Power and sample size calculations

Size: px
Start display at page:

Download "Power and sample size calculations"

Transcription

1 Power and sample size calculations Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet April 8, 2014

2 Planning an investigation How many individuals do we need??? It depends on the design the size of the effect we are looking for how certain we want to be in finding the effect and the purpose of the investigation : obtain a specific precision of an estimate obtain a specific (power) of a test (most common). 2 / 12

3 Precision We want to estimate the risk of CHD for females with a precision of p ± a. 95% confidence interval (95%) : p ± 1.96 p(1 p) Thus a = 1.96 p(1 p) n i.e. n = 3.84p(1 p) a 2. n. We need a guess at p. Example: For p = 0.10 and a = 0.04 we find n = 216. Similarly based on a quantitative outcome n = 3.84( SD a )2 if we need a precision of the mean µ at ±a. 3 / 12

4 Test of hypotheses A test of a hypothesis H 0 can give two types of error : Type I: Reject the hypothesis even though it is true. Type II: Accept the hypothesis even though it is wrong. Probability of type I error : α = level of significance. Probability of type II error : β. 1 β = power. Truth Conclusion Hypothesis true Hypothesis wrong Accept Correkt conclusion Type II error 1 α β Reject Type I fejl Correkt conclusion α 1 β 4 / 12

5 Comparison of two groups We determine the number of individuals in each group. Binary response: Determine p 1, p 2, α and β. Let p = 1 2 (p 1 + p 2 ). n = ( z 1 α/2 p1 (1 p 1 ) + p 2 (1 p 2 ) + z 1 β 2 p(1 p) ) 2 (p 1 p 2 ) 2 with z p being the quantiles in the standard normal distribution. Quantitative response: Determine µ 1, µ 2, SD, α an β. We need µ 1 µ 2 (= (delta)). SD 2 n = 2 (µ 1 µ 2 ) 2 (z 1 α/2 + z 1 β ) 2. 5 / 12

6 The size of the sample The needed samples size depends on : and the level of significance (α) the power (1 β) the difference between the groups : the larger difference the smaller the needed sample size the variation (SD) : the larger, the larger the sample size 6 / 12

7 Example Assume that we want to detect af difference in SBP of =10mmHg for women randomized to placebo / treatment. We want to be 90% sure to detect the difference (1 β = 0.90) when testing on the 5% significance level (α = 0.05). In the Framingham data we find (SD = 25). I.e. n = 2( SD )2 (z /2 + z 0.90 ) 2 = 2( SD )2 ( ) 2 We need 132 women in each group. = 2 ( ) = / 12

8 Sample size calculations in R Comparison of proportions in two groups > power.prop.test( p1=0.6, p2=0.8, power=0.9, sig.level=0.05 ) Two-sample comparison of proportions power calculation n = p1 = 0.6 p2 = 0.8 sig.level = 0.05 power = 0.9 alternative = two.sided NOTE: n is number in *each* group Comparison of means in two groups > power.t.test( delta=10, sd=25, power=0.9, sig.level=0.05 ) Two-sample t test power calculation n = delta = 10 sd = 25 sig.level = 0.05 power = 0.9 alternative = two.sided ## NB : Difference from slide 6 due to rounding of quantiles ## used in formula NOTE: n is number in *each* group More functions for calculating sample size is available in package pwr. 8 / 12

9 Power calculations If we have two samples of size n = 100 we may ask what the power is to detect a specific difference between the groups. Comparison of proportions in two groups > power.prop.test( p1=0.6, p2=0.8, n=100, sig.level=0.05 ) Two-sample comparison of proportions power calculation n = 100 p1 = 0.6 p2 = 0.8 sig.level = 0.05 power = alternative = two.sided NOTE: n is number in *each* group Comparison of means in two groups > power.t.test( delta=10, sd=25, n=100, sig.level=0.05 ) Two-sample t test power calculation n = 100 delta = 10 sd = 25 sig.level = 0.05 power = alternative = two.sided NOTE: n is number in *each* group 9 / 12

10 Groups of uneaqual size If the group sizes differ we can find the total number of individuals needed by 1) calculate N = 2n as if the groups were of equal size 2) calculate k = n 1 /n 2 describing the difference in group sizes 3) determine the total number of individuals as N total = N (1+k)2 4k. Suppose, in the example above, that we want group 1 to have the double size of group 2 : 1) N = = 264 2) k = 2 3) N total = N (1+k)2 4k = = 297, i.e. n 1 = 198 and n 2 = / 12

11 Exercise With a power of 90%, a significance level of 5% : Comparing two groups of equal size: 1) How many individuals do we need to detect the difference between proportions of 0.02 and 0.04? How many individuals do we need to detect the difference between proportions of 0.52 and 0.54? 2) How many individuals do we need to detect the difference between means of 2 and 4 (SD = 25)? How many individuals do we need to detect the difference between means of 52 and 54 (SD = 25)? 11 / 12

12 Additional exercise We will simulate data to illustrate how often Type I an II errors occur. Run each of the two programs below 10 (or 100!) times. Consider the setup with two groups with equal means µ = µ 1 = µ 2 = 100 and SD = 25. Type I error y1 <-rnorm( n=100, mean=100, sd=25 ) y2 <-rnorm( n=100, mean=100, sd=25 ) t.test( y1, y2, var.equal=t ) # Generate sample size of 100 with mean 100, SD=25 # Generate sample size of 100 with mean 100, SD=25 How many times did you reject the (true) null hypothesis (approx 5%). Type II error y1 <-rnorm( n=100, mean=100, sd=25 ) y2 <-rnorm( n=100, mean=110, sd=25 ) t.test( y1, y2, var.equal=t ) # Generate sample size of 100 with mean 100, SD=25 # Generate sample size of 100 with mean 110, SD=25 How many times did you accept the (false) null hypothesis (approx 20%, 1-power found on slide 9). 12 / 12

Power and sample size calculations

Power and sample size calculations Power and sample size calculations Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk October 28 2013 Planning an investigation How many

More information

Power and the computation of sample size

Power and the computation of sample size 9 Power and the computation of sample size A statistical test will not be able to detect a true difference if the sample size is too small compared with the magnitude of the difference. When designing

More information

Topic 19 Extensions on the Likelihood Ratio

Topic 19 Extensions on the Likelihood Ratio Topic 19 Extensions on the Likelihood Ratio Two-Sided Tests 1 / 12 Outline Overview Normal Observations Power Analysis 2 / 12 Overview The likelihood ratio test is a popular choice for composite hypothesis

More information

Hypothesis testing. Data to decisions

Hypothesis testing. Data to decisions Hypothesis testing Data to decisions The idea Null hypothesis: H 0 : the DGP/population has property P Under the null, a sample statistic has a known distribution If, under that that distribution, the

More information

Power and nonparametric methods Basic statistics for experimental researchersrs 2017

Power and nonparametric methods Basic statistics for experimental researchersrs 2017 Faculty of Health Sciences Outline Power and nonparametric methods Basic statistics for experimental researchersrs 2017 Statistical power Julie Lyng Forman Department of Biostatistics, University of Copenhagen

More information

Power and Sample Size Bios 662

Power and Sample Size Bios 662 Power and Sample Size Bios 662 Michael G. Hudgens, Ph.D. mhudgens@bios.unc.edu http://www.bios.unc.edu/ mhudgens 2008-10-31 14:06 BIOS 662 1 Power and Sample Size Outline Introduction One sample: continuous

More information

Introductory Statistics with R: Simple Inferences for continuous data

Introductory Statistics with R: Simple Inferences for continuous data Introductory Statistics with R: Simple Inferences for continuous data Statistical Packages STAT 1301 / 2300, Fall 2014 Sungkyu Jung Department of Statistics University of Pittsburgh E-mail: sungkyu@pitt.edu

More information

EC2001 Econometrics 1 Dr. Jose Olmo Room D309

EC2001 Econometrics 1 Dr. Jose Olmo Room D309 EC2001 Econometrics 1 Dr. Jose Olmo Room D309 J.Olmo@City.ac.uk 1 Revision of Statistical Inference 1.1 Sample, observations, population A sample is a number of observations drawn from a population. Population:

More information

Two sample Hypothesis tests in R.

Two sample Hypothesis tests in R. Example. (Dependent samples) Two sample Hypothesis tests in R. A Calculus professor gives their students a 10 question algebra pretest on the first day of class, and a similar test towards the end of the

More information

Power Analysis. Introduction to Power

Power Analysis. Introduction to Power Power Analysis Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning When testing a specific null hypothesis (H 0 ), we

More information

Sample Size and Power I: Binary Outcomes. James Ware, PhD Harvard School of Public Health Boston, MA

Sample Size and Power I: Binary Outcomes. James Ware, PhD Harvard School of Public Health Boston, MA Sample Size and Power I: Binary Outcomes James Ware, PhD Harvard School of Public Health Boston, MA Sample Size and Power Principles: Sample size calculations are an essential part of study design Consider

More information

a Sample By:Dr.Hoseyn Falahzadeh 1

a Sample By:Dr.Hoseyn Falahzadeh 1 In the name of God Determining ee the esize eof a Sample By:Dr.Hoseyn Falahzadeh 1 Sample Accuracy Sample accuracy: refers to how close a random sample s statistic is to the true population s value it

More information

STA Module 10 Comparing Two Proportions

STA Module 10 Comparing Two Proportions STA 2023 Module 10 Comparing Two Proportions Learning Objectives Upon completing this module, you should be able to: 1. Perform large-sample inferences (hypothesis test and confidence intervals) to compare

More information

Introductory Econometrics. Review of statistics (Part II: Inference)

Introductory Econometrics. Review of statistics (Part II: Inference) Introductory Econometrics Review of statistics (Part II: Inference) Jun Ma School of Economics Renmin University of China October 1, 2018 1/16 Null and alternative hypotheses Usually, we have two competing

More information

Statistical methods for comparing multiple groups. Lecture 7: ANOVA. ANOVA: Definition. ANOVA: Concepts

Statistical methods for comparing multiple groups. Lecture 7: ANOVA. ANOVA: Definition. ANOVA: Concepts Statistical methods for comparing multiple groups Lecture 7: ANOVA Sandy Eckel seckel@jhsph.edu 30 April 2008 Continuous data: comparing multiple means Analysis of variance Binary data: comparing multiple

More information

Power. January 12, 2019

Power. January 12, 2019 Power January 12, 2019 Contents Definition of power Z-test example If H 0 is true If H 0 is false The 2x2 matrix of All Things That Can Happen Pr(Type I error) = α Pr(Type II error) = β power = 1 β Things

More information

Chapter 5: HYPOTHESIS TESTING

Chapter 5: HYPOTHESIS TESTING MATH411: Applied Statistics Dr. YU, Chi Wai Chapter 5: HYPOTHESIS TESTING 1 WHAT IS HYPOTHESIS TESTING? As its name indicates, it is about a test of hypothesis. To be more precise, we would first translate

More information

R Short Course Session 4

R Short Course Session 4 R Short Course Session 4 Daniel Zhao, PhD Sixia Chen, PhD Department of Biostatistics and Epidemiology College of Public Health, OUHSC 11/13/2015 Outline Random distributions Summary statistics Statistical

More information

Hypothesis Testing. Hypothesis: conjecture, proposition or statement based on published literature, data, or a theory that may or may not be true

Hypothesis Testing. Hypothesis: conjecture, proposition or statement based on published literature, data, or a theory that may or may not be true Hypothesis esting Hypothesis: conjecture, proposition or statement based on published literature, data, or a theory that may or may not be true Statistical Hypothesis: conjecture about a population parameter

More information

Business Statistics: Lecture 8: Introduction to Estimation & Hypothesis Testing

Business Statistics: Lecture 8: Introduction to Estimation & Hypothesis Testing Business Statistics: Lecture 8: Introduction to Estimation & Hypothesis Testing Agenda Introduction to Estimation Point estimation Interval estimation Introduction to Hypothesis Testing Concepts en terminology

More information

Stat 529 (Winter 2011) Experimental Design for the Two-Sample Problem. Motivation: Designing a new silver coins experiment

Stat 529 (Winter 2011) Experimental Design for the Two-Sample Problem. Motivation: Designing a new silver coins experiment Stat 529 (Winter 2011) Experimental Design for the Two-Sample Problem Reading: 2.4 2.6. Motivation: Designing a new silver coins experiment Sample size calculations Margin of error for the pooled two sample

More information

Statistical Testing I. De gustibus non est disputandum

Statistical Testing I. De gustibus non est disputandum Statistical Testing I De gustibus non est disputandum The Pepsi Challenge "Take the Pepsi Challenge" was the motto of a marketing campaign by the Pepsi-Cola Company in the 1980's. A total of 100 Coca-Cola

More information

Module 17: Two-Sample t-tests, with equal variances for the two populations

Module 17: Two-Sample t-tests, with equal variances for the two populations Module 17: Two-Sample t-tests, with equal variances for the two populations This module describes one of the most utilized statistical tests, the two-sample t-test conducted under the assumption that the

More information

How is the Statistical Power of Hypothesis Tests affected by Dose Uncertainty?

How is the Statistical Power of Hypothesis Tests affected by Dose Uncertainty? How is the Statistical Power of Hypothesis Tests affected by Dose Uncertainty? by Eduard Hofer Workshop on Uncertainties in Radiation Dosimetry and their Impact on Risk Analysis, Washington, DC, May 2009

More information

Correlation and Simple Linear Regression

Correlation and Simple Linear Regression Correlation and Simple Linear Regression Sasivimol Rattanasiri, Ph.D Section for Clinical Epidemiology and Biostatistics Ramathibodi Hospital, Mahidol University E-mail: sasivimol.rat@mahidol.ac.th 1 Outline

More information

Power analysis examples using R

Power analysis examples using R Power analysis examples using R Code The pwr package can be used to analytically compute power for various designs. The pwr examples below are adapted from the pwr package vignette, which is available

More information

Relax and good luck! STP 231 Example EXAM #2. Instructor: Ela Jackiewicz

Relax and good luck! STP 231 Example EXAM #2. Instructor: Ela Jackiewicz STP 31 Example EXAM # Instructor: Ela Jackiewicz Honor Statement: I have neither given nor received information regarding this exam, and I will not do so until all exams have been graded and returned.

More information

Sample Size Calculations

Sample Size Calculations Sample Size Calculations Analyses rely on means rather than individual values Means are more precise Precision measured by σ n So precision depends on n This can be used, directly or indirectly, as a basis

More information

exp{ (x i) 2 i=1 n i=1 (x i a) 2 (x i ) 2 = exp{ i=1 n i=1 n 2ax i a 2 i=1

exp{ (x i) 2 i=1 n i=1 (x i a) 2 (x i ) 2 = exp{ i=1 n i=1 n 2ax i a 2 i=1 4 Hypothesis testing 4. Simple hypotheses A computer tries to distinguish between two sources of signals. Both sources emit independent signals with normally distributed intensity, the signals of the first

More information

Welcome! Webinar Biostatistics: sample size & power. Thursday, April 26, 12:30 1:30 pm (NDT)

Welcome! Webinar Biostatistics: sample size & power. Thursday, April 26, 12:30 1:30 pm (NDT) . Welcome! Webinar Biostatistics: sample size & power Thursday, April 26, 12:30 1:30 pm (NDT) Get started now: Please check if your speakers are working and mute your audio. Please use the chat box to

More information

Lecture 9. ANOVA: Random-effects model, sample size

Lecture 9. ANOVA: Random-effects model, sample size Lecture 9. ANOVA: Random-effects model, sample size Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Regressions and Analysis of Variance fall 2015 Fixed or random? Is it reasonable

More information

The problem of base rates

The problem of base rates Psychology 205: Research Methods in Psychology William Revelle Department of Psychology Northwestern University Evanston, Illinois USA October, 2015 1 / 14 Outline Inferential statistics 2 / 14 Hypothesis

More information

The Purpose of Hypothesis Testing

The Purpose of Hypothesis Testing Section 8 1A:! An Introduction to Hypothesis Testing The Purpose of Hypothesis Testing See s Candy states that a box of it s candy weighs 16 oz. They do not mean that every single box weights exactly 16

More information

CH.9 Tests of Hypotheses for a Single Sample

CH.9 Tests of Hypotheses for a Single Sample CH.9 Tests of Hypotheses for a Single Sample Hypotheses testing Tests on the mean of a normal distributionvariance known Tests on the mean of a normal distributionvariance unknown Tests on the variance

More information

Section 10.1 (Part 2 of 2) Significance Tests: Power of a Test

Section 10.1 (Part 2 of 2) Significance Tests: Power of a Test 1 Section 10.1 (Part 2 of 2) Significance Tests: Power of a Test Learning Objectives After this section, you should be able to DESCRIBE the relationship between the significance level of a test, P(Type

More information

Sample Size Determination

Sample Size Determination Sample Size Determination 018 The number of subjects in a clinical study should always be large enough to provide a reliable answer to the question(s addressed. The sample size is usually determined by

More information

Class 24. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 24. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 4 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 013 by D.B. Rowe 1 Agenda: Recap Chapter 9. and 9.3 Lecture Chapter 10.1-10.3 Review Exam 6 Problem Solving

More information

CHAPTER 9, 10. Similar to a courtroom trial. In trying a person for a crime, the jury needs to decide between one of two possibilities:

CHAPTER 9, 10. Similar to a courtroom trial. In trying a person for a crime, the jury needs to decide between one of two possibilities: CHAPTER 9, 10 Hypothesis Testing Similar to a courtroom trial. In trying a person for a crime, the jury needs to decide between one of two possibilities: The person is guilty. The person is innocent. To

More information

James H. Steiger. Department of Psychology and Human Development Vanderbilt University. Introduction Factors Influencing Power

James H. Steiger. Department of Psychology and Human Development Vanderbilt University. Introduction Factors Influencing Power Department of Psychology and Human Development Vanderbilt University 1 2 3 4 5 In the preceding lecture, we examined hypothesis testing as a general strategy. Then, we examined how to calculate critical

More information

Power and sample size calculations

Power and sample size calculations Patrick Breheny October 20 Patrick Breheny University of Iowa Biostatistical Methods I (BIOS 5710) 1 / 26 Planning a study Introduction What is power? Why is it important? Setup One of the most important

More information

E509A: Principle of Biostatistics. GY Zou

E509A: Principle of Biostatistics. GY Zou E509A: Principle of Biostatistics (Week 4: Inference for a single mean ) GY Zou gzou@srobarts.ca Example 5.4. (p. 183). A random sample of n =16, Mean I.Q is 106 with standard deviation S =12.4. What

More information

POLI 443 Applied Political Research

POLI 443 Applied Political Research POLI 443 Applied Political Research Session 4 Tests of Hypotheses The Normal Curve Lecturer: Prof. A. Essuman-Johnson, Dept. of Political Science Contact Information: aessuman-johnson@ug.edu.gh College

More information

Outline The Rank-Sum Test Procedure Paired Data Comparing Two Variances Lab 8: Hypothesis Testing with R. Week 13 Comparing Two Populations, Part II

Outline The Rank-Sum Test Procedure Paired Data Comparing Two Variances Lab 8: Hypothesis Testing with R. Week 13 Comparing Two Populations, Part II Week 13 Comparing Two Populations, Part II Week 13 Objectives Coverage of the topic of comparing two population continues with new procedures and a new sampling design. The week concludes with a lab session.

More information

Importance Sampling and. Radon-Nikodym Derivatives. Steven R. Dunbar. Sampling with respect to 2 distributions. Rare Event Simulation

Importance Sampling and. Radon-Nikodym Derivatives. Steven R. Dunbar. Sampling with respect to 2 distributions. Rare Event Simulation 1 / 33 Outline 1 2 3 4 5 2 / 33 More than one way to evaluate a statistic A statistic for X with pdf u(x) is A = E u [F (X)] = F (x)u(x) dx 3 / 33 Suppose v(x) is another probability density such that

More information

Chapter Six: Two Independent Samples Methods 1/51

Chapter Six: Two Independent Samples Methods 1/51 Chapter Six: Two Independent Samples Methods 1/51 6.3 Methods Related To Differences Between Proportions 2/51 Test For A Difference Between Proportions:Introduction Suppose a sampling distribution were

More information

LECTURE 5. Introduction to Econometrics. Hypothesis testing

LECTURE 5. Introduction to Econometrics. Hypothesis testing LECTURE 5 Introduction to Econometrics Hypothesis testing October 18, 2016 1 / 26 ON TODAY S LECTURE We are going to discuss how hypotheses about coefficients can be tested in regression models We will

More information

Philosophy and History of Statistics

Philosophy and History of Statistics Philosophy and History of Statistics YES, they ARE important!!! Dr Mick Wilkinson Fellow of the Royal Statistical Society The plan (Brief) history of statistics Philosophy of science Variability and Probability

More information

Independent Samples t tests. Background for Independent Samples t test

Independent Samples t tests. Background for Independent Samples t test Independent Samples t tests Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning Background for Independent Samples t

More information

Estimating the accuracy of a hypothesis Setting. Assume a binary classification setting

Estimating the accuracy of a hypothesis Setting. Assume a binary classification setting Estimating the accuracy of a hypothesis Setting Assume a binary classification setting Assume input/output pairs (x, y) are sampled from an unknown probability distribution D = p(x, y) Train a binary classifier

More information

PRINCIPLE OF MATHEMATICAL INDUCTION

PRINCIPLE OF MATHEMATICAL INDUCTION Chapter 4 PRINCIPLE OF MATHEMATICAL INDUCTION 4.1 Overview Mathematical induction is one of the techniques which can be used to prove variety of mathematical statements which are formulated in terms of

More information

Statistical Inference. Why Use Statistical Inference. Point Estimates. Point Estimates. Greg C Elvers

Statistical Inference. Why Use Statistical Inference. Point Estimates. Point Estimates. Greg C Elvers Statistical Inference Greg C Elvers 1 Why Use Statistical Inference Whenever we collect data, we want our results to be true for the entire population and not just the sample that we used But our sample

More information

Two Sample Problems. Two sample problems

Two Sample Problems. Two sample problems Two Sample Problems Two sample problems The goal of inference is to compare the responses in two groups. Each group is a sample from a different population. The responses in each group are independent

More information

Statistical Analysis for QBIC Genetics Adapted by Ellen G. Dow 2017

Statistical Analysis for QBIC Genetics Adapted by Ellen G. Dow 2017 Statistical Analysis for QBIC Genetics Adapted by Ellen G. Dow 2017 I. χ 2 or chi-square test Objectives: Compare how close an experimentally derived value agrees with an expected value. One method to

More information

1 Statistical inference for a population mean

1 Statistical inference for a population mean 1 Statistical inference for a population mean 1. Inference for a large sample, known variance Suppose X 1,..., X n represents a large random sample of data from a population with unknown mean µ and known

More information

Inference for Single Proportions and Means T.Scofield

Inference for Single Proportions and Means T.Scofield Inference for Single Proportions and Means TScofield Confidence Intervals for Single Proportions and Means A CI gives upper and lower bounds between which we hope to capture the (fixed) population parameter

More information

Chapter 20 Comparing Groups

Chapter 20 Comparing Groups Chapter 20 Comparing Groups Comparing Proportions Example Researchers want to test the effect of a new anti-anxiety medication. In clinical testing, 64 of 200 people taking the medicine reported symptoms

More information

Statistical Inference. Hypothesis Testing

Statistical Inference. Hypothesis Testing Statistical Inference Hypothesis Testing Previously, we introduced the point and interval estimation of an unknown parameter(s), say µ and σ 2. However, in practice, the problem confronting the scientist

More information

Exam 2 (KEY) July 20, 2009

Exam 2 (KEY) July 20, 2009 STAT 2300 Business Statistics/Summer 2009, Section 002 Exam 2 (KEY) July 20, 2009 Name: USU A#: Score: /225 Directions: This exam consists of six (6) questions, assessing material learned within Modules

More information

ph: 5.2, 5.6, 5.8, 6.4, 6.5, 6.8, 6.9, 7.2, 7.5 sample mean = sample sd = sample size, n = 9

ph: 5.2, 5.6, 5.8, 6.4, 6.5, 6.8, 6.9, 7.2, 7.5 sample mean = sample sd = sample size, n = 9 Name: SOLUTIONS Final Part 1 (100 pts) and Final Part 2 (120 pts) For all of the questions below, please show enough work that it is completely clear how your final solution was derived. Sit at least one

More information

10.1. Comparing Two Proportions. Section 10.1

10.1. Comparing Two Proportions. Section 10.1 /6/04 0. Comparing Two Proportions Sectio0. Comparing Two Proportions After this section, you should be able to DETERMINE whether the conditions for performing inference are met. CONSTRUCT and INTERPRET

More information

Chapter 10: STATISTICAL INFERENCE FOR TWO SAMPLES. Part 1: Hypothesis tests on a µ 1 µ 2 for independent groups

Chapter 10: STATISTICAL INFERENCE FOR TWO SAMPLES. Part 1: Hypothesis tests on a µ 1 µ 2 for independent groups Chapter 10: STATISTICAL INFERENCE FOR TWO SAMPLES Part 1: Hypothesis tests on a µ 1 µ 2 for independent groups Sections 10-1 & 10-2 Independent Groups It is common to compare two groups, and do a hypothesis

More information

MTMS Mathematical Statistics

MTMS Mathematical Statistics MTMS.01.099 Mathematical Statistics Lecture 12. Hypothesis testing. Power function. Approximation of Normal distribution and application to Binomial distribution Tõnu Kollo Fall 2016 Hypothesis Testing

More information

Visual interpretation with normal approximation

Visual interpretation with normal approximation Visual interpretation with normal approximation H 0 is true: H 1 is true: p =0.06 25 33 Reject H 0 α =0.05 (Type I error rate) Fail to reject H 0 β =0.6468 (Type II error rate) 30 Accept H 1 Visual interpretation

More information

PHIL12A Section answers, 28 Feb 2011

PHIL12A Section answers, 28 Feb 2011 PHIL12A Section answers, 28 Feb 2011 Julian Jonker 1 How much do you know? Give formal proofs for the following arguments. 1. (Ex 6.18) 1 A B 2 A B 1 A B 2 A 3 A B Elim: 2 4 B 5 B 6 Intro: 4,5 7 B Intro:

More information

Harvard University. Rigorous Research in Engineering Education

Harvard University. Rigorous Research in Engineering Education Statistical Inference Kari Lock Harvard University Department of Statistics Rigorous Research in Engineering Education 12/3/09 Statistical Inference You have a sample and want to use the data collected

More information

Inferences About Two Proportions

Inferences About Two Proportions Inferences About Two Proportions Quantitative Methods II Plan for Today Sampling two populations Confidence intervals for differences of two proportions Testing the difference of proportions Examples 1

More information

Chapter 7 Comparison of two independent samples

Chapter 7 Comparison of two independent samples Chapter 7 Comparison of two independent samples 7.1 Introduction Population 1 µ σ 1 1 N 1 Sample 1 y s 1 1 n 1 Population µ σ N Sample y s n 1, : population means 1, : population standard deviations N

More information

Confidence Intervals with σ unknown

Confidence Intervals with σ unknown STAT 141 Confidence Intervals and Hypothesis Testing 10/26/04 Today (Chapter 7): CI with σ unknown, t-distribution CI for proportions Two sample CI with σ known or unknown Hypothesis Testing, z-test Confidence

More information

Statistical inference (estimation, hypothesis tests, confidence intervals) Oct 2018

Statistical inference (estimation, hypothesis tests, confidence intervals) Oct 2018 Statistical inference (estimation, hypothesis tests, confidence intervals) Oct 2018 Sampling A trait is measured on each member of a population. f(y) = propn of individuals in the popn with measurement

More information

Sample size and power calculation using R and SAS proc power. Ho Kim GSPH, SNU

Sample size and power calculation using R and SAS proc power. Ho Kim GSPH, SNU Sample size and power calculation using R and SAS proc power Ho Kim GSPH, SNU Pvalue (1) We want to show that the means of two populations are different! Y 1 a sample mean from the 1st pop Y 2 a sample

More information

Introductory Econometrics

Introductory Econometrics Session 4 - Testing hypotheses Roland Sciences Po July 2011 Motivation After estimation, delivering information involves testing hypotheses Did this drug had any effect on the survival rate? Is this drug

More information

Quantitative Analysis and Empirical Methods

Quantitative Analysis and Empirical Methods Hypothesis testing Sciences Po, Paris, CEE / LIEPP Introduction Hypotheses Procedure of hypothesis testing Two-tailed and one-tailed tests Statistical tests with categorical variables A hypothesis A testable

More information

Lecture 5: ANOVA and Correlation

Lecture 5: ANOVA and Correlation Lecture 5: ANOVA and Correlation Ani Manichaikul amanicha@jhsph.edu 23 April 2007 1 / 62 Comparing Multiple Groups Continous data: comparing means Analysis of variance Binary data: comparing proportions

More information

Chapter 9. Inferences from Two Samples. Objective. Notation. Section 9.2. Definition. Notation. q = 1 p. Inferences About Two Proportions

Chapter 9. Inferences from Two Samples. Objective. Notation. Section 9.2. Definition. Notation. q = 1 p. Inferences About Two Proportions Chapter 9 Inferences from Two Samples 9. Inferences About Two Proportions 9.3 Inferences About Two s (Independent) 9.4 Inferences About Two s (Matched Pairs) 9.5 Comparing Variation in Two Samples Objective

More information

Hypotheses and Errors

Hypotheses and Errors Hypotheses and Errors Jonathan Bagley School of Mathematics, University of Manchester Jonathan Bagley, September 23, 2005 Hypotheses & Errors - p. 1/22 Overview Today we ll develop the standard framework

More information

Power Analysis. Ben Kite KU CRMDA 2015 Summer Methodology Institute

Power Analysis. Ben Kite KU CRMDA 2015 Summer Methodology Institute Power Analysis Ben Kite KU CRMDA 2015 Summer Methodology Institute Created by Terrence D. Jorgensen, 2014 Recall Hypothesis Testing? Null Hypothesis Significance Testing (NHST) is the most common application

More information

Gov 2000: 6. Hypothesis Testing

Gov 2000: 6. Hypothesis Testing Gov 2000: 6. Hypothesis Testing Matthew Blackwell October 11, 2016 1 / 55 1. Hypothesis Testing Examples 2. Hypothesis Test Nomenclature 3. Conducting Hypothesis Tests 4. p-values 5. Power Analyses 6.

More information

Hypothesis Testing and Confidence Intervals (Part 2): Cohen s d, Logic of Testing, and Confidence Intervals

Hypothesis Testing and Confidence Intervals (Part 2): Cohen s d, Logic of Testing, and Confidence Intervals Hypothesis Testing and Confidence Intervals (Part 2): Cohen s d, Logic of Testing, and Confidence Intervals Lecture 9 Justin Kern April 9, 2018 Measuring Effect Size: Cohen s d Simply finding whether a

More information

Announcements. Unit 3: Foundations for inference Lecture 3: Decision errors, significance levels, sample size, and power.

Announcements. Unit 3: Foundations for inference Lecture 3: Decision errors, significance levels, sample size, and power. Announcements Announcements Unit 3: Foundations for inference Lecture 3:, significance levels, sample size, and power Statistics 101 Mine Çetinkaya-Rundel October 1, 2013 Project proposal due 5pm on Friday,

More information

Epidemiology Principles of Biostatistics Chapter 10 - Inferences about two populations. John Koval

Epidemiology Principles of Biostatistics Chapter 10 - Inferences about two populations. John Koval Epidemiology 9509 Principles of Biostatistics Chapter 10 - Inferences about John Koval Department of Epidemiology and Biostatistics University of Western Ontario What is being covered 1. differences in

More information

Two sided, two sample t-tests. a) IQ = 100 b) Average height for men = c) Average number of white blood cells per cubic millimeter is 7,000.

Two sided, two sample t-tests. a) IQ = 100 b) Average height for men = c) Average number of white blood cells per cubic millimeter is 7,000. Two sided, two sample t-tests. I. Brief review: 1) We are interested in how a sample compares to some pre-conceived notion. For example: a) IQ = 100 b) Average height for men = 5 10. c) Average number

More information

Null Hypothesis Significance Testing p-values, significance level, power, t-tests Spring 2017

Null Hypothesis Significance Testing p-values, significance level, power, t-tests Spring 2017 Null Hypothesis Significance Testing p-values, significance level, power, t-tests 18.05 Spring 2017 Understand this figure f(x H 0 ) x reject H 0 don t reject H 0 reject H 0 x = test statistic f (x H 0

More information

Outline for Today. Review of In-class Exercise Bivariate Hypothesis Test 2: Difference of Means Bivariate Hypothesis Testing 3: Correla

Outline for Today. Review of In-class Exercise Bivariate Hypothesis Test 2: Difference of Means Bivariate Hypothesis Testing 3: Correla Outline for Today 1 Review of In-class Exercise 2 Bivariate hypothesis testing 2: difference of means 3 Bivariate hypothesis testing 3: correlation 2 / 51 Task for ext Week Any questions? 3 / 51 In-class

More information

MATH 240. Chapter 8 Outlines of Hypothesis Tests

MATH 240. Chapter 8 Outlines of Hypothesis Tests MATH 4 Chapter 8 Outlines of Hypothesis Tests Test for Population Proportion p Specify the null and alternative hypotheses, ie, choose one of the three, where p is some specified number: () H : p H : p

More information

Soc 3811 Basic Social Statistics Second Midterm Exam Spring Your Name [50 points]: ID #: ANSWERS

Soc 3811 Basic Social Statistics Second Midterm Exam Spring Your Name [50 points]: ID #: ANSWERS Soc 3811 Basic Social Statistics Second idterm Exam Spring 010 our Name [50 points]: ID #: INSTRUCTIONS: ANSERS (A) rite your name on the line at top front of every sheet. (B) If you use a page of notes

More information

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information

Comparing Means from Two-Sample

Comparing Means from Two-Sample Comparing Means from Two-Sample Kwonsang Lee University of Pennsylvania kwonlee@wharton.upenn.edu April 3, 2015 Kwonsang Lee STAT111 April 3, 2015 1 / 22 Inference from One-Sample We have two options to

More information

Basics of Experimental Design. Review of Statistics. Basic Study. Experimental Design. When an Experiment is Not Possible. Studying Relations

Basics of Experimental Design. Review of Statistics. Basic Study. Experimental Design. When an Experiment is Not Possible. Studying Relations Basics of Experimental Design Review of Statistics And Experimental Design Scientists study relation between variables In the context of experiments these variables are called independent and dependent

More information

The t-distribution. Patrick Breheny. October 13. z tests The χ 2 -distribution The t-distribution Summary

The t-distribution. Patrick Breheny. October 13. z tests The χ 2 -distribution The t-distribution Summary Patrick Breheny October 13 Patrick Breheny Biostatistical Methods I (BIOS 5710) 1/25 Introduction Introduction What s wrong with z-tests? So far we ve (thoroughly!) discussed how to carry out hypothesis

More information

Confidence Intervals and Hypothesis Tests

Confidence Intervals and Hypothesis Tests Confidence Intervals and Hypothesis Tests STA 281 Fall 2011 1 Background The central limit theorem provides a very powerful tool for determining the distribution of sample means for large sample sizes.

More information

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing STAT 135 Lab 5 Bootstrapping and Hypothesis Testing Rebecca Barter March 2, 2015 The Bootstrap Bootstrap Suppose that we are interested in estimating a parameter θ from some population with members x 1,...,

More information

Chapter 24. Comparing Means. Copyright 2010 Pearson Education, Inc.

Chapter 24. Comparing Means. Copyright 2010 Pearson Education, Inc. Chapter 24 Comparing Means Copyright 2010 Pearson Education, Inc. Plot the Data The natural display for comparing two groups is boxplots of the data for the two groups, placed side-by-side. For example:

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 26 (MWF) Tests and CI based on two proportions Suhasini Subba Rao Comparing proportions in

More information

Power and Sample Size + Principles of Simulation. Benjamin Neale March 4 th, 2010 International Twin Workshop, Boulder, CO

Power and Sample Size + Principles of Simulation. Benjamin Neale March 4 th, 2010 International Twin Workshop, Boulder, CO Power and Sample Size + Principles of Simulation Benjamin Neale March 4 th, 2010 International Twin Workshop, Boulder, CO What is power? What affects power? How do we calculate power? What is simulation?

More information

(Elementary) Regression Methods & Computational Statistics ( ) Part IV: Hypothesis Testing and Confidence Intervals (cont.)

(Elementary) Regression Methods & Computational Statistics ( ) Part IV: Hypothesis Testing and Confidence Intervals (cont.) (Elementary) Regression Methods & Computational Statistics (405.95) Part IV: Hypothesis Testing and Confidence Intervals (cont.) Assoz. Prof. Dr. Arbeitsgruppe Stochastik/Statistik Fachbereich Mathematik

More information

10: Crosstabs & Independent Proportions

10: Crosstabs & Independent Proportions 10: Crosstabs & Independent Proportions p. 10.1 P Background < Two independent groups < Binary outcome < Compare binomial proportions P Illustrative example ( oswege.sav ) < Food poisoning following church

More information

T-tests for 2 Independent Means

T-tests for 2 Independent Means T-tests for 2 Independent Means February 22, 208 Contents t-test for 2 independent means Tutorial Example : one-tailed test for independent means, equal sample sizes Error Bars Example 2: two-tailed test

More information

T-tests for 2 Independent Means

T-tests for 2 Independent Means T-tests for 2 Independent Means January 15, 2019 Contents t-test for 2 independent means Tutorial Example 1: one-tailed test for independent means, equal sample sizes Error Bars Example 2: two-tailed test

More information

Question. Hypothesis testing. Example. Answer: hypothesis. Test: true or not? Question. Average is not the mean! μ average. Random deviation or not?

Question. Hypothesis testing. Example. Answer: hypothesis. Test: true or not? Question. Average is not the mean! μ average. Random deviation or not? Hypothesis testing Question Very frequently: what is the possible value of μ? Sample: we know only the average! μ average. Random deviation or not? Standard error: the measure of the random deviation.

More information

Lecture Slides. Elementary Statistics Eleventh Edition. by Mario F. Triola. and the Triola Statistics Series 9.1-1

Lecture Slides. Elementary Statistics Eleventh Edition. by Mario F. Triola. and the Triola Statistics Series 9.1-1 Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by Mario F. Triola Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 9.1-1 Chapter 9 Inferences

More information