POWER FOR COMPARING TWO PROPORTIONS WITH INDEPENDENT SAMPLES

Size: px
Start display at page:

Download "POWER FOR COMPARING TWO PROPORTIONS WITH INDEPENDENT SAMPLES"

Transcription

1 This handout covers material found in Section 0.5 of the text. POWER FOR COMPARING TWO PROPORTIONS WITH INDEPENDENT SAMPLES EXAMPLE: Otolaryngology (Example 0.3 of your text, page 405). Suppose a study comparing a medical and a surgical treatment for children who have an excessive number of episodes of otitis media (OTM) during the first 3 years of life is planned. Success is defined as or fewer episodes of OTM in the first months after treatment. Success rates of 50% and 70% are assumed in the medical and surgical groups, respectively, and the recruitment of 00 patients for each group is realistically anticipated. How much power does such a study have of detecting a significant difference if α = 5% is used? Your book provides a formula to calculate this power on page 405. Suppose we plan to use sample sizes n and n and significance level. Furthermore, suppose the projected true probabilities of success in groups and are, respectively, p and p. If we let p p, then the power we achieve using a two-tailed test is given by Power = pq(/ n / n ) z / p q / n pq / n pq / n pq / n where p n p n p n n, q p Note: use α rather than α/ for a one-tailed alternative.

2 First, consider the use of SAS PROC POWER. You can use the NPERGROUP= option in a balanced design and express effects in terms of the individual proportions. twosamplefreq test=pchi alpha=.05 groupproportions = (.5.7) npergroup = 00 You can also specify sample sizes with the GROUPNS= option. This would be useful if the design were unbalanced. twosamplefreq test=pchi groupproportions = (.5.7) groupns = 00 00

3 Finally, you can also express effects in terms of relative risks. twosamplefreq test=pchi relativerisk =.4 refproportion = 0.5 groupns = To use R for power computations, you can install the pwr package in R and use the pwr.p.test function. Usage pwr.p.test(h = NULL, n = NULL,, power = NULL, alternative = c("two.sided","less","greater")) Arguments h n sig.level power Effect size Number of observations (per sample) Significance level (Type I error probability) Power of test ( minus Type II error probability) alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less" We typically calculate h as arcsin ( p ) - arcsin ( p.) 3

4 Here, h = > pwr.p.test(h=.45,n=00,sig.level=.05,power=) Difference of proportion power calculation for binomial distribution (arcsine transformation) h = 0.45 n = 00 power = NOTE: same sample sizes For unequal sample sizes, you can use the pwr.p.test function. > pwr.pn.test(h=.457,n=00,n=00,sig.level=.05,power=) difference of proportion power calculation for binomial distribution (ar csine transformation) h = n = 00 n = 00 power = NOTE: different sample sizes Calculating Sample Size How many subjects would we need in each group to achieve 90% power? > pwr.p.test(h=.457,n=,sig.level=.05,power=.90) Difference of proportion power calculation for binomial distribution (ar csine transformation) h = n = power = 0.9 NOTE: same sample sizes 4

5 POWER FOR FISHER S EXACT TEST FOR COMPARING TWO PROPORTIONS Let s once again consider Example 0.3 from your text. To calculate the exact power using Fisher s exact test with SAS, you can use the following code: twosamplefreq test=fisher groupproportions = (.5.7) npergroup = 00 Once again, note that you could have specified GROUPNS = Calculating Sample Size How many subjects would we need in each group to achieve 90% power? twosamplefreq test=fisher groupproportions = (.5.7) npergroup =. power =.90; 5

6 To calculate power for Fisher s exact test in R, you can use the powerx function (which requires the installation of the exactx package). > powerx(p0=.5,p=.7,n0=00,n=00,sig.level=.05,alternative="two.sided", approx=false) Power for Fisher's Exact Test power = n0 = 00 n = 00 p0 = 0.5 p = 0.7 nulloddsratio = NOTE: errbound= e-06 Calculating Sample Size Once again, how many subjects would we need in each group to achieve 90% power with Fisher s exact test? To compute this in R, you can use the ssx function. > ssx(p0=.5,p=.7,power=.90,n.over.n0=,sig.level=.05, alternative="two.sided",approx=false) Power for Fisher's Exact Test power = n0 = 33 n = 33 p0 = 0.5 p = 0.7 nulloddsratio = NOTE: errbound= e-06 6

7 POWER FOR MCNEMAR S TEST EXAMPLE: Cancer (Example 0.34 of your text, page 408). Suppose we want to compare two different regimens of chemotherapy (A, B) for treatment of breast cancer, where the outcome measure is recurrence of breast cancer or death over a 5-year period. A matched-pair design is used, where patients are matched on age and clinical stage of disease. One patient in each pair is assigned to treatment A and the other to treatment B. Based on previous work, it is estimated that patients in a matched pair will respond similarly to the treatments in 85% of matched pairs. Furthermore, for matched pairs where there IS a difference in response, it is estimated that in /3 of the pairs the A patient will either die or have a recurrence and the B patient will not; in /3 of the pairs the B patient will either die or have a recurrence and the A patient will not. What is the power of the test if 600 matched pairs are used in the study? First, we can use exact binomial probabilities. To begin, find the proportion of overall pairs that are discordant for each type: Type A: Type B: pairedfreq dist=exact_cond discproportions = npairs = 600 7

8 We can also use normal approximation methods to calculate the power: pairedfreq dist=normal discproportions = npairs = 600 power =. ; 8

9 Formulae for McNemar s Power and Sample Sizes (from text): The sample size (# of matched pairs n) required to achieve two-tailed power = β at the specified α level is given below. We need to specify some probabilities in order to use this formula (and these probabilities might be very difficult to estimate before collecting data). Note that for one-sided tests, we replace α/ by α. Let p A = the projected proportion of discordant pairs of type A among discordant pairs (this means that A has the trait but B does not). Let p D = the projected proportion of discordant pairs among all pairs. Sample size formula: n = (z α+z β p A q A ) 4(p A.5) p D matched pairs Power formula: Power = Φ [ (zα + p A 0.5 np D )] p A q A For example, use these formulas to compute the power of the test if 600 matched pairs are used in the Cancer study. 9

Sample Size/Power Calculation by Software/Online Calculators

Sample Size/Power Calculation by Software/Online Calculators Sample Size/Power Calculation by Software/Online Calculators May 24, 2018 Li Zhang, Ph.D. li.zhang@ucsf.edu Associate Professor Department of Epidemiology and Biostatistics Division of Hematology and Oncology

More information

E509A: Principle of Biostatistics. GY Zou

E509A: Principle of Biostatistics. GY Zou E509A: Principle of Biostatistics (Effect measures ) GY Zou gzou@robarts.ca We have discussed inference procedures for 2 2 tables in the context of comparing two groups. Yes No Group 1 a b n 1 Group 2

More information

Sample size and power calculation using R and SAS proc power. Ho Kim GSPH, SNU

Sample size and power calculation using R and SAS proc power. Ho Kim GSPH, SNU Sample size and power calculation using R and SAS proc power Ho Kim GSPH, SNU Pvalue (1) We want to show that the means of two populations are different! Y 1 a sample mean from the 1st pop Y 2 a sample

More information

Tests for Two Correlated Proportions in a Matched Case- Control Design

Tests for Two Correlated Proportions in a Matched Case- Control Design Chapter 155 Tests for Two Correlated Proportions in a Matched Case- Control Design Introduction A 2-by-M case-control study investigates a risk factor relevant to the development of a disease. A population

More information

Power and Sample Size Bios 662

Power and Sample Size Bios 662 Power and Sample Size Bios 662 Michael G. Hudgens, Ph.D. mhudgens@bios.unc.edu http://www.bios.unc.edu/ mhudgens 2008-10-31 14:06 BIOS 662 1 Power and Sample Size Outline Introduction One sample: continuous

More information

The Design of a Survival Study

The Design of a Survival Study The Design of a Survival Study The design of survival studies are usually based on the logrank test, and sometimes assumes the exponential distribution. As in standard designs, the power depends on The

More information

Exact McNemar s Test and Matching Confidence Intervals Michael P. Fay April 25,

Exact McNemar s Test and Matching Confidence Intervals Michael P. Fay April 25, Exact McNemar s Test and Matching Confidence Intervals Michael P. Fay April 25, 2016 1 McNemar s Original Test Consider paired binary response data. For example, suppose you have twins randomized to two

More information

Statistics in medicine

Statistics in medicine Statistics in medicine Lecture 3: Bivariate association : Categorical variables Proportion in one group One group is measured one time: z test Use the z distribution as an approximation to the binomial

More information

Chapter 22: Comparing two proportions. Religious identification Current at 16 Same Different Total Catholic Jewish

Chapter 22: Comparing two proportions. Religious identification Current at 16 Same Different Total Catholic Jewish Chapter 22: Comparing two proportions Example: The table below shows the cross-classification of a sample of individuals according to their religious identification at age 16 and their current religious

More information

Probability and Probability Distributions. Dr. Mohammed Alahmed

Probability and Probability Distributions. Dr. Mohammed Alahmed Probability and Probability Distributions 1 Probability and Probability Distributions Usually we want to do more with data than just describing them! We might want to test certain specific inferences about

More information

Duke University. Duke Biostatistics and Bioinformatics (B&B) Working Paper Series. Randomized Phase II Clinical Trials using Fisher s Exact Test

Duke University. Duke Biostatistics and Bioinformatics (B&B) Working Paper Series. Randomized Phase II Clinical Trials using Fisher s Exact Test Duke University Duke Biostatistics and Bioinformatics (B&B) Working Paper Series Year 2010 Paper 7 Randomized Phase II Clinical Trials using Fisher s Exact Test Sin-Ho Jung sinho.jung@duke.edu This working

More information

CMU MSP 36726: Power

CMU MSP 36726: Power CMU MSP 36726: Power H. Seltman 2/21/2018 I. Consider three experiments: 1) Recruitment, randomization, priming with your group does well/poorly in math, math testing 2) Recruitment, each subject gets

More information

Statistical Experiment A statistical experiment is any process by which measurements are obtained.

Statistical Experiment A statistical experiment is any process by which measurements are obtained. (التوزيعات الا حتمالية ( Distributions Probability Statistical Experiment A statistical experiment is any process by which measurements are obtained. Examples of Statistical Experiments Counting the number

More information

2. In a clinical trial of certain new treatment, we may be interested in the proportion of patients cured.

2. In a clinical trial of certain new treatment, we may be interested in the proportion of patients cured. Discrete probability distributions January 21, 2013 Debdeep Pati Random Variables 1. Events are not very convenient to use. 2. In a clinical trial of certain new treatment, we may be interested in the

More information

Tests for Population Proportion(s)

Tests for Population Proportion(s) Tests for Population Proportion(s) Esra Akdeniz April 6th, 2016 Motivation We are interested in estimating the prevalence rate of breast cancer among 50- to 54-year-old women whose mothers have had breast

More information

Epidemiology Principle of Biostatistics Chapter 14 - Dependent Samples and effect measures. John Koval

Epidemiology Principle of Biostatistics Chapter 14 - Dependent Samples and effect measures. John Koval Epidemiology 9509 Principle of Biostatistics Chapter 14 - Dependent Samples and effect measures John Koval Department of Epidemiology and Biostatistics University of Western Ontario What is being covered

More information

Welcome! Webinar Biostatistics: sample size & power. Thursday, April 26, 12:30 1:30 pm (NDT)

Welcome! Webinar Biostatistics: sample size & power. Thursday, April 26, 12:30 1:30 pm (NDT) . Welcome! Webinar Biostatistics: sample size & power Thursday, April 26, 12:30 1:30 pm (NDT) Get started now: Please check if your speakers are working and mute your audio. Please use the chat box to

More information

It applies to discrete and continuous random variables, and a mix of the two.

It applies to discrete and continuous random variables, and a mix of the two. 3. Bayes Theorem 3.1 Bayes Theorem A straightforward application of conditioning: using p(x, y) = p(x y) p(y) = p(y x) p(x), we obtain Bayes theorem (also called Bayes rule) p(x y) = p(y x) p(x). p(y)

More information

The SEQDESIGN Procedure

The SEQDESIGN Procedure SAS/STAT 9.2 User s Guide, Second Edition The SEQDESIGN Procedure (Book Excerpt) This document is an individual chapter from the SAS/STAT 9.2 User s Guide, Second Edition. The correct bibliographic citation

More information

Power and sample size calculations

Power and sample size calculations Power and sample size calculations Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk April 8, 2014 Planning an investigation How many individuals

More information

Group-Sequential Tests for One Proportion in a Fleming Design

Group-Sequential Tests for One Proportion in a Fleming Design Chapter 126 Group-Sequential Tests for One Proportion in a Fleming Design Introduction This procedure computes power and sample size for the single-arm group-sequential (multiple-stage) designs of Fleming

More information

Superiority by a Margin Tests for One Proportion

Superiority by a Margin Tests for One Proportion Chapter 103 Superiority by a Margin Tests for One Proportion Introduction This module provides power analysis and sample size calculation for one-sample proportion tests in which the researcher is testing

More information

Sample Size and Power I: Binary Outcomes. James Ware, PhD Harvard School of Public Health Boston, MA

Sample Size and Power I: Binary Outcomes. James Ware, PhD Harvard School of Public Health Boston, MA Sample Size and Power I: Binary Outcomes James Ware, PhD Harvard School of Public Health Boston, MA Sample Size and Power Principles: Sample size calculations are an essential part of study design Consider

More information

Unit 9: Inferences for Proportions and Count Data

Unit 9: Inferences for Proportions and Count Data Unit 9: Inferences for Proportions and Count Data Statistics 571: Statistical Methods Ramón V. León 12/15/2008 Unit 9 - Stat 571 - Ramón V. León 1 Large Sample Confidence Interval for Proportion ( pˆ p)

More information

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2)

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2) Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2) B.H. Robbins Scholars Series June 23, 2010 1 / 29 Outline Z-test χ 2 -test Confidence Interval Sample size and power Relative effect

More information

Two-sample Categorical data: Testing

Two-sample Categorical data: Testing Two-sample Categorical data: Testing Patrick Breheny April 1 Patrick Breheny Introduction to Biostatistics (171:161) 1/28 Separate vs. paired samples Despite the fact that paired samples usually offer

More information

Unit 9: Inferences for Proportions and Count Data

Unit 9: Inferences for Proportions and Count Data Unit 9: Inferences for Proportions and Count Data Statistics 571: Statistical Methods Ramón V. León 1/15/008 Unit 9 - Stat 571 - Ramón V. León 1 Large Sample Confidence Interval for Proportion ( pˆ p)

More information

R Short Course Session 4

R Short Course Session 4 R Short Course Session 4 Daniel Zhao, PhD Sixia Chen, PhD Department of Biostatistics and Epidemiology College of Public Health, OUHSC 11/13/2015 Outline Random distributions Summary statistics Statistical

More information

PubH 7405: REGRESSION ANALYSIS INTRODUCTION TO LOGISTIC REGRESSION

PubH 7405: REGRESSION ANALYSIS INTRODUCTION TO LOGISTIC REGRESSION PubH 745: REGRESSION ANALYSIS INTRODUCTION TO LOGISTIC REGRESSION Let Y be the Dependent Variable Y taking on values and, and: π Pr(Y) Y is said to have the Bernouilli distribution (Binomial with n ).

More information

Introduction to Crossover Trials

Introduction to Crossover Trials Introduction to Crossover Trials Stat 6500 Tutorial Project Isaac Blackhurst A crossover trial is a type of randomized control trial. It has advantages over other designed experiments because, under certain

More information

Power and the computation of sample size

Power and the computation of sample size 9 Power and the computation of sample size A statistical test will not be able to detect a true difference if the sample size is too small compared with the magnitude of the difference. When designing

More information

Survival Regression Models

Survival Regression Models Survival Regression Models David M. Rocke May 18, 2017 David M. Rocke Survival Regression Models May 18, 2017 1 / 32 Background on the Proportional Hazards Model The exponential distribution has constant

More information

BINF702 SPRING 2015 Chapter 7 Hypothesis Testing: One-Sample Inference

BINF702 SPRING 2015 Chapter 7 Hypothesis Testing: One-Sample Inference BINF702 SPRING 2015 Chapter 7 Hypothesis Testing: One-Sample Inference BINF702 SPRING 2014 Chapter 7 Hypothesis Testing 1 Section 7.9 One-Sample c 2 Test for the Variance of a Normal Distribution Eq. 7.40

More information

Chapter 5: HYPOTHESIS TESTING

Chapter 5: HYPOTHESIS TESTING MATH411: Applied Statistics Dr. YU, Chi Wai Chapter 5: HYPOTHESIS TESTING 1 WHAT IS HYPOTHESIS TESTING? As its name indicates, it is about a test of hypothesis. To be more precise, we would first translate

More information

Multivariable Fractional Polynomials

Multivariable Fractional Polynomials Multivariable Fractional Polynomials Axel Benner September 7, 2015 Contents 1 Introduction 1 2 Inventory of functions 1 3 Usage in R 2 3.1 Model selection........................................ 3 4 Example

More information

REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520

REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520 REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520 Department of Statistics North Carolina State University Presented by: Butch Tsiatis, Department of Statistics, NCSU

More information

Multivariable Fractional Polynomials

Multivariable Fractional Polynomials Multivariable Fractional Polynomials Axel Benner May 17, 2007 Contents 1 Introduction 1 2 Inventory of functions 1 3 Usage in R 2 3.1 Model selection........................................ 3 4 Example

More information

Basic Statistics and Probability Chapter 3: Probability

Basic Statistics and Probability Chapter 3: Probability Basic Statistics and Probability Chapter 3: Probability Events, Sample Spaces and Probability Unions and Intersections Complementary Events Additive Rule. Mutually Exclusive Events Conditional Probability

More information

Chapter Six: Two Independent Samples Methods 1/51

Chapter Six: Two Independent Samples Methods 1/51 Chapter Six: Two Independent Samples Methods 1/51 6.3 Methods Related To Differences Between Proportions 2/51 Test For A Difference Between Proportions:Introduction Suppose a sampling distribution were

More information

HOW TO DETERMINE THE NUMBER OF SUBJECTS NEEDED FOR MY STUDY?

HOW TO DETERMINE THE NUMBER OF SUBJECTS NEEDED FOR MY STUDY? HOW TO DETERMINE THE NUMBER OF SUBJECTS NEEDED FOR MY STUDY? TUTORIAL ON SAMPLE SIZE AND POWER CALCULATIONS FOR INEQUALITY TESTS. John Zavrakidis j.zavrakidis@nki.nl May 28, 2018 J.Zavrakidis Sample and

More information

Chapter 6. Logistic Regression. 6.1 A linear model for the log odds

Chapter 6. Logistic Regression. 6.1 A linear model for the log odds Chapter 6 Logistic Regression In logistic regression, there is a categorical response variables, often coded 1=Yes and 0=No. Many important phenomena fit this framework. The patient survives the operation,

More information

MODULE 6 LOGISTIC REGRESSION. Module Objectives:

MODULE 6 LOGISTIC REGRESSION. Module Objectives: MODULE 6 LOGISTIC REGRESSION Module Objectives: 1. 147 6.1. LOGIT TRANSFORMATION MODULE 6. LOGISTIC REGRESSION Logistic regression models are used when a researcher is investigating the relationship between

More information

A SAS/AF Application For Sample Size And Power Determination

A SAS/AF Application For Sample Size And Power Determination A SAS/AF Application For Sample Size And Power Determination Fiona Portwood, Software Product Services Ltd. Abstract When planning a study, such as a clinical trial or toxicology experiment, the choice

More information

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: ECONOMICS

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: ECONOMICS COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: ECONOMICS COURSE: CBS 221 DISCLAIMER The contents of this document are intended for practice and leaning purposes at the undergraduate

More information

OHSU OGI Class ECE-580-DOE :Statistical Process Control and Design of Experiments Steve Brainerd Basic Statistics Sample size?

OHSU OGI Class ECE-580-DOE :Statistical Process Control and Design of Experiments Steve Brainerd Basic Statistics Sample size? ECE-580-DOE :Statistical Process Control and Design of Experiments Steve Basic Statistics Sample size? Sample size determination: text section 2-4-2 Page 41 section 3-7 Page 107 Website::http://www.stat.uiowa.edu/~rlenth/Power/

More information

Lecture 25: Models for Matched Pairs

Lecture 25: Models for Matched Pairs Lecture 25: Models for Matched Pairs Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina Lecture

More information

Chapter 10. Chapter 10. Multinomial Experiments and. Multinomial Experiments and Contingency Tables. Contingency Tables.

Chapter 10. Chapter 10. Multinomial Experiments and. Multinomial Experiments and Contingency Tables. Contingency Tables. Chapter 10 Multinomial Experiments and Contingency Tables 1 Chapter 10 Multinomial Experiments and Contingency Tables 10-1 1 Overview 10-2 2 Multinomial Experiments: of-fitfit 10-3 3 Contingency Tables:

More information

Population Variance. Concepts from previous lectures. HUMBEHV 3HB3 one-sample t-tests. Week 8

Population Variance. Concepts from previous lectures. HUMBEHV 3HB3 one-sample t-tests. Week 8 Concepts from previous lectures HUMBEHV 3HB3 one-sample t-tests Week 8 Prof. Patrick Bennett sampling distributions - sampling error - standard error of the mean - degrees-of-freedom Null and alternative/research

More information

Analysis of categorical data S4. Michael Hauptmann Netherlands Cancer Institute Amsterdam, The Netherlands

Analysis of categorical data S4. Michael Hauptmann Netherlands Cancer Institute Amsterdam, The Netherlands Analysis of categorical data S4 Michael Hauptmann Netherlands Cancer Institute Amsterdam, The Netherlands m.hauptmann@nki.nl 1 Categorical data One-way contingency table = frequency table Frequency (%)

More information

Package BayesNI. February 19, 2015

Package BayesNI. February 19, 2015 Package BayesNI February 19, 2015 Type Package Title BayesNI: Bayesian Testing Procedure for Noninferiority with Binary Endpoints Version 0.1 Date 2011-11-11 Author Sujit K Ghosh, Muhtarjan Osman Maintainer

More information

11-2 Multinomial Experiment

11-2 Multinomial Experiment Chapter 11 Multinomial Experiments and Contingency Tables 1 Chapter 11 Multinomial Experiments and Contingency Tables 11-11 Overview 11-2 Multinomial Experiments: Goodness-of-fitfit 11-3 Contingency Tables:

More information

Probability Distributions

Probability Distributions EXAMPLE: Consider rolling a fair die twice. Probability Distributions Random Variables S = {(i, j : i, j {,...,6}} Suppose we are interested in computing the sum, i.e. we have placed a bet at a craps table.

More information

Population 1 Population 2

Population 1 Population 2 Two Population Case Testing the Difference Between Two Population Means Sample of Size n _ Sample mean = x Sample s.d.=s x Sample of Size m _ Sample mean = y Sample s.d.=s y Pop n mean=μ x Pop n s.d.=

More information

Inference for Binomial Parameters

Inference for Binomial Parameters Inference for Binomial Parameters Dipankar Bandyopadhyay, Ph.D. Department of Biostatistics, Virginia Commonwealth University D. Bandyopadhyay (VCU) BIOS 625: Categorical Data & GLM 1 / 58 Inference for

More information

green green green/green green green yellow green/yellow green yellow green yellow/green green yellow yellow yellow/yellow yellow

green green green/green green green yellow green/yellow green yellow green yellow/green green yellow yellow yellow/yellow yellow CHAPTER PROBLEM Did Mendel s results from plant hybridization experiments contradict his theory? Gregor Mendel conducted original experiments to study the genetic traits of pea plants. In 1865 he wrote

More information

Non-Inferiority Tests for the Ratio of Two Proportions in a Cluster- Randomized Design

Non-Inferiority Tests for the Ratio of Two Proportions in a Cluster- Randomized Design Chapter 236 Non-Inferiority Tests for the Ratio of Two Proportions in a Cluster- Randomized Design Introduction This module provides power analysis and sample size calculation for non-inferiority tests

More information

E509A: Principle of Biostatistics. GY Zou

E509A: Principle of Biostatistics. GY Zou E509A: Principle of Biostatistics (Week 4: Inference for a single mean ) GY Zou gzou@srobarts.ca Example 5.4. (p. 183). A random sample of n =16, Mean I.Q is 106 with standard deviation S =12.4. What

More information

HYPOTHESIS TESTING. Hypothesis Testing

HYPOTHESIS TESTING. Hypothesis Testing MBA 605 Business Analytics Don Conant, PhD. HYPOTHESIS TESTING Hypothesis testing involves making inferences about the nature of the population on the basis of observations of a sample drawn from the population.

More information

MATH 240. Chapter 8 Outlines of Hypothesis Tests

MATH 240. Chapter 8 Outlines of Hypothesis Tests MATH 4 Chapter 8 Outlines of Hypothesis Tests Test for Population Proportion p Specify the null and alternative hypotheses, ie, choose one of the three, where p is some specified number: () H : p H : p

More information

Comparison of Two Samples

Comparison of Two Samples 2 Comparison of Two Samples 2.1 Introduction Problems of comparing two samples arise frequently in medicine, sociology, agriculture, engineering, and marketing. The data may have been generated by observation

More information

Textbook: Survivial Analysis Techniques for Censored and Truncated Data 2nd edition, by Klein and Moeschberger

Textbook: Survivial Analysis Techniques for Censored and Truncated Data 2nd edition, by Klein and Moeschberger Lecturer: James Degnan Office: SMLC 342 Office hours: MW 12:00 1:00 or by appointment E-mail: jamdeg@unm.edu Please include STAT474 or STAT574 in the subject line of the email to make sure I don t overlook

More information

Analysis of Variance

Analysis of Variance Statistical Techniques II EXST7015 Analysis of Variance 15a_ANOVA_Introduction 1 Design The simplest model for Analysis of Variance (ANOVA) is the CRD, the Completely Randomized Design This model is also

More information

Similarities of Ordered Gene Lists. User s Guide to the Bioconductor Package OrderedList

Similarities of Ordered Gene Lists. User s Guide to the Bioconductor Package OrderedList for Center Berlin Genome Based Bioinformatics Max Planck Institute for Molecular Genetics Computational Diagnostics Group @ Dept. Vingron Ihnestrasse 63-73, D-14195 Berlin, Germany http://compdiag.molgen.mpg.de/

More information

Introduction to Statistical Analysis

Introduction to Statistical Analysis Introduction to Statistical Analysis Changyu Shen Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology Beth Israel Deaconess Medical Center Harvard Medical School Objectives Descriptive

More information

Basic Medical Statistics Course

Basic Medical Statistics Course Basic Medical Statistics Course S7 Logistic Regression November 2015 Wilma Heemsbergen w.heemsbergen@nki.nl Logistic Regression The concept of a relationship between the distribution of a dependent variable

More information

Discrete Probability Distributions

Discrete Probability Distributions Chapter 4 Discrete Probability Distributions 4.1 Random variable A random variable is a function that assigns values to different events in a sample space. Example 4.1.1. Consider the experiment of rolling

More information

The influence of categorising survival time on parameter estimates in a Cox model

The influence of categorising survival time on parameter estimates in a Cox model The influence of categorising survival time on parameter estimates in a Cox model Anika Buchholz 1,2, Willi Sauerbrei 2, Patrick Royston 3 1 Freiburger Zentrum für Datenanalyse und Modellbildung, Albert-Ludwigs-Universität

More information

Measurement Error. Martin Bland. Accuracy and precision. Error. Measurement in Health and Disease. Professor of Health Statistics University of York

Measurement Error. Martin Bland. Accuracy and precision. Error. Measurement in Health and Disease. Professor of Health Statistics University of York Measurement in Health and Disease Measurement Error Martin Bland Professor of Health Statistics University of York http://martinbland.co.uk/ Accuracy and precision In this lecture: measurements which are

More information

SAS/STAT 15.1 User s Guide The SEQDESIGN Procedure

SAS/STAT 15.1 User s Guide The SEQDESIGN Procedure SAS/STAT 15.1 User s Guide The SEQDESIGN Procedure This document is an individual chapter from SAS/STAT 15.1 User s Guide. The correct bibliographic citation for this manual is as follows: SAS Institute

More information

green green green/green green green yellow green/yellow green yellow green yellow/green green yellow yellow yellow/yellow yellow

green green green/green green green yellow green/yellow green yellow green yellow/green green yellow yellow yellow/yellow yellow CHAPTER PROBLEM Did Mendel s results from plant hybridization experiments contradict his theory? Gregor Mendel conducted original experiments to study the genetic traits of pea plants. In 1865 he wrote

More information

PASS Sample Size Software. Poisson Regression

PASS Sample Size Software. Poisson Regression Chapter 870 Introduction Poisson regression is used when the dependent variable is a count. Following the results of Signorini (99), this procedure calculates power and sample size for testing the hypothesis

More information

Package InferenceSMR

Package InferenceSMR Type Package Package InferenceSMR February 19, 2015 Title Inference about the standardized mortality ratio when evaluating the effect of a screening program on survival. Version 1.0 Date 2013-05-22 Author

More information

Study Design: Sample Size Calculation & Power Analysis

Study Design: Sample Size Calculation & Power Analysis Study Design: Sample Size Calculation & Power Analysis RCMAR/CHIME/EXPORT April 21, 2008 Honghu Liu, Ph.D. Contents Background Common Designs Examples Computer Software Summary & Discussion Background

More information

3003 Cure. F. P. Treasure

3003 Cure. F. P. Treasure 3003 Cure F. P. reasure November 8, 2000 Peter reasure / November 8, 2000/ Cure / 3003 1 Cure A Simple Cure Model he Concept of Cure A cure model is a survival model where a fraction of the population

More information

STAT 5500/6500 Conditional Logistic Regression for Matched Pairs

STAT 5500/6500 Conditional Logistic Regression for Matched Pairs STAT 5500/6500 Conditional Logistic Regression for Matched Pairs Motivating Example: The data we will be using comes from a subset of data taken from the Los Angeles Study of the Endometrial Cancer Data

More information

Small n, σ known or unknown, underlying nongaussian

Small n, σ known or unknown, underlying nongaussian READY GUIDE Summary Tables SUMMARY-1: Methods to compute some confidence intervals Parameter of Interest Conditions 95% CI Proportion (π) Large n, p 0 and p 1 Equation 12.11 Small n, any p Figure 12-4

More information

Statistics Applied to Bioinformatics. Tests of homogeneity

Statistics Applied to Bioinformatics. Tests of homogeneity Statistics Applied to Bioinformatics Tests of homogeneity Two-tailed test of homogeneity Two-tailed test H 0 :m = m Principle of the test Estimate the difference between m and m Compare this estimation

More information

Power and nonparametric methods Basic statistics for experimental researchersrs 2017

Power and nonparametric methods Basic statistics for experimental researchersrs 2017 Faculty of Health Sciences Outline Power and nonparametric methods Basic statistics for experimental researchersrs 2017 Statistical power Julie Lyng Forman Department of Biostatistics, University of Copenhagen

More information

Review. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis

Review. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis Review Timothy Hanson Department of Statistics, University of South Carolina Stat 770: Categorical Data Analysis 1 / 22 Chapter 1: background Nominal, ordinal, interval data. Distributions: Poisson, binomial,

More information

You can specify the response in the form of a single variable or in the form of a ratio of two variables denoted events/trials.

You can specify the response in the form of a single variable or in the form of a ratio of two variables denoted events/trials. The GENMOD Procedure MODEL Statement MODEL response = < effects > < /options > ; MODEL events/trials = < effects > < /options > ; You can specify the response in the form of a single variable or in the

More information

Package idmtpreg. February 27, 2018

Package idmtpreg. February 27, 2018 Type Package Package idmtpreg February 27, 2018 Title Regression Model for Progressive Illness Death Data Version 1.1 Date 2018-02-23 Author Leyla Azarang and Manuel Oviedo de la Fuente Maintainer Leyla

More information

BNAD 276 Lecture 5 Discrete Probability Distributions Exercises 1 11

BNAD 276 Lecture 5 Discrete Probability Distributions Exercises 1 11 1 / 15 BNAD 276 Lecture 5 Discrete Probability Distributions 1 11 Phuong Ho May 14, 2017 Exercise 1 Suppose we have the probability distribution for the random variable X as follows. X f (x) 20.20 25.15

More information

Quantitative Understanding in Biology 1.5 Experimental Power and Design

Quantitative Understanding in Biology 1.5 Experimental Power and Design Quantitative Understanding in Biology 1.5 Experimental Power and Design Jason Banfelder October 16, 2018 In our last two sessons, we ve emphasized the importance of correctly controlling for Type I error

More information

The nltm Package. July 24, 2006

The nltm Package. July 24, 2006 The nltm Package July 24, 2006 Version 1.2 Date 2006-07-17 Title Non-linear Transformation Models Author Gilda Garibotti, Alexander Tsodikov Maintainer Gilda Garibotti Depends

More information

Chapter 7: Hypothesis testing

Chapter 7: Hypothesis testing Chapter 7: Hypothesis testing Hypothesis testing is typically done based on the cumulative hazard function. Here we ll use the Nelson-Aalen estimate of the cumulative hazard. The survival function is used

More information

ST3241 Categorical Data Analysis I Two-way Contingency Tables. 2 2 Tables, Relative Risks and Odds Ratios

ST3241 Categorical Data Analysis I Two-way Contingency Tables. 2 2 Tables, Relative Risks and Odds Ratios ST3241 Categorical Data Analysis I Two-way Contingency Tables 2 2 Tables, Relative Risks and Odds Ratios 1 What Is A Contingency Table (p.16) Suppose X and Y are two categorical variables X has I categories

More information

Epidemiology Wonders of Biostatistics Chapter 11 (continued) - probability in a single population. John Koval

Epidemiology Wonders of Biostatistics Chapter 11 (continued) - probability in a single population. John Koval Epidemiology 9509 Wonders of Biostatistics Chapter 11 (continued) - probability in a single population John Koval Department of Epidemiology and Biostatistics University of Western Ontario What is being

More information

Name: Firas Rassoul-Agha

Name: Firas Rassoul-Agha Midterm 1 - Math 5010 - Spring 016 Name: Firas Rassoul-Agha Solve the following 4 problems. You have to clearly explain your solution. The answer carries no points. Only the work does. CALCULATORS ARE

More information

STAT Section 3.4: The Sign Test. The sign test, as we will typically use it, is a method for analyzing paired data.

STAT Section 3.4: The Sign Test. The sign test, as we will typically use it, is a method for analyzing paired data. STAT 518 --- Section 3.4: The Sign Test The sign test, as we will typically use it, is a method for analyzing paired data. Examples of Paired Data: Similar subjects are paired off and one of two treatments

More information

Testing Independence

Testing Independence Testing Independence Dipankar Bandyopadhyay Department of Biostatistics, Virginia Commonwealth University BIOS 625: Categorical Data & GLM 1/50 Testing Independence Previously, we looked at RR = OR = 1

More information

Multi-state models: prediction

Multi-state models: prediction Department of Medical Statistics and Bioinformatics Leiden University Medical Center Course on advanced survival analysis, Copenhagen Outline Prediction Theory Aalen-Johansen Computational aspects Applications

More information

Analysing longitudinal data when the visit times are informative

Analysing longitudinal data when the visit times are informative Analysing longitudinal data when the visit times are informative Eleanor Pullenayegum, PhD Scientist, Hospital for Sick Children Associate Professor, University of Toronto eleanor.pullenayegum@sickkids.ca

More information

TESTS FOR EQUIVALENCE BASED ON ODDS RATIO FOR MATCHED-PAIR DESIGN

TESTS FOR EQUIVALENCE BASED ON ODDS RATIO FOR MATCHED-PAIR DESIGN Journal of Biopharmaceutical Statistics, 15: 889 901, 2005 Copyright Taylor & Francis, Inc. ISSN: 1054-3406 print/1520-5711 online DOI: 10.1080/10543400500265561 TESTS FOR EQUIVALENCE BASED ON ODDS RATIO

More information

Two Sample Problems. Two sample problems

Two Sample Problems. Two sample problems Two Sample Problems Two sample problems The goal of inference is to compare the responses in two groups. Each group is a sample from a different population. The responses in each group are independent

More information

Regression techniques provide statistical analysis of relationships. Research designs may be classified as experimental or observational; regression

Regression techniques provide statistical analysis of relationships. Research designs may be classified as experimental or observational; regression LOGISTIC REGRESSION Regression techniques provide statistical analysis of relationships. Research designs may be classified as eperimental or observational; regression analyses are applicable to both types.

More information

T-TEST FOR HYPOTHESIS ABOUT

T-TEST FOR HYPOTHESIS ABOUT T-TEST FOR HYPOTHESIS ABOUT Previously we tested the hypothesis that a sample comes from a population with a specified using the normal distribution and a z-test. But the z-test required the population

More information

A simulation study for comparing testing statistics in response-adaptive randomization

A simulation study for comparing testing statistics in response-adaptive randomization RESEARCH ARTICLE Open Access A simulation study for comparing testing statistics in response-adaptive randomization Xuemin Gu 1, J Jack Lee 2* Abstract Background: Response-adaptive randomizations are

More information

PLS205 Lab 2 January 15, Laboratory Topic 3

PLS205 Lab 2 January 15, Laboratory Topic 3 PLS205 Lab 2 January 15, 2015 Laboratory Topic 3 General format of ANOVA in SAS Testing the assumption of homogeneity of variances by "/hovtest" by ANOVA of squared residuals Proc Power for ANOVA One-way

More information