows three sets of equally-spaced parallel lines. Given that AC = p that AD = q, express the following vectors in terms of p q. a CA b AG c AB d DF e HE f AF

More information

Chapter 8 Vectors and Scalars

Chapter 8 Vectors and Scalars Chapter 8 193 Vectors and Scalars Chapter 8 Vectors and Scalars 8.1 Introduction: In this chapter we shall use the ideas of the plane to develop a new mathematical concept, vector. If you have studied

More information

Regent College. Maths Department. Core Mathematics 4. Vectors

Regent College. Maths Department. Core Mathematics 4. Vectors Regent College Maths Department Core Mathematics 4 Vectors Page 1 Vectors By the end of this unit you should be able to find: a unit vector in the direction of a. the distance between two points (x 1,

More information

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 Math 127 Introduction and Review (1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 MATH 127 Introduction to Calculus III

More information

= = and the plane Ax + By + Cz + D = 0, then. ) to the plane ax + by + cz + d = 0 is. and radius a is r c = a or

= = and the plane Ax + By + Cz + D = 0, then. ) to the plane ax + by + cz + d = 0 is. and radius a is r c = a or Mathematics 7.5 (aa) If θ is the angle between the line sinθ aa + bb + cc a + b + c A + B + C x x y y z z and the plane Ax + By + Cz + D 0, then a b c ax + by + cz + d (ab) Length of perpendicular from

More information

SOLVED PROBLEMS. 1. The angle between two lines whose direction cosines are given by the equation l + m + n = 0, l 2 + m 2 + n 2 = 0 is

SOLVED PROBLEMS. 1. The angle between two lines whose direction cosines are given by the equation l + m + n = 0, l 2 + m 2 + n 2 = 0 is SOLVED PROBLEMS OBJECTIVE 1. The angle between two lines whose direction cosines are given by the equation l + m + n = 0, l 2 + m 2 + n 2 = 0 is (A) π/3 (B) 2π/3 (C) π/4 (D) None of these hb : Eliminating

More information

Introduction to Vectors Pg. 279 # 1 6, 8, 9, 10 OR WS 1.1 Sept. 7. Vector Addition Pg. 290 # 3, 4, 6, 7, OR WS 1.2 Sept. 8

Introduction to Vectors Pg. 279 # 1 6, 8, 9, 10 OR WS 1.1 Sept. 7. Vector Addition Pg. 290 # 3, 4, 6, 7, OR WS 1.2 Sept. 8 UNIT 1 INTRODUCTION TO VECTORS Lesson TOPIC Suggested Work Sept. 5 1.0 Review of Pre-requisite Skills Pg. 273 # 1 9 OR WS 1.0 Fill in Info sheet and get permission sheet signed. Bring in $3 for lesson

More information

11.1 Three-Dimensional Coordinate System

11.1 Three-Dimensional Coordinate System 11.1 Three-Dimensional Coordinate System In three dimensions, a point has three coordinates: (x,y,z). The normal orientation of the x, y, and z-axes is shown below. The three axes divide the region into

More information

Review of Coordinate Systems

Review of Coordinate Systems Vector in 2 R and 3 R Review of Coordinate Systems Used to describe the position of a point in space Common coordinate systems are: Cartesian Polar Cartesian Coordinate System Also called rectangular coordinate

More information

Created by T. Madas 2D VECTORS. Created by T. Madas

Created by T. Madas 2D VECTORS. Created by T. Madas 2D VECTORS Question 1 (**) Relative to a fixed origin O, the point A has coordinates ( 2, 3). The point B is such so that AB = 3i 7j, where i and j are mutually perpendicular unit vectors lying on the

More information

Mathematics Revision Guides Vectors Page 1 of 19 Author: Mark Kudlowski M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier VECTORS

Mathematics Revision Guides Vectors Page 1 of 19 Author: Mark Kudlowski M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier VECTORS Mathematics Revision Guides Vectors Page of 9 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier VECTORS Version:.4 Date: 05-0-05 Mathematics Revision Guides Vectors Page of 9 VECTORS

More information

Board Answer Paper: MARCH 2014

Board Answer Paper: MARCH 2014 Board Answer Paper: MARCH 04 and Statistics SECTION I Q.. (A) Select and write the correct answer from the given alternatives in each of the following: i. (C) Let l 0, m 3, n be the direction cosines of

More information

MULTIPLE PRODUCTS OBJECTIVES. If a i j,b j k,c i k, = + = + = + then a. ( b c) ) 8 ) 6 3) 4 5). If a = 3i j+ k and b 3i j k = = +, then a. ( a b) = ) 0 ) 3) 3 4) not defined { } 3. The scalar a. ( b c)

More information

FINDING THE INTERSECTION OF TWO LINES

FINDING THE INTERSECTION OF TWO LINES FINDING THE INTERSECTION OF TWO LINES REALTIONSHIP BETWEEN LINES 2 D: D: the lines are coplanar (they lie in the same plane). They could be: intersecting parallel coincident the lines are not coplanar

More information

Study guide for Exam 1. by William H. Meeks III October 26, 2012

Study guide for Exam 1. by William H. Meeks III October 26, 2012 Study guide for Exam 1. by William H. Meeks III October 2, 2012 1 Basics. First we cover the basic definitions and then we go over related problems. Note that the material for the actual midterm may include

More information

Vectors. Teaching Learning Point. Ç, where OP. l m n

Vectors. Teaching Learning Point. Ç, where OP. l m n Vectors 9 Teaching Learning Point l A quantity that has magnitude as well as direction is called is called a vector. l A directed line segment represents a vector and is denoted y AB Å or a Æ. l Position

More information

3D GEOMETRY. 3D-Geometry. If α, β, γ are angle made by a line with positive directions of x, y and z. axes respectively show that = 2.

3D GEOMETRY. 3D-Geometry. If α, β, γ are angle made by a line with positive directions of x, y and z. axes respectively show that = 2. D GEOMETRY ) If α β γ are angle made by a line with positive directions of x y and z axes respectively show that i) sin α + sin β + sin γ ii) cos α + cos β + cos γ + 0 Solution:- i) are angle made by a

More information

UNIT NUMBER 8.2. VECTORS 2 (Vectors in component form) A.J.Hobson

UNIT NUMBER 8.2. VECTORS 2 (Vectors in component form) A.J.Hobson JUST THE MATHS UNIT NUMBER 8.2 VECTORS 2 (Vectors in component form) by A.J.Hobson 8.2.1 The components of a vector 8.2.2 The magnitude of a vector in component form 8.2.3 The sum and difference of vectors

More information

12.1. Cartesian Space

12.1. Cartesian Space 12.1. Cartesian Space In most of your previous math classes, we worked with functions on the xy-plane only meaning we were working only in 2D. Now we will be working in space, or rather 3D. Now we will

More information

St Andrew s Academy Mathematics Department Higher Mathematics

St Andrew s Academy Mathematics Department Higher Mathematics St Andrew s Academy Mathematics Department Higher Mathematics VECTORS hsn.uk.net Higher Mathematics Vectors Contents Vectors 1 1 Vectors and Scalars EF 1 Components EF 1 3 Magnitude EF 3 4 Equal Vectors

More information

the coordinates of C (3) Find the size of the angle ACB. Give your answer in degrees to 2 decimal places. (4)

the coordinates of C (3) Find the size of the angle ACB. Give your answer in degrees to 2 decimal places. (4) . The line l has equation, 2 4 3 2 + = λ r where λ is a scalar parameter. The line l 2 has equation, 2 0 5 3 9 0 + = µ r where μ is a scalar parameter. Given that l and l 2 meet at the point C, find the

More information

Remark 3.2. The cross product only makes sense in R 3.

Remark 3.2. The cross product only makes sense in R 3. 3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with

More information

CONCURRENT LINES- PROPERTIES RELATED TO A TRIANGLE THEOREM The medians of a triangle are concurrent. Proof: Let A(x 1, y 1 ), B(x, y ), C(x 3, y 3 ) be the vertices of the triangle A(x 1, y 1 ) F E B(x,

More information

Chapter 2 - Vector Algebra

Chapter 2 - Vector Algebra A spatial vector, or simply vector, is a concept characterized by a magnitude and a direction, and which sums with other vectors according to the Parallelogram Law. A vector can be thought of as an arrow

More information

1. The unit vector perpendicular to both the lines. Ans:, (2)

1. The unit vector perpendicular to both the lines. Ans:, (2) 1. The unit vector perpendicular to both the lines x 1 y 2 z 1 x 2 y 2 z 3 and 3 1 2 1 2 3 i 7j 7k i 7j 5k 99 5 3 1) 2) i 7j 5k 7i 7j k 3) 4) 5 3 99 i 7j 5k Ans:, (2) 5 3 is Solution: Consider i j k a

More information

VECTORS ADDITIONS OF VECTORS

VECTORS ADDITIONS OF VECTORS VECTORS 1. ADDITION OF VECTORS. SCALAR PRODUCT OF VECTORS 3. VECTOR PRODUCT OF VECTORS 4. SCALAR TRIPLE PRODUCT 5. VECTOR TRIPLE PRODUCT 6. PRODUCT OF FOUR VECTORS ADDITIONS OF VECTORS Definitions and

More information

University of Sheffield. PHY120 - Vectors. Dr Emiliano Cancellieri

University of Sheffield. PHY120 - Vectors. Dr Emiliano Cancellieri University of Sheffield PHY120 - Vectors Dr Emiliano Cancellieri October 14, 2015 Contents 1 Lecture 1 2 1.1 Basic concepts of vectors........................ 2 1.2 Cartesian components of vectors....................

More information

Vector Algebra. a) only x b)only y c)neither x nor y d) both x and y. 5)Two adjacent sides of a parallelogram PQRS are given by: PQ =2i +j +11k &

Vector Algebra. a) only x b)only y c)neither x nor y d) both x and y. 5)Two adjacent sides of a parallelogram PQRS are given by: PQ =2i +j +11k & Vector Algebra 1)If [a хb b хc c хa] = λ[a b c ] then λ= a) b)0 c)1 d)-1 )If a and b are two unit vectors then the vector (a +b )х(a хb ) is parallel to the vector: a) a -b b)a +b c) a -b d)a +b )Let a

More information

STUDY PACKAGE. Available Online :

STUDY PACKAGE. Available Online : fo/u fopkjr Hkh# tu] ugha vkjehks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';kea iq#"k flag ladyi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAA jfpr% ekuo /kez i.ksrk ln~q# Jh j.knksm+nklth

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 VECTORS II. Triple products 2. Differentiation and integration of vectors 3. Equation of a line 4. Equation of a plane.

More information

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true?

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true? chapter vector geometry solutions V. Exercise A. For the shape shown, find a single vector which is equal to a)!!! " AB + BC AC b)! AD!!! " + DB AB c)! AC + CD AD d)! BC + CD!!! " + DA BA e) CD!!! " "

More information

12.5 Equations of Lines and Planes

12.5 Equations of Lines and Planes 12.5 Equations of Lines and Planes Equation of Lines Vector Equation of Lines Parametric Equation of Lines Symmetric Equation of Lines Relation Between Two Lines Equations of Planes Vector Equation of

More information

St Andrew s Academy Mathematics Department Higher Mathematics VECTORS

St Andrew s Academy Mathematics Department Higher Mathematics VECTORS St Andrew s Academy Mathematics Department Higher Mathematics VECTORS hsn.uk.net Higher Mathematics Vectors Contents Vectors 1 1 Vectors and Scalars EF 1 Components EF 1 Magnitude EF 4 Equal Vectors EF

More information

CHAPTER TWO. 2.1 Vectors as ordered pairs and triples. The most common set of basic vectors in 3-space is i,j,k. where

CHAPTER TWO. 2.1 Vectors as ordered pairs and triples. The most common set of basic vectors in 3-space is i,j,k. where 40 CHAPTER TWO.1 Vectors as ordered pairs and triples. The most common set of basic vectors in 3-space is i,j,k where i represents a vector of magnitude 1 in the x direction j represents a vector of magnitude

More information

MAT1035 Analytic Geometry

MAT1035 Analytic Geometry MAT1035 Analytic Geometry Lecture Notes R.A. Sabri Kaan Gürbüzer Dokuz Eylül University 2016 2 Contents 1 Review of Trigonometry 5 2 Polar Coordinates 7 3 Vectors in R n 9 3.1 Located Vectors..............................................

More information

CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1. Prof. N. Harnew University of Oxford TT 2013

CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1. Prof. N. Harnew University of Oxford TT 2013 CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1 Prof. N. Harnew University of Oxford TT 2013 1 OUTLINE 1. Vector Algebra 2. Vector Geometry 3. Types of Matrices and Matrix Operations 4. Determinants

More information

TABLE OF CONTENTS 2 CHAPTER 1

TABLE OF CONTENTS 2 CHAPTER 1 TABLE OF CONTENTS CHAPTER 1 Quadratics CHAPTER Functions 3 CHAPTER 3 Coordinate Geometry 3 CHAPTER 4 Circular Measure 4 CHAPTER 5 Trigonometry 4 CHAPTER 6 Vectors 5 CHAPTER 7 Series 6 CHAPTER 8 Differentiation

More information

2.1 Scalars and Vectors

2.1 Scalars and Vectors 2.1 Scalars and Vectors Scalar A quantity characterized by a positive or negative number Indicated by letters in italic such as A e.g. Mass, volume and length 2.1 Scalars and Vectors Vector A quantity

More information

VECTOR NAME OF THE CHAPTER. By, Srinivasamurthy s.v. Lecturer in mathematics. K.P.C.L.P.U.College. jogfalls PART-B TWO MARKS QUESTIONS

VECTOR NAME OF THE CHAPTER. By, Srinivasamurthy s.v. Lecturer in mathematics. K.P.C.L.P.U.College. jogfalls PART-B TWO MARKS QUESTIONS NAME OF THE CHAPTER VECTOR PART-A ONE MARKS PART-B TWO MARKS PART-C FIVE MARKS PART-D SIX OR FOUR MARKS PART-E TWO OR FOUR 1 1 1 1 1 16 TOTAL MARKS ALLOTED APPROXIMATELY By, Srinivasamurthy s.v Lecturer

More information

Chapter 2: Vector Geometry

Chapter 2: Vector Geometry Chapter 2: Vector Geometry Daniel Chan UNSW Semester 1 2018 Daniel Chan (UNSW) Chapter 2: Vector Geometry Semester 1 2018 1 / 32 Goals of this chapter In this chapter, we will answer the following geometric

More information

Extra Problems for Math 2050 Linear Algebra I

Extra Problems for Math 2050 Linear Algebra I Extra Problems for Math 5 Linear Algebra I Find the vector AB and illustrate with a picture if A = (,) and B = (,4) Find B, given A = (,4) and [ AB = A = (,4) and [ AB = 8 If possible, express x = 7 as

More information

P1 Chapter 11 :: Vectors

P1 Chapter 11 :: Vectors P1 Chapter 11 :: Vectors jfrost@tiffin.kingston.sch.uk www.drfrostmaths.com @DrFrostMaths Last modified: 21 st August 2017 Use of DrFrostMaths for practice Register for free at: www.drfrostmaths.com/homework

More information

Engineering Mechanics: Statics in SI Units, 12e

Engineering Mechanics: Statics in SI Units, 12e Engineering Mechanics: Statics in SI Units, 12e 2 Force Vectors 1 Chapter Objectives Parallelogram Law Cartesian vector form Dot product and an angle between two vectors 2 Chapter Outline 1. Scalars and

More information

Physics 40 Chapter 3: Vectors

Physics 40 Chapter 3: Vectors Physics 40 Chapter 3: Vectors Cartesian Coordinate System Also called rectangular coordinate system x-and y- axes intersect at the origin Points are labeled (x,y) Polar Coordinate System Origin and reference

More information

Detailed objectives are given in each of the sections listed below. 1. Cartesian Space Coordinates. 2. Displacements, Forces, Velocities and Vectors

Detailed objectives are given in each of the sections listed below. 1. Cartesian Space Coordinates. 2. Displacements, Forces, Velocities and Vectors Unit 1 Vectors In this unit, we introduce vectors, vector operations, and equations of lines and planes. Note: Unit 1 is based on Chapter 12 of the textbook, Salas and Hille s Calculus: Several Variables,

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP J-Mathematics XRCIS - 0 CHCK YOUR GRASP SLCT TH CORRCT ALTRNATIV (ONLY ON CORRCT ANSWR). If ABCDF is a regular hexagon and if AB AC AD A AF AD, then is - (A) 0 (B) (C) (D). If a b is along the angle bisector

More information

Vectors. Introduction

Vectors. Introduction Chapter 3 Vectors Vectors Vector quantities Physical quantities that have both numerical and directional properties Mathematical operations of vectors in this chapter Addition Subtraction Introduction

More information

VECTORS AND THE GEOMETRY OF SPACE

VECTORS AND THE GEOMETRY OF SPACE VECTORS AND THE GEOMETRY OF SPACE VECTORS AND THE GEOMETRY OF SPACE A line in the xy-plane is determined when a point on the line and the direction of the line (its slope or angle of inclination) are given.

More information

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4 MATH2202 Notebook 1 Fall 2015/2016 prepared by Professor Jenny Baglivo Contents 1 MATH2202 Notebook 1 3 1.1 Single Variable Calculus versus Multivariable Calculus................... 3 1.2 Rectangular Coordinate

More information

This pre-publication material is for review purposes only. Any typographical or technical errors will be corrected prior to publication.

This pre-publication material is for review purposes only. Any typographical or technical errors will be corrected prior to publication. This pre-publication material is for review purposes only. Any typographical or technical errors will be corrected prior to publication. Copyright Pearson Canada Inc. All rights reserved. Copyright Pearson

More information

2-9. The plate is subjected to the forces acting on members A and B as shown. If θ = 60 o, determine the magnitude of the resultant of these forces

2-9. The plate is subjected to the forces acting on members A and B as shown. If θ = 60 o, determine the magnitude of the resultant of these forces 2-9. The plate is subjected to the forces acting on members A and B as shown. If θ 60 o, determine the magnitude of the resultant of these forces and its direction measured clockwise from the positie x

More information

Math 2433 Notes Week The Dot Product. The angle between two vectors is found with this formula: cosθ = a b

Math 2433 Notes Week The Dot Product. The angle between two vectors is found with this formula: cosθ = a b Math 2433 Notes Week 2 11.3 The Dot Product The angle between two vectors is found with this formula: cosθ = a b a b 3) Given, a = 4i + 4j, b = i - 2j + 3k, c = 2i + 2k Find the angle between a and c Projection

More information

Math Review Night: Work and the Dot Product

Math Review Night: Work and the Dot Product Math Review Night: Work and the Dot Product Dot Product A scalar quantity Magnitude: A B = A B cosθ The dot product can be positive, zero, or negative Two types of projections: the dot product is the parallel

More information

CHAPTER 4 VECTORS. Before we go any further, we must talk about vectors. They are such a useful tool for

CHAPTER 4 VECTORS. Before we go any further, we must talk about vectors. They are such a useful tool for CHAPTER 4 VECTORS Before we go any further, we must talk about vectors. They are such a useful tool for the things to come. The concept of a vector is deeply rooted in the understanding of physical mechanics

More information

Vectors. J.R. Wilson. September 28, 2017

Vectors. J.R. Wilson. September 28, 2017 Vectors J.R. Wilson September 28, 2017 This chapter introduces vectors that are used in many areas of physics (needed for classical physics this year). One complication is that a number of different forms

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 214 (R1) Winter 2008 Intermediate Calculus I Solutions to Problem Set #8 Completion Date: Friday March 14, 2008 Department of Mathematical and Statistical Sciences University of Alberta Question 1.

More information

9.5. Lines and Planes. Introduction. Prerequisites. Learning Outcomes

9.5. Lines and Planes. Introduction. Prerequisites. Learning Outcomes Lines and Planes 9.5 Introduction Vectors are very convenient tools for analysing lines and planes in three dimensions. In this Section you will learn about direction ratios and direction cosines and then

More information

Part (1) Second : Trigonometry. Tan

Part (1) Second : Trigonometry. Tan Part (1) Second : Trigonometry (1) Complete the following table : The angle Ratio 42 12 \ Sin 0.3214 Cas 0.5321 Tan 2.0625 (2) Complete the following : 1) 46 36 \ 24 \\ =. In degrees. 2) 44.125 = in degrees,

More information

(arrows denote positive direction)

(arrows denote positive direction) 12 Chapter 12 12.1 3-dimensional Coordinate System The 3-dimensional coordinate system we use are coordinates on R 3. The coordinate is presented as a triple of numbers: (a,b,c). In the Cartesian coordinate

More information

3D-COORDINATE GEOMETRY

3D-COORDINATE GEOMETRY J-Mathematics. INTRODUCTION : P OI N T In earlier classes we have learnt about points, lines, circles and conic section in two dimensional geometry. In two dimensions a point represented by an ordered

More information

Vectors for Physics. AP Physics C

Vectors for Physics. AP Physics C Vectors for Physics AP Physics C A Vector is a quantity that has a magnitude (size) AND a direction. can be in one-dimension, two-dimensions, or even three-dimensions can be represented using a magnitude

More information

( ) = ( ) ( ) = ( ) = + = = = ( ) Therefore: , where t. Note: If we start with the condition BM = tab, we will have BM = ( x + 2, y + 3, z 5)

( ) = ( ) ( ) = ( ) = + = = = ( ) Therefore: , where t. Note: If we start with the condition BM = tab, we will have BM = ( x + 2, y + 3, z 5) Chapter Exercise a) AB OB OA ( xb xa, yb ya, zb za),,, 0, b) AB OB OA ( xb xa, yb ya, zb za) ( ), ( ),, 0, c) AB OB OA x x, y y, z z (, ( ), ) (,, ) ( ) B A B A B A ( ) d) AB OB OA ( xb xa, yb ya, zb za)

More information

Engineering Mechanics: Statics

Engineering Mechanics: Statics Engineering Mechanics: Statics Chapter 2: Force Systems Part A: Two Dimensional Force Systems Force Force = an action of one body on another Vector quantity External and Internal forces Mechanics of Rigid

More information

MAT 1339-S14 Class 8

MAT 1339-S14 Class 8 MAT 1339-S14 Class 8 July 28, 2014 Contents 7.2 Review Dot Product........................... 2 7.3 Applications of the Dot Product..................... 4 7.4 Vectors in Three-Space.........................

More information

MAT 1339-S14 Class 10 & 11

MAT 1339-S14 Class 10 & 11 MAT 1339-S14 Class 10 & 11 August 7 & 11, 2014 Contents 8 Lines and Planes 1 8.1 Equations of Lines in Two-Space and Three-Space............ 1 8.2 Equations of Planes........................... 5 8.3 Properties

More information

MEP Pupil Text 13-19, Additional Material. Gradients of Perpendicular Lines

MEP Pupil Text 13-19, Additional Material. Gradients of Perpendicular Lines Graphs MEP Pupil Text -9, Additional Material.B Gradients of Perpendicular Lines In this section we explore the relationship between the gradients of perpendicular lines and line segments. Worked Example

More information

1. Matrices and Determinants

1. Matrices and Determinants Important Questions 1. Matrices and Determinants Ex.1.1 (2) x 3x y Find the values of x, y, z if 2x + z 3y w = 0 7 3 2a Ex 1.1 (3) 2x 3x y If 2x + z 3y w = 3 2 find x, y, z, w 4 7 Ex 1.1 (13) 3 7 3 2 Find

More information

CHAPTER 3 : VECTORS. Definition 3.1 A vector is a quantity that has both magnitude and direction.

CHAPTER 3 : VECTORS. Definition 3.1 A vector is a quantity that has both magnitude and direction. EQT 101-Engineering Mathematics I Teaching Module CHAPTER 3 : VECTORS 3.1 Introduction Definition 3.1 A ector is a quantity that has both magnitude and direction. A ector is often represented by an arrow

More information

Vectors. Introduction. Prof Dr Ahmet ATAÇ

Vectors. Introduction. Prof Dr Ahmet ATAÇ Chapter 3 Vectors Vectors Vector quantities Physical quantities that have both n u m e r i c a l a n d d i r e c t i o n a l properties Mathematical operations of vectors in this chapter A d d i t i o

More information

Engineering Mechanics: Statics in SI Units, 12e Force Vectors

Engineering Mechanics: Statics in SI Units, 12e Force Vectors Engineering Mechanics: Statics in SI Units, 1e orce Vectors 1 Chapter Objectives Parallelogram Law Cartesian vector form Dot product and angle between vectors Chapter Outline 1. Scalars and Vectors. Vector

More information

4.1 Distance and Length

4.1 Distance and Length Chapter Vector Geometry In this chapter we will look more closely at certain geometric aspects of vectors in R n. We will first develop an intuitive understanding of some basic concepts by looking at vectors

More information

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS NAME: PERIOD: DATE: MATH ANALYSIS 2 MR. MELLINA CHAPTER 12: VECTORS & DETERMINANTS Sections: v 12.1 Geometric Representation of Vectors v 12.2 Algebraic Representation of Vectors v 12.3 Vector and Parametric

More information

Analytic Geometry MAT 1035

Analytic Geometry MAT 1035 Analytic Geometry MAT 035 5.09.04 WEEKLY PROGRAM - The first week of the semester, we will introduce the course and given a brief outline. We continue with vectors in R n and some operations including

More information

the Further Mathematics network

the Further Mathematics network the Further Mathematics network www.fmnetwork.org.uk 1 the Further Mathematics network www.fmnetwork.org.uk Further Pure 3: Teaching Vector Geometry Let Maths take you Further 2 Overview Scalar and vector

More information

Introduction to Vector Calculus (29) SOLVED EXAMPLES. (d) B. C A. (f) a unit vector perpendicular to both B. = ˆ 2k = = 8 = = 8

Introduction to Vector Calculus (29) SOLVED EXAMPLES. (d) B. C A. (f) a unit vector perpendicular to both B. = ˆ 2k = = 8 = = 8 Introduction to Vector Calculus (9) SOLVED EXAMPLES Q. If vector A i ˆ ˆj k, ˆ B i ˆ ˆj, C i ˆ 3j ˆ kˆ (a) A B (e) A B C (g) Solution: (b) A B (c) A. B C (d) B. C A then find (f) a unit vector perpendicular

More information

11.1 Vectors in the plane

11.1 Vectors in the plane 11.1 Vectors in the plane What is a vector? It is an object having direction and length. Geometric way to represent vectors It is represented by an arrow. The direction of the arrow is the direction of

More information

The Cross Product. In this section, we will learn about: Cross products of vectors and their applications.

The Cross Product. In this section, we will learn about: Cross products of vectors and their applications. The Cross Product In this section, we will learn about: Cross products of vectors and their applications. THE CROSS PRODUCT The cross product a x b of two vectors a and b, unlike the dot product, is a

More information

1. Vectors and Matrices

1. Vectors and Matrices E. 8.02 Exercises. Vectors and Matrices A. Vectors Definition. A direction is just a unit vector. The direction of A is defined by dir A = A, (A 0); A it is the unit vector lying along A and pointed like

More information

Narayana IIT Academy

Narayana IIT Academy INDIA Sec: Jr IIT_IZ CUT-18 Date: 18-1-17 Time: 07:30 AM to 10:30 AM 013_P MaxMarks:180 KEY SHEET PHYSICS 1 ABCD ACD 3 AC 4 BD 5 AC 6 ABC 7 ACD 8 ABC 9 A 10 A 11 A 1 C 13 B 14 C 15 B 16 C 17 A 18 B 19

More information

Analytic Geometry MAT 1035

Analytic Geometry MAT 1035 Analytic Geometry MAT 035 5.09.04 WEEKLY PROGRAM - The first week of the semester, we will introduce the course and given a brief outline. We continue with vectors in R n and some operations including

More information

Q1. If (1, 2) lies on the circle. x 2 + y 2 + 2gx + 2fy + c = 0. which is concentric with the circle x 2 + y 2 +4x + 2y 5 = 0 then c =

Q1. If (1, 2) lies on the circle. x 2 + y 2 + 2gx + 2fy + c = 0. which is concentric with the circle x 2 + y 2 +4x + 2y 5 = 0 then c = Q1. If (1, 2) lies on the circle x 2 + y 2 + 2gx + 2fy + c = 0 which is concentric with the circle x 2 + y 2 +4x + 2y 5 = 0 then c = a) 11 b) -13 c) 24 d) 100 Solution: Any circle concentric with x 2 +

More information

ENGI 9420 Lecture Notes 2 - Matrix Algebra Page Matrix operations can render the solution of a linear system much more efficient.

ENGI 9420 Lecture Notes 2 - Matrix Algebra Page Matrix operations can render the solution of a linear system much more efficient. ENGI 940 Lecture Notes - Matrix Algebra Page.0. Matrix Algebra A linear system of m equations in n unknowns, a x + a x + + a x b (where the a ij and i n n a x + a x + + a x b n n a x + a x + + a x b m

More information

4 Arithmetic of Segments Hilbert s Road from Geometry

4 Arithmetic of Segments Hilbert s Road from Geometry 4 Arithmetic of Segments Hilbert s Road from Geometry to Algebra In this section, we explain Hilbert s procedure to construct an arithmetic of segments, also called Streckenrechnung. Hilbert constructs

More information

Vectors in the new Syllabus. Taylors College, Sydney. MANSW Conference Sept. 16, 2017

Vectors in the new Syllabus. Taylors College, Sydney. MANSW Conference Sept. 16, 2017 Vectors in the new Syllabus by Derek Buchanan Taylors College, Sydney MANSW Conference Sept. 6, 07 Quantities which have only magnitude are called scalars. Quantities which have magnitude and direction

More information

Chapter 13: Vectors and the Geometry of Space

Chapter 13: Vectors and the Geometry of Space Chapter 13: Vectors and the Geometry of Space 13.1 3-Dimensional Coordinate System 13.2 Vectors 13.3 The Dot Product 13.4 The Cross Product 13.5 Equations of Lines and Planes 13.6 Cylinders and Quadratic

More information

Chapter 13: Vectors and the Geometry of Space

Chapter 13: Vectors and the Geometry of Space Chapter 13: Vectors and the Geometry of Space 13.1 3-Dimensional Coordinate System 13.2 Vectors 13.3 The Dot Product 13.4 The Cross Product 13.5 Equations of Lines and Planes 13.6 Cylinders and Quadratic

More information

Euclidean Spaces. Euclidean Spaces. Chapter 10 -S&B

Euclidean Spaces. Euclidean Spaces. Chapter 10 -S&B Chapter 10 -S&B The Real Line: every real number is represented by exactly one point on the line. The plane (i.e., consumption bundles): Pairs of numbers have a geometric representation Cartesian plane

More information

MATHEMATICS: PAPER II

MATHEMATICS: PAPER II NATIONAL SENIOR CERTIFICATE EXAMINATION SUPPLEMENTARY EXAMINATION 2015 MATHEMATICS: PAPER II Time: 3 hours 150 marks PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY 1. This question paper consists of

More information

BASIC ALGEBRA OF VECTORS

BASIC ALGEBRA OF VECTORS Fomulae Fo u Vecto Algeba By Mi Mohammed Abbas II PCMB 'A' Impotant Tems, Definitions & Fomulae 01 Vecto - Basic Intoduction: A quantity having magnitude as well as the diection is called vecto It is denoted

More information