Supporting information for Eddaoudi et al. (2002) Proc. Natl. Acad. Sci. USA 99 (8), ( /pnas ) Supporting Information

Size: px
Start display at page:

Download "Supporting information for Eddaoudi et al. (2002) Proc. Natl. Acad. Sci. USA 99 (8), ( /pnas ) Supporting Information"

Transcription

1 Supporting information for Eddaoudi et al. (2002) Proc. Natl. Acad. Sci. USA 99 (8), ( /pnas ) Supporting Information Table 1. Syntheses of MOF MOFn MOF- 102 Link and Abbreviation Cl O 2 C CO 2 Cl Cl 2 -BDC Chem ical Form ula Space Group; a, b, c (Å); a, ß,?( ); V (Å 3 ); Z Cu2(Cl2-BDC)2(DMF)2.(H 2O)(DMF)3.5 P-1; , , ; , , ; 965.6; 1 MOF- 103 O 2 C CO 2 CB-BDC Zn2(CB-BDC)2(H 2O)2 (H 2O)3(DMF)1.8 P21/n; , , ; 90.00, , 90.00; ; 2 MOF- 104 O 2 C CDC CO 2 Zn2(CDC)2(DMF)2 (DMF)2(ClBz) C2/m; , , ; 90.00, , 90.00; ; 2 MOF- 105 O 2 C NDC CO 2 Zn2(NDC)2(DMF)2 (ClBz) P21/c; 8.130, , ; 90.00, , 90.00; ; 2 MOF- 106 O 2 C BPDC CO 2 Fe2(BPDC)2(DMF)2 (H 2O)0.4(DMF)3.6 C2/c; , , ; 90.00, , 90.00; , 4 MOF- 107 MOF- 108 S O 2 C CO 2 TDC S O 2 C CO 2 TDC Cu2(TDC)2(DEF)2 (H 2O) (DEF)3 P-1; , , ; , , ; ; 4 Cu2(TDC)2(CH 3OH)2 (DBF)2 P21/c; , , ; 90.00, , 90.00; , 4 MOF- 109 O 2 C O KDB CO 2 Cu2(KDB)2(DMF)2.(H 2O)2(DMF)8 P21/c; , , ; 90.00, , 90.00; ; 4 MOF- 110 S O 2 C CO 2 TDC Cu2(TDC)2(DMF)2 (H 2O) (DMF)3.5 R(-3)m; , , ; 90.00, 90.00, ; ; 4.5 MOF- 111 MOF- 112 O 2 C CO 2 O 2 C Br Br-BDC CO 2 Br o -Br-m -BDC Cu2(TDC)2(DMF)2 (H 2O)(DMF)2 C2/c; , , ; 90.00, , 90.00; 4127; 4 Cu2(Br-BDC)2(DMF)2 (H 2O)2 (DMF)2 C2/c; , , ; 90.00, , 90.00; ; 12 1

2 Syntheses of MOF (MOF-102): Cu 2 (Cl 2 -BDC) 2 (DMF) 2 (H 2 O) 2 (DMF) 3.5. An exact amount of 2,5- dichlorobenzene dicarboxylic acid, (Cl 2 -BDCH 2 ) (11.20 mg, mmol), and copper(ii) nitrate hemipentahydrate, Cu(NO 3 ) 2 2.5H 2 O, (9.6 mg, mmol) was dissolved in N,N -dimethylformamide (DMF)/ethanol (1.5 ml/0.5 ml). The solution was placed in a Pyrex tube (10 mm 8 mm o.d. i.d., 140 mm length). The evacuated tube was sealed and heated to 80 C for 20 h at a rate of 2.0 C/min, then cooled to room temperature at a rate of 1.0 C/min. The resultant blue crystals was filtered, and washed with the DMF/ethanol mixture (3 5 ml) to yield MOF-102. Elemental analysis: C 32.5 H 46.5 O 15.5 N 5.5 Cl 4 Cu 2 = Cu 2 (Cl 2 -BDC) 2 (DMF) 2 (H 2 O) 2 (DMF) 3.5 : Calcd. C, 37.86; H, 4.55; N, Found C, 37.99; H, 4.07; N, FT-IR: (KBr, cm 1 ): 3440 (br), 2931 (w), 1642 (s), 1580 (w), 1388 (vs), 1327 (w), 1255 (w), 1154 (w), 1108 (w), 1087 (m), 1123 (w), 914 (w), 838 (w), 798 (w), 675 (w), 598 (w). (MOF-103): Zn 2 (CB-BDC) 2 (H 2 O) 2 (H 2 O) 3 (DMF) 1.8. A mixture of anhydrous ZnCl 2 (0.06 g, 0.44 mmol) and 1,2-dihydrocyclobutabenzene-3,6-dicarboxylic acid (CB- BDCH 2 ) (0.05 g, mmol) was dissolved in N,N'-dimethylformamide (10 ml) and transferred to a 20-ml glass vial. An aqueous solution of methylamine (0.6 M) was added dropwise to the solution (2.0 ml). The solution immediately became slightly cloudy. The mixture was vigorously shaken and then allowed to stand at room temperature for several days. Clear rectangular crystals were formed on the bottom of the vial and were collected for analysis by vacuum filtration. Elemental Analysis: C 26 H 36.4 N 1.8 Zn 2 = Zn 2 (CB-BDC) 2 (H 2 O) 2 (H 2 O) 3 (DMF) 1.8 : Calcd. C, 41.64; H, 4.76; N, Found C, 42.89; H, 6.75; N,

3 FT-IR: (KBr cm 1 ): (br), (m), (m), (m), (vs), (s), (vs), (vs), (s), (w), (m), (m), (w), (w), (w), (s), (s), (m), (m), (s). (MOF-104): Zn 2 (CDC) 2 (DMF) 2 (DMF) 2 (ClBz). 1,4-Cubanedicarboxylic acid (CDCH 2 ) (0.420 g, 2.19 mmol) and zinc(ii) nitrate hexahydrate (0.660 g, 2.22 mmol) were dissolved in N,N'-dimethylformamide (30 ml). The solution was then diluted with chlorobenzene (ClBz) (30 ml). The resulting clear solution was distributed equally into six vials. These vials were placed in a larger container having a small vial containing triethylamine (0.50 ml) and chlorobenzene (5 ml), which was sealed and left undisturbed at room temperature. After 12 days, the colorless block-shaped crystals were collected, washed with 3 10 ml of mixed solvent (DMF : ClBz = 1: 1). (MOF-105): Zn 2 (NDC) 2 (DMF) 2 (ClBz). In a 20-ml vial, 2,6-naphtalenedicarboxylic acid (NDCH 2 ) (0.076g, 0.36mmol) and zinc(ii) nitrate hexahydrate (0.110 g, 0.37 mmol) were added along with 5 ml of dimethylformamide (DMF) and 5 ml chlorobenzene (ClBz) an stirred and reactants dissolved. The vial was introduced into a 60-ml vial containing 2 ml of dimethylformamide, 2 ml of chlorobenzene, and 0.15 ml of triethylamine, and then sealed. The mixture was left to crystallize for 3 days and it was then filtered, washed with 3 10 ml of dimethylformamide, and left to air dry yielding g (0.92 %) of MOF-105. Elemental analysis: C 36 H 31 N 2 O 10 ClZn 2 = Zn 2 (NDC) 2 (DMF) 2 (ClBz): Calcd. C, 52.87; H, 3.82; N, 3.43; Cl, Found C, 52.25; H, 3.76; N, 3.36; Cl, FT-IR: (KBr, cm 1 ): 3441 (br), 3092 (w), 3059 (w), 3000 (w), 2960 (w), 2921 (w), 2809 (w), 1835 (w), 1644 (s), 1493 (vs), 1407 (vs), 1361 (s), 1256 (vs), 1190 (w), 1124 (w), 1085 (w), 1019 (w), 927 (w), 874 (w), 841 (w), 788 (s),, 690 (m), 644 (w), 591 (w), 565 (w), 486 (m). 3

4 (MOF-106): Fe 2 (BPDC) 2 (DMF) 2 (H 2 O) 0.4 (DMF) 3.6. Equimolar amounts of iron(ii) bromide, FeBr 2, (0.2 g, mmol) and 4,4-biphenyldicarboxylic acid, BPDCH 2, (0.225 g, mmol) were stirred in 60 ml of N,N'-dimethylformamide at room temperature for 2 h to give an orange solution with partially dissolved BPDC starting material. A mixture of approximately 70% DMF reaction solution and 30% 1-propanol were placed in a 10- mm (OD) Pyrex tube to be evacuated and flame sealed. The reaction tube was heated to 120ºC at a rate of 5ºC/min and held at that temperature for 20 h, then cooled at a rate of 1ºC/min to room temperature. Upon heating, the remaining undissolved starting material goes into solution and crystal formation occurs during the isotherm. The resulting product can be described as a mixture of large, transparent, yellow crystalline plates and a fine red/brown crystalline material in a clear solution. The tube contents are washed with a 3 10 ml DMF/1-propanol (10:3) solution, upon which the larger yellow crystals and fine crystalline powder is isolated and air-dried to give g (61% yield) of MOF-106. Elemental analysis: C 37 H 49 N 3 O 17 Fe 2 = Fe 2 (BPDC) 2 (DMF) 2 (DMF)(H 2 O) 6 : Calcd. C, 48.33: H, 5.37; N, Found C, 47.82; H, 4.49; N, FT-IR: (KBr, cm 1 ): 3064 (w), 2965 (w), 2925 (w), 1673 (s), 1608 (s), 1581 (s), 1529 (s), 1397 (vs, broad), 1299 (vs), 1182 (m), 1104 (m), 1010 (m), 852 (m), 797 (m), 768 (s), 700, (m), 680 (m), 467 (m). (MOF-107): Cu 2 (TDC) 2 (DEF) 2 (H 2 O)(DEF) 3. An exact amount of 2,5- thiophenedicarboxylic acid, (TDCH 2 ) (18.0 mg, mmol), and copper(ii) nitrate hemipentahydrate, Cu(NO 3 ) 2 2.5H 2 O, (23.5 mg, mmol) was dissolved in N,N'- diethylformamide (DEF)/ethanol (1.6 ml/0.4 ml). The solution was placed in a Pyrex tube (10 mm 8 mm o.d. i.d., 140 mm length). The evacuated tube was sealed and heated to 80 C for 20 h at a rate of 2.0 C/min, then cooled to room temperature at a rate of 1.0 C/min. The resultant blue crystals was filtered, and washed with the DEF/ethanol mixture (3 5 ml) to yield MOF

5 Elemental analysis: C 39 H 69 O 16 N 5 S 2 Cu 2 = Cu 2 (TDC) 2 (DEF) 2 (H 2 O)(DEF) 3 : Calcd. C, 44.64; H, 5.99; N, Found C, 44.64; H, 5.99; N, FT-IR: (KBr, cm 1 ): 3430 (br), 2982 (m), 2935 (w), 2875 (w), 1658 (s), 1617 (vs), 1541 (m), 1464 (w), 1383 (vs), 1266(w), 1210 (w), 1123 (w), 1026 (w), 950 (w), 848 (w), 812 (w), 767 (s), 695 (w), 65 (w), 537(w). (MOF-108): Cu 2 (TDC) 2 (CH 3 OH) 2 (DBF). An exact amount of 2,5- thiophenedicarboxylic acid, (TDCH 2 ) (16.8 mg, mmol), and copper(ii) nitrate hemipentahydrate, Cu(NO 3 ) 2 2.5H 2 O, (22.8 mg, mmol) was dissolved in dibutylformamide (DBF)/methanol (0.6 ml/0.3 ml). The solution was placed in a Pyrex tube (10 mm 8 mm o.d. i.d., 140 mm length). The evacuated tube was sealed and heated to 80 C for 20 h at a rate of 2.0 C/min, then cooled to room temperature at a rate of 1.0 C/min. The resultant crystals was filtered, and washed with the DMF/ethanol mixture (3 5ml) to yield MOF-108. Elemental analysis: C 24 H 34 O 13 N 4 S 2 Cu 2 = Cu 2 (TDC) 2 (CH 3 OH) 2 (CH 3 OH) 2 (DMF) 4 : Calcd. C, 37.88; H, 5.45; N, Found C, 37.43; H, 4.96; N, FT-IR: (KBr, cm 1 ): 3440 (br), 2956 (w), 2870 (w), 1617 (s), 1534 (m), 1464 (w), 1378 (vs), 1215(w), 1123 (w), 1026 (w), 848 (w), 772 (m), 537(w). (MOF-109): Cu 2 (KDB) 2 (DMF) 2 (H 2 O) 2 (DMF) 8. An exact amount of benzophenone 4,4'-dicarboxylic acid, KDBH 2, (22.00 mg, mmol) and copper(ii) nitrate hemipentahydrate, Cu(NO 3 ) 2 2.5H 2 O, (19.2 mg, mmol) was dissolved in a 1.5-ml DMF solution. Ethanol (0.5 ml) was added and the solution placed in a Pyrex tube (10 mm 8 mm o.d. i.d., 140 mm length). The evacuated tube was sealed and heated to 80 C for 20 h at a rate of 2.0 C/min, then cooled to room temperature at a rate of 1.0 C/min. The resultant blue crystals was filtered, and washed with the DMF/ethanol mixture (3 5 ml) to yield MOF

6 Elemental analysis: C 60 H 90 O 22 N 10 Cu 2 = Cu 2 (KDB) 2 (DMF) 2 (H 2 O) 2 (DMF) 8 Calcd. C, 50.38; H, 6.34; N, Found C, 50.13; H, 6.24; N, FT-IR: (KBr, cm 1 ): 3429 (br), 2935 (m), 1668 (s), 1617 (s), 1556(m), 1510(m), 1408 (vs), 1301 (w), 1271 (m), 1113 (w), 1021 (w), 940 (m), 843 (m), 787 (m), 731 (m), 537 (w), 450(w). (MOF-110): Cu 2 (TDC) 2 (DMF) 2 (H 2 O)(DMF) 2. An exact amount of 2,5- thiophenedicarboxylic acid, (TDCH 2 ) (18.0 mg, mmol), and copper(ii) nitrate hemi-pentahydrate, Cu(NO 3 ) 2 2.5H 2 O, (23.5 mg, mmol) was dissolved in DMF/ethanol (1.5ml/0.5 ml). The solution was placed in a Pyrex tube (10 mm 8 mm o.d. i.d., 140 mm length). The evacuated tube was sealed and heated to 80 C for 20 h at a rate of 2.0 C/min, then cooled to room temperature at a rate of 1.0 C/min. The resultant green, polyhedron crystals was filtered, and washed with the DMF/ethanol mixture (3 5 ml) to yield MOF-110. Elemental analysis: C 24 H 34 O 13 N 4 S 2 Cu 2 = Cu 2 (TDC) 2 (DMF) 2 (H 2 O)(DMF) 2 : Calcd. C, 37.06; H, 4.41; N, Found C, 37.26; H, 4.50; N, FT-IR: (KBr, cm 1 ): 3440 (br), 3109 (w), 2930 (w), 1668 (s), 1612 (vs), 1536 (m), 1378 (vs), 1255(w), 1103 (w), 1062 (w), 1031 (w), 863 (w), 812 (w), 777 (m), 680 (w), 537(w). (MOF-111): Cu 2 (Br-BDC) 2 (DMF) 2 (DMF) 3 (H 2 O) 2. An exact amount of 2- bromobenzenedicaroxylic acid (Br-BDCH 2 ) (17.25 mg, 0.07 mmol), and copper(ii) nitrate hemipentahydrate, Cu(NO 3 ) 2 2.5H 2 O, (16.13 mg, 0.07 mmol) was dissolved in solvent mixture DMF/ethanol (1.5 ml/0.5 ml). The solution was placed in a Pyrex tube (10 mm 8 mm o.d. i.d., 140 mm length). The evacuated tube was sealed and heated to 80 C for 20 h at a rate of 2.0 C/min, then cooled to room temperature at a rate of 1.0 C/min. The resultant blue crystals was filtered, and washed with the DMF/ethanol mixture (3 5 ml) to yield MOF

7 Elemental analysis: C 31 H 25 Br 2 O 15 N 5 Cu 2 = Cu 2 (Br-BDC) 2 (DMF) 2 (DMF) 3 (H 2 O) 2 : Calcd. C, 36.70; H, 4.47; N, Found C, 37.19; H, 4.24; N, FT-IR: (KBr, cm 1 ): 3455 (br), 3073 (w), 2930 (w), 2808 (w), 1978 (s), 1622 (vs), 1495 (m), 1393 (vs), 1251(w), 1149 (w), 1098(w), 1067 (w), 1037 (w), 914 (w), 833 (m), 772 (m), 742 (w), 680 (w), 568(w). Cu 2 (o-br-m-bdc) 2 (DMF) 2 (H 2 O) 2 (DMF) 2 (MOF-112). An exact amount of 2- bromoisophtalic acid, (o-br-m-bdch 2 ) (17.25 mg, 0.07 mmol), and copper(ii) nitrate hemipentahydrate, Cu(NO 3 ) 2 2.5H 2 O, (16.13 mg, 0.07 mmol) was dissolved in DMF/ethanol (1.5 ml/0.5 ml). The solution was placed in a Pyrex tube (10 mm 8 mm o.d. i.d., 140 mm length). The evacuated tube was sealed and heated to 80 C for 20 h at a rate of 2.0 C/min, then cooled to room temperature at a rate of 1.0 C/min. The resultant green crystals was filtered, and washed with the DMF/ethanol mixture (3 5 ml) to yield MOF-112. Elemental analysis: C 30 H 24 Br 2 O 15 N 4 Cu 2 = Cu 2 (o-br-m-bdc) 2 (DMF) 2 (H 2 O) 2 (DMF) 2 : Calcd C, 35.72; H, 4.07; N, Found C, 36.07; H, 4.07; N, FT-IR: (KBr, cm -1 ): 3435 (br), 2936 (w), 1663 (s), 1622 (vs), 1500 (w), 1439 (m), 1388 (vs), 1255(w), 1180 (w), 1113 (w), 1062 (w), 925 (w), 779 (w), 731 (w), 705 (w), 527(w). NB: The series of compounds were insoluble to most common organic solvents, such as ethanol, methanol, propanol, butanol, acetonitrile, tetrahydrofuran, chloroform, dichloromethane, benzene, acetone, N,N'-dimethylformamide, and N,N'- diethylformamide. 7

8 X-Ray Crystallographic Data for MOF X-Ray Crystallography of MOF-102. A blue, block crystal ( mm) of MOF-102 was coated with a light hydrocarbon-based inert oil and mounted on a standard Bruker SMART APEX CCD-based x-ray diffractometer equipped with a normal focus Mo-target x-ray tube (λ = Å). The x-ray intensities were measured at 153(2) K. Data frames were collected with a scan width of 0.3 in ω and phi with an exposure time of 30 s per frame. The frames were integrated with the Bruker SAINT software package with a narrow frame algorithm (SAINT PLUS, V. 6.01, Bruker Analytical X-ray, Madison, WI). The integration of the data yielded a total of 5,255 reflections to a maximum 2θ value of 55.06, of which 3,840 were independent and 2,031 were greater than 2σ(I). The final cell constants (Table 1) were based on xyz centroids of 803 reflections above 10 σ(i). Analysis of the data showed negligible decay during data collection. Absorption correction was applied for the integrated intensity data by SADABS [Sheldrick, G. M. (1996) SADABS: Program for Empirical Absorption Correction of Area Detector Data (University of Göttingen, Germany)]. The structure was solved by direct methods and the subsequent difference Fourier methods. Refinement processes were carried out with the Bruker SHELXTL (Version 5.10) software package [Sheldrick, G. M. (1997) SHELXTL, V. 5.10; Bruker Analytical X-ray, Madison, WI], using the centrosymmetric space group P( 1) with Z = 1 for the formula. There were two independent half Cl 2 BDC links and a copper atom in general positions. The axial positions of the copper atoms were coordinated with DMF molecules. A DMF molecule was included in the void space as a guest molecule. All nonhydrogen atoms were refined anisotropically. All hydrogen atoms were also included with ideal geometry. Final full matrix least-squares refinement converged to R1 = (I > 2σ(I)) and wr2 = (all data) with GOF =

9 Fig. 3. ORTEP drawing of MOF

10 Table 3. Crystal data and structure refinement for MOF-102 Identification code MOF-102 Empirical formula C28 H32 N4 O12 Cl4 Cu2 Formula weight Temperature 153(2) K Wavelength Å Crystal system Triclinic Space group P(-1) Unit cell dimensions a = (12) Å α= (3). b = (14) Å β= (2). c = (14) Å γ = (3). Volume 965.6(2) Å 3 Z 1 Density (calculated) Mg/m 3 Absorption coefficient mm 1 F(000) 450 Crystal size mm 3 Theta range for data collection 1.98 to Index ranges 8<=h<=12, 13<=k<=13, 14<=l<=10 Reflections collected 5255 Independent reflections 3840 [R(int) = ] Completeness to theta = % Absorption correction SADABS Max. and min. transmission and Refinement method Full-matrix least-squares on F 2 Data/restraints/parameters 3840/0/226 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Largest diff. peak and hole and e.å -3 10

11 Table 4. Atomic coordinates ( 10 4 ) and equivalent isotropic displacement parameters (Å ) for MOF-102 [U(eq) is defined as one-third of the trace of the orthogonalized U ij tensor] x y z U(eq) Cu(1) 8388(1) -526(1) -391(1) 22(1) Cl(1) 9231(4) 3262(2) -2628(2) 45(1) Cl(2) 11950(3) 2748(2) 4244(2) 38(1) O(1) 8738(8) 1390(5) -291(6) 33(2) O(2) 11432(8) 2275(5) 331(6) 34(2) O(3) 8598(8) -421(6) 1463(5) 32(2) O(4) 11310(8) 493(6) 2114(5) 32(2) C(1) 10071(12) 2327(8) 17(8) 25(2) C(2) 10072(11) 3740(8) 2(8) 27(2) C(3) 9645(12) 4229(8) -1150(8) 33(2) C(4) 9550(11) 5472(8) -1155(8) 29(2) C(5) 9977(12) 56(7) 2313(8) 21(2) C(6) 9980(10) 69(8) 3698(7) 21(2) C(7) 10875(11) 1220(8) 4654(8) 27(2) C(8) 10895(11) 1145(8) 5931(8) 28(2) O(1S) 5853(8) -1366(6) -1204(6) 35(2) N(1S) 3631(10) -2802(8) -2767(8) 43(2) C(1S) 5130(13) -2366(9) -2094(9) 38(2) C(2S) 2621(14) -2171(13) -2575(13) 71(4) C(3S) 2918(16) -3916(13) -3799(12) 78(4) O(2S) 4093(11) 5136(9) 3185(9) 82(3) N(2S) 4634(14) 6901(11) 2053(13) 83(4) C(4S) 4385(16) 6322(14) 3106(13) 71(4) C(5S) 4560(20) 6019(18) 846(16) 122(7) C(6S) 4908(19) 8347(16) 2127(19) 131(8) 11

12 Table 5. Bond lengths (Å) and angles ( ) for MOF-102 Cu(1)-O(3) 1.957(6) Cu(1)-O(2)# (5) Cu(1)-O(4)# (6) Cu(1)-O(1) 1.964(5) Cu(1)-O(1S) 2.103(6) Cu(1)-Cu(1)# (2) Cl(1)-C(3) 1.748(8) Cl(2)-C(7) 1.727(9) O(1)-C(1) 1.224(10) O(2)-C(1) 1.250(10) O(2)-Cu(1)# (5) O(3)-C(5) 1.263(10) O(4)-C(5) 1.244(10) O(4)-Cu(1)# (6) C(1)-C(2) 1.525(10) C(2)-C(4)# (10) C(2)-C(3) 1.383(11) C(3)-C(4) 1.378(10) C(4)-C(2)# (10) C(5)-C(6) 1.499(10) C(6)-C(8)# (11) C(6)-C(7) 1.407(11) C(7)-C(8) 1.384(11) C(8)-C(6)# (11) O(1S)-C(1S) 1.258(10) N(1S)-C(1S) 1.282(12) N(1S)-C(2S) 1.411(14) N(1S)-C(3S) 1.430(13) O(2S)-C(4S) 1.216(13) N(2S)-C(4S) 1.352(15) N(2S)-C(6S) 1.480(16) N(2S)-C(5S) 1.565(18) O(3)-Cu(1)-O(2)#1 88.6(2) O(3)-Cu(1)-O(4)# (3) O(2)#1-Cu(1)-O(4)#1 89.4(3) O(3)-Cu(1)-O(1) 89.4(2) O(2)#1-Cu(1)-O(1) 167.2(3) O(4)#1-Cu(1)-O(1) 89.8(3) O(3)-Cu(1)-O(1S) 100.3(2) O(2)#1-Cu(1)-O(1S) 94.6(3) O(4)#1-Cu(1)-O(1S) 92.1(2) O(1)-Cu(1)-O(1S) 98.2(2) O(3)-Cu(1)-Cu(1)# (19) O(2)#1-Cu(1)-Cu(1)#1 85.2(2) O(4)#1-Cu(1)-Cu(1)# (19) O(1)-Cu(1)-Cu(1)# (19) O(1S)-Cu(1)-Cu(1)# (18) C(1)-O(1)-Cu(1) 124.2(6) C(1)-O(2)-Cu(1)# (6) C(5)-O(3)-Cu(1) 120.6(6) C(5)-O(4)-Cu(1)# (5) O(1)-C(1)-O(2) 128.4(8) O(1)-C(1)-C(2) 115.9(8) O(2)-C(1)-C(2) 115.7(8) C(4)#2-C(2)-C(3) 119.0(7) C(4)#2-C(2)-C(1) 119.3(7) C(3)-C(2)-C(1) 121.6(7) C(4)-C(3)-C(2) 121.1(7) C(4)-C(3)-Cl(1) 119.3(7) C(2)-C(3)-Cl(1) 119.6(6) C(2)#2-C(4)-C(3) 119.8(7) O(4)-C(5)-O(3) 126.8(8) O(4)-C(5)-C(6) 117.6(8) O(3)-C(5)-C(6) 115.6(8) C(8)#3-C(6)-C(7) 118.5(7) C(8)#3-C(6)-C(5) 118.1(7) 12

13 Table 5 (continued) C(7)-C(6)-C(5) 123.4(7) C(8)-C(7)-C(6) 120.5(8) C(8)-C(7)-Cl(2) 119.2(6) C(6)-C(7)-Cl(2) 120.4(6) C(7)-C(8)-C(6)# (7) C(1S)-O(1S)-Cu(1) 121.7(7) C(1S)-N(1S)-C(2S) 122.0(9) C(1S)-N(1S)-C(3S) 121.3(10) C(2S)-N(1S)-C(3S) 116.6(10) O(1S)-C(1S)-N(1S) 124.9(10) C(4S)-N(2S)-C(6S) 115.9(14) C(4S)-N(2S)-C(5S) 119.3(12) C(6S)-N(2S)-C(5S) 124.8(13) O(2S)-C(4S)-N(2S) 124.1(14) Symmetry transformations used to generate equivalent atoms: #1 x + 2, y, z #2 x + 2, y + 1, z #3 x + 2, y, z

14 Table 6. Anisotropic displacement parameters (Å ) for MOF-102 [the anisotropic displacement factor exponent takes the form: 2π 2 [ h 2 a* 2 U h k a* b* U 12 ]] U 11 U 22 U 33 U 23 U 13 U 12 Cu(1) 46(1) 12(1) 14(1) 8(1) 13(1) 16(1) Cl(1) 95(2) 28(1) 22(1) 7(1) 18(1) 36(1) Cl(2) 67(2) 21(1) 23(1) 9(1) 19(1) 10(1) O(1) 39(4) 14(3) 44(4) 6(3) 9(3) 12(3) O(2) 48(4) 18(3) 36(4) 6(3) 12(3) 15(3) O(3) 46(4) 40(4) 14(3) 6(3) 12(3) 19(3) O(4) 42(4) 40(4) 15(3) 7(3) 13(3) 13(3) C(1) 41(6) 22(5) 15(4) 8(3) 8(4) 17(5) C(2) 54(6) 16(4) 20(4) 8(3) 14(4) 20(4) C(3) 64(7) 18(4) 21(5) 3(4) 10(5) 24(5) C(4) 57(6) 16(4) 22(5) 15(3) 14(4) 22(4) C(5) 42(6) 8(4) 20(4) 6(3) 14(4) 13(4) C(6) 35(5) 20(4) 9(4) 7(3) 11(4) 11(4) C(7) 49(6) 23(4) 14(4) 8(3) 15(4) 16(4) C(8) 48(6) 21(4) 18(4) 2(3) 14(4) 15(4) O(1S) 51(4) 27(3) 33(4) 10(3) 21(3) 16(3) N(1S) 35(5) 42(5) 43(5) 8(4) 7(4) 7(5) C(1S) 51(7) 33(5) 33(6) 13(5) 20(5) 16(5) C(2S) 52(8) 65(8) 90(11) 15(7) 22(7) 16(7) C(3S) 76(10) 69(9) 62(9) 4(7) 3(7) 14(8) O(2S) 100(8) 59(6) 97(8) 44(5) 41(6) 32(6) N(2S) 84(9) 67(7) 106(10) 51(7) 41(7) 28(7) C(4S) 82(10) 66(9) 70(10) 31(7) 32(8) 29(8) C(5S) 138(16) 135(15) 80(12) 31(11) 62(11) 20(13) C(6S) 85(12) 100(12) 220(20) 113(13) 45(12) 47(10) 14

15 Table 7. Hydrogen coordinates ( 10 4 ) and isotropic displacement parameters (Å ) for MOF-102 x y z U(eq) H(4) H(8) H(1SA) H(2SA) H(2SB) H(2SC) H(3SA) H(3SB) H(3SC) H(4SA) H(5SA) H(5SB) H(5SC) H(6SA) H(6SB) H(6SC)

16 X-Ray Crystallography of MOF-103. A rectangular colorless crystal ( mm) of MOF-103 was set on a cryo-loop in a thin layer of inert oil and mounted on a Bruker SMART CCD diffractometer equipped with a normal focus Mo-target x-ray tube (λ = Å) operated at 2,000 W power (50 kv, 40 ma). The x-ray intensities were measured at 158(2) K. Data frames were collected with a scan width of 0.3 in ω and phi with an exposure time of 30 s per frame. The frames were integrated with the SAINT software package with a narrow frame algorithm. The integration of the data yielded 3,162 unique reflections to a maximum 2 value of 52.92, of which 2,234 were greater than 2σ(I). Analysis of the data showed negligible decay during data collection. While an absorption correction was not applied, all data were corrected for the extinction effect. The structure was solved by direct methods and subsequent difference Fourier syntheses and refined with the SHELXTL (Version 5.10) software package, using the space group P2 1 /n with Z = 4 for the formula based on the elemental analysis. All nonhydrogen atoms were refined anisotropically. The DMF and water guest molecules were disordered and their occupancies were refined. The hydrogen atoms were added with ideal geometries. Final full matrix least-squares refinement on F 2 converged to R1 = (F > σ(f)) and wr2 = (all data) with GOF = Additional details are presented in Table 1 and the accompanying text. 16

17 Fig. 4. ORTEP drawing of MOF

18 Table 8. Crystal data and structure refinement for MOF-103 Identification code MOF-103 Empirical formula C13.39 H15.08 N0.95 O7.15 Zn Formula weight Temperature 158(2) K Wavelength Å Crystal system Monoclinic Space group P2(1)/n Unit cell dimensions a = (5) Å α= (3). b = (12) Å β= (3). c = (8) Å γ = (3). Volume (18) Å 3 Z 4 Density (calculated) Mg/m 3 Absorption coefficient mm 1 F(000) 757 Crystal size mm 3 Theta range for data collection 2.03 to Index ranges 9<=h<=9, 0<=k<=21, 0<=l<=15 Reflections collected 3162 Independent reflections 3162 [R(int) = ] Completeness to theta = % Absorption correction None Refinement method Full-matrix least-squares on F 2 Data/restraints/parameters 3162/0/216 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Extinction coefficient (9) Largest diff. peak and hole and e.å 3 18

19 Table 9. Atomic coordinates ( 10 4 ) and equivalent isotropic displacement parameters (Å ) for MOF-103 [U(eq) is defined as one-third of the trace of the orthogonalized U ij tensor] x y z U(eq) O(6) 4050(9) 5452(4) 6761(4) 119(3) C(11) 6411(15) 6428(7) 4817(8) 158(6) C(13) 5029(14) 5695(6) 6239(6) 93(3) C(12) 3072(19) 6593(9) 5098(9) 221(8) N(1) 4990(11) 6221(5) 5376(5) 110(3) O 5191(16) 9987(5) 8614(10) 123(6) O' 7690(40) 5603(17) 5720(20) 232(18) O" 6210(40) 5110(15) 6740(20) 74(12) O* 5650(50) 9540(20) 9760(30) 240(20) Zn(1) 11763(1) 4939(1) 9476(1) 15(1) O(1) 10442(3) 5814(2) 8641(2) 28(1) O(2) 7729(4) 5857(2) 9343(2) 30(1) O(3) 5160(4) 9132(2) 6188(2) 31(1) O(4) 7890(3) 9205(1) 5525(2) 26(1) O(5) 13778(3) 4696(2) 8572(2) 27(1) C(1) 8876(5) 6097(2) 8723(3) 24(1) C(2) 8318(5) 6800(2) 8034(3) 23(1) C(3) 6596(5) 7144(2) 8013(3) 30(1) C(4) 4745(6) 7094(3) 8478(5) 59(2) C(5) 4227(6) 7856(3) 7777(5) 61(2) C(6) 6141(5) 7806(2) 7411(3) 29(1) C(7) 7328(5) 8177(2) 6771(3) 22(1) C(8) 9054(5) 7826(2) 6768(3) 30(1) C(9) 9525(5) 7155(2) 7372(3) 30(1) C(10) 6750(5) 8891(2) 6115(3) 23(1) 19

20 Table 10. Bond lengths (Å) and angles ( ) for MOF-103 _ O(6)-C(13) 1.090(10) C(11)-N(1) 1.349(9) C(13)-N(1) 1.396(10) C(12)-N(1) 1.554(12) O-O* 1.64(4) O*-O*#1 1.94(7) Zn(1)-O(5) 1.978(2) Zn(1)-O(2)# (2) Zn(1)-O(1) 2.009(2) Zn(1)-O(4)# (2) Zn(1)-O(3)# (2) Zn(1)-Zn(1)# (8) O(1)-C(1) 1.256(4) O(2)-C(1) 1.258(4) O(2)-Zn(1)# (2) O(3)-C(10) 1.246(4) O(3)-Zn(1)# (2) O(4)-C(10) 1.275(4) O(4)-Zn(1)# (2) C(1)-C(2) 1.501(5) C(2)-C(3) 1.388(5) C(2)-C(9) 1.396(5) C(3)-C(6) 1.372(5) C(3)-C(4) 1.523(5) C(4)-C(5) 1.583(6) C(5)-C(6) 1.515(5) C(6)-C(7) 1.380(5) C(7)-C(8) 1.398(5) C(7)-C(10) 1.497(5) C(8)-C(9) 1.387(5) O(6)-C(13)-N(1) 136.9(11) C(11)-N(1)-C(13) 126.7(10) C(11)-N(1)-C(12) 120.3(10) C(13)-N(1)-C(12) 112.9(8) O-O*-O*#1 80(2) O(5)-Zn(1)-O(2)# (11) O(5)-Zn(1)-O(1) (11) O(2)#2-Zn(1)-O(1) (11) O(5)-Zn(1)-O(4)# (10) O(2)#2-Zn(1)-O(4)# (12) O(1)-Zn(1)-O(4)# (11) O(5)-Zn(1)-O(3)# (11) O(2)#2-Zn(1)-O(3)# (12) O(1)-Zn(1)-O(3)# (12) O(4)#3-Zn(1)-O(3)# (10) O(5)-Zn(1)-Zn(1)# (8) O(2)#2-Zn(1)-Zn(1)# (8) O(1)-Zn(1)-Zn(1)# (8) O(4)#3-Zn(1)-Zn(1)# (7) O(3)#4-Zn(1)-Zn(1)# (7) C(1)-O(1)-Zn(1) 129.9(3) C(1)-O(2)-Zn(1)# (2) C(10)-O(3)-Zn(1)# (3) C(10)-O(4)-Zn(1)# (2) O(1)-C(1)-O(2) 126.3(3) O(1)-C(1)-C(2) 117.4(3) O(2)-C(1)-C(2) 116.3(3) C(3)-C(2)-C(9) 115.6(3) C(3)-C(2)-C(1) 123.0(3) C(9)-C(2)-C(1) 121.4(3) C(6)-C(3)-C(2) 121.9(4) C(6)-C(3)-C(4) 94.0(3) C(2)-C(3)-C(4) 144.0(4) C(3)-C(4)-C(5) 85.7(3) C(6)-C(5)-C(4) 86.4(3) C(3)-C(6)-C(7) 123.4(4) 20

21 Table 10 (continued) C(3)-C(6)-C(5) 93.9(3) C(7)-C(6)-C(5) 142.7(4) C(6)-C(7)-C(8) 115.2(3) C(6)-C(7)-C(10) 121.2(3) C(8)-C(7)-C(10) 123.6(3) C(9)-C(8)-C(7) 121.8(4) C(8)-C(9)-C(2) 122.0(4) O(3)-C(10)-O(4) 124.8(3) O(3)-C(10)-C(7) 116.5(3) O(4)-C(10)-C(7) 118.7(3) Symmetry transformations used to generate equivalent atoms: #1 x + 1, y + 2, z + 2 #2 x + 2, y + 1, z + 2 #3 x + 1/2, y + 3/2, z + 1/2 #4 x + 3/2, y 1/2, z + 3/2 #5 x + 3/2, y + 1/2, z + 3/2 #6 x + 1/2, y + 3/2, z 1/2 21

22 Table 11. Anisotropic displacement parameters (Å ) for MOF-103 [the anisotropic displacement factor exponent takes the form: 2π 2 [ h 2 a* 2 U h k a* b* U 12 ]] U 11 U 22 U 33 U 23 U 13 U 12 O(6) 147(6) 178(6) 34(3) 31(3) 19(3) 91(5) C(11) 181(11) 192(11) 114(8) 64(8) 97(9) 126(10) C(13) 106(7) 122(8) 52(5) 13(5) 3(5) 3(6) C(12) 225(16) 320(20) 113(10) 74(12) 16(10) 126(15) N(1) 141(7) 142(7) 47(4) 2(4) 17(4) 73(6) Zn(1) 15(1) 13(1) 18(1) 0(1) 1(1) 1(1) O(1) 26(1) 24(1) 34(2) 13(1) 2(1) 7(1) O(2) 27(2) 25(2) 40(2) 20(1) 6(1) 4(1) O(3) 23(1) 28(2) 42(2) 18(1) 6(1) 8(1) O(4) 23(1) 22(1) 31(2) 11(1) 0(1) 1(1) O(5) 16(1) 33(2) 32(2) 1(1) 4(1) 3(1) C(1) 24(2) 18(2) 29(2) 4(2) 5(2) 2(2) C(2) 21(2) 18(2) 31(2) 10(2) 1(2) 1(2) C(3) 22(2) 29(2) 39(2) 15(2) 8(2) 4(2) C(4) 35(3) 58(3) 85(4) 44(3) 24(3) 15(2) C(5) 31(3) 58(3) 96(4) 55(3) 28(3) 19(2) C(6) 20(2) 27(2) 40(3) 13(2) 5(2) 3(2) C(7) 20(2) 18(2) 28(2) 6(2) 0(2) 0(2) C(8) 23(2) 27(2) 41(3) 13(2) 9(2) 1(2) C(9) 17(2) 27(2) 47(3) 12(2) 6(2) 7(2) C(10) 22(2) 17(2) 28(2) 4(2) 1(2) 0(2) 22

23 Table 12. Hydrogen coordinates ( 10 4 ) and isotropic displacement parameters (Å ) for MOF-103 x y z U(eq) H(11A) H(11B) H(11C) H(13) H(12A) H(12B) H(12C) H(5) H(5') H(4A) H(4B) H(5A) H(5B) H(8) (10) H(9) (10) 23

24 X-Ray Crystallography of MOF-104. A colorless, plate crystal ( mm) of MOF-104 was coated with Paratone N hydrocarbon oil and mounted on a standard Bruker SMART CCD-based x-ray diffractometer equipped with a normal focus Motarget x-ray tube (λ = Å). The x-ray intensities were measured at 168(2) K. Data frames were collected with a scan width of 0.3 in ω with an exposure time of 10 s per frame. The frames were integrated with the Bruker SAINT software package with a narrow frame algorithm [SAINT: SAX Area-Detector Integration Program, V (1995) Siemens Industrial Automation, Madison, WI]. The integration of the data yielded a total of 5,460 reflections to a maximum 2θ value of of which 2,088 were independent and 1,502 were greater than 3σ(I). The final cell constants were determined from a least-squares refinement based on the measured positions of 2,522 reflections in the range of 3.00 < 2θ < Absorption correction was applied for the integrated intensity data by SADABS. The structure was solved by direct methods and the subsequent difference Fourier methods. Refinement processes were carried out with the TEXAN software package [TEXAN Crystal Structure Analysis Package, Molecular Structure Corporation (1985 & 1992)], using the centrosymmetric space group C2/m with Z = 2 for the formula. All nonhydrogen atoms of the framework were refined anisotropically. The remaining nonhydrogen atoms were refined isotropically. All hydrogen atoms were also included with ideal geometry. Final full matrix least-squares refinement converged to R = (I > 3σ(I)) and Rw = with GOF =

25 Fig. 5. ORTEP drawing of MOF

26 Table 13. Crystal data and structure refinement for MOF-104 Identification code MOF-104 Empirical formula C44 H50 N4 O12 Cl2 Zn2 Formula weight Temperature 168(2) K Wavelength Å Crystal system Monoclinic Space group C2/m Unit cell dimensions a = (4) Å α= b = (5) Å β= (1). c = (4) Å γ = Volume (12) Å 3 Z 2 Density (calculated) Mg/m 3 Absorption coefficient mm 1 F(000) 900 Crystal size mm 3 Theta range for data collection to Index ranges 0<=h<=16, 19<=k<=20, 12<=l<=11 Reflections collected 5460 Independent reflections 2088 [R(int) = 0.035] Absorption correction SADABS Max. and min. transmission 0.62 and 0.85 Refinement method Full-matrix least-squares Data/restraints/parameters 1502/0/138 Goodness-of-fit 2.38 Residuals: R; Rw; Rall 0.058; 0.069; Largest diff. peak and hole 0.95 and 0.54 e.å 3 26

27 Table 14. Positional parameters and B(eq) for MOF-104 atom x y z B(eq) Zn(1) (9) (11) 1.66(2) Cl(1) (14) (12) 0.639(2) 10.3(6) Cl(2) (12) (11) (14) 8.0(4) O(1) (4) (3) (5) 3.26(12) O(2) (4) (3).1033(5) 3.56(13) O(3) (5) (6) 2.38(16) N(1) (8) (7) (11) 2.6(2) C(1) (5) (4) (7) 2.27(16) C(2) (5) (4) (7) 2.27(16) C(3) (6) (4) (7) 3.33(18) C(4) (5) (4) (8) 3.2(2) C(5) (6) (4).0995(7) 3.1(2) C(6) (10) (8) (13) 2.3(3) C(7) (10) (7) (13) 2.9(3) C(8) (12) (9) (15) 4.0(3) C(9) 0.442(3) 0.527(2).134(4) 7.1(11) C(10) (16) (2) 3.9(5) C(11) (8) (12) 3.2(2) C(12) (11) (15) 5.8(3) C(13) 0.227(2) (17) 0.560(3) 7.5(7) C(14) 0.270(2) (15) 0.582(2) 4.7(5) C(15) 0.318(3) 0.225(2) 0.624(3) 4.2(6) C(16) (6) C(17) 0.328(3) 0.295(2) 0.580(4) 6.8(9) C(18) (17) (15) 0.644(2) 2.9(3) C(19) 0.348(2) (15) 0.521(3) 7.8(6) H(1) H(2) H(3)

28 Table 15. Bond lengths (Å) and angles ( ) for MOF-104 Zn(1) Zn(1) 2.919(2) C(3) C(4) 1.562(9) 1 Zn(1) O(1) 2.018(4) 1 C(3) C(5) 1.56(1) 7 Zn(1) O(1) 2.018(4) C(4) C(5) 1.524(9) 1 Zn(1) O(2) 2.040(5) 4 C(7) C(7) 0.86(2) Zn(1) O(2) 2.040(5) C(8) C(8) 1.82(3) Zn(1) O(3) 1.999(6) 1 C(9) C(9) 0.91(7) Cl(1) Cl(2) 1.34(2) 1 C(9) C(10) 1.11(4) 1 Cl(1) C(17) 1.23(4) 1 C(10) C(10) 1.16(4) Cl(1) C(18) 0.64(2) 1 C(10) C(11) 1.64(2) 1 Cl(1) C(19) 1.26(3) 1 C(11) C(12) 0.85(1) 1 Cl(2) C(14) 1.83(3) 1 C(13) C(14) 0.82(3) 1 Cl(2) C(15) 1.07(3) 1 C(13) C(15) 1.55(4) 1 Cl(2) C(16) 2.08(2) 1 C(13) C(16) 1.64(3) 1 Cl(2) C(17) 1.15(4) 1 C(13) C(17) 1.55(5) Cl(2) C(18) 0.74(2) 1 C(13) C(19) 1.12(3) O(1) C(1) 1.254(7) 1 C(14) C(15) 0.76(3) 1 O(2) C(1) 1.243(7) 1 C(14) C(16) 1.15(2) 1 O(3) C(6) 1.32(1) 1 C(14) C(17) 1.76(5) 1 O(3) C(6) 1.32(1) C(14) C(17) 1.74(4) N(1) C(6) 1.34(2) 1 C(14) C(19) 1.84(4) N(1) C(7) 1.43(2) 1 C(15) C(16) 1.36(3) 1 N(1) C(8) 1.52(2) 1 C(15) C(17) 1.28(4) 1 C(1) C(2) 1.497(8) 1 C(15) C(18) 1.55(4) 1 C(2) C(3) 1.546(9) 1 C(16) C(17) 1.32(4) 1 C(2) C(4) 1.562(9) 7 C(16) C(17) 1.32(4) C(2) C(5) 1.558(8) 1 C(17) C(18) 0.84(4) 1 28

29 Table 16. Anisotropic displacement parameters (Å 2 ) for MOF-104 U 11 U 22 U 33 U 23 U 13 U 12 Zn(1) (6) (6) (6) (5) O(1) 0.049(3) 0.040(3) 0.041(3) 0.023(3) 0.025(3) 0.003(3) O(2) 0.044(3) 0.049(3) 0.040(3) 0.030(3) 0.013(3).003(3) O(3) 0.034(4) 0.036(4) 0.024(4) (3) C(1) 0.026(4) 0.021(4) 0.043(5) 0.001(3) 0.017(4) 0.000(3) C(2) 0.029(4) 0.024(4) 0.038(4) 0.009(3) 0.019(3).002(3) C(3) 0.037(4) 0.040(5) 0.048(5) 0.019(4) 0.015(4).008(4) C(4) 0.027(4) 0.025(4) 0.082(6) 0.006(3) 0.033(4) 0.000(4) C(5) 0.050(5) 0.032(4) 0.053(5) 0.020(4) 0.038(4) 0.013(4) 29

30 X-Ray Crystallography of MOF-105. A colorless blade-like crystal ( mm) of MOF-105 was coated with a light hydrocarbon-based inert oil and mounted on a standard Bruker SMART APEX CCD-based x-ray diffractometer equipped with a normal focus Mo-target x-ray tube (λ = Å). The x-ray intensities were measured at 158(2) K. Data frames were collected with a scan width of 0.3 in ω and phi with an exposure time of 30 s per frame. The frames were integrated with the Bruker SAINT software package with a narrow frame algorithm [SAINT PLUS, V. 6.01, Bruker Analytical X-ray, Madison, WI]. The integration of the data yielded a total of 16,114 reflections to a maximum 2θ value of 52.84, of which 3,500 were independent and 2,280 were greater than 2σ(I). The final cell constants (Table 1) were based on xyz centroids of 3,438 reflections above 10σ(I). Analysis of the data showed negligible decay during data collection. Absorption correction was applied for the integrated intensity data by SADABS. The structure was solved by direct methods and the subsequent difference Fourier methods. Refinement processes were carried out with the Bruker SHELXTL (Version 5.10) software package, using the centrosymmetric space group P2 1 /c with Z = 2 for the formula. The axial positions of the copper atoms were coordinated with DMF molecules which filled the void space without guest molecules. All nonhydrogen atoms were refined anisotropically. All hydrogen atoms were also included with ideal geometry. Final full matrix least-squares refinement converged to R1 = (I > 2σ(I)) and wr2 = (all data) with GOF = Additional details are presented in the following table. 30

31 Fig. 6. ORTEP drawing of MOF

32 Table 17. Crystal data and structure refinement for MOF-105 Identification code MOF-105 Empirical formula C33 H33 N3 O11 Zn2 Formula weight Temperature 158(2) K Wavelength Å Crystal system Monoclinic Space group P2(1)/c Unit cell dimensions a = 8.130(2) Å α= 90. b = (5) Å β= (5). c = (4) Å γ = 90. Volume (9) Å 3 Z 2 Density (calculated) Mg/m 3 Absorption coefficient mm 1 F(000) 800 Crystal size mm 3 Theta range for data collection 2.02 to Index ranges 10<=h<=10, 20<=k<=20, 15<=l<=16 Reflections collected Independent reflections 3500 [R(int) = ] Completeness to theta = % Absorption correction SADABS Max. and min. transmission and Refinement method Full-matrix least-squares on F 2 Data/restraints/parameters 3500/0/198 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Extinction coefficient (3) Largest diff. peak and hole and e.å 3 32

33 Table 18. Atomic coordinates ( 10 4 ) and equivalent isotropic displacement parameters (Å ) for MOF-105 [U(eq) is defined as one-third of the trace of the orthogonalized U ij tensor] x y z U(eq) Zn(1) 3729(1) 5033(1) 790(1) 20(1) O(1) 5364(3) 4263(2) 1534(2) 33(1) O(2) 7258(3) 4218(2) 314(2) 34(1) O(3) 12822(3) 918(1) 4955(2) 32(1) O(4) 14717(3) 961(1) 3728(2) 33(1) O(5) 2093(3) 5145(1) 1886(2) 27(1) C(1) 6720(5) 4041(2) 1191(3) 27(1) C(2) 7807(4) 3520(2) 1890(2) 23(1) C(3) 7149(4) 3125(2) 2775(3) 26(1) C(4) 8087(4) 2621(2) 3388(3) 26(1) C(5) 9761(4) 2486(2) 3172(2) 22(1) C(6) 10773(4) 1937(2) 3768(2) 24(1) C(7) 12369(4) 1798(2) 3521(2) 25(1) C(8) 13057(4) 2220(2) 2675(3) 28(1) C(9) 12131(4) 2764(2) 2094(3) 28(1) C(10) 10458(4) 2909(2) 2321(2) 24(1) C(11) 9437(4) 3423(2) 1692(3) 25(1) C(12) 13385(4) 1178(2) 4110(3) 26(1) C(13) 2195(4) 5683(2) 2576(3) 28(1) N(1) 1200(4) 5732(2) 3360(2) 33(1) C(15) 1447(5) 6332(2) 4201(3) 43(1) C(14) 101(6) 5140(3) 3452(4) 74(2) 33

34 Table 19. Bond lengths (Å) and angles ( ) for MOF-105 Zn(1)-O(5) 1.978(2) Zn(1)-O(3)# (2) Zn(1)-O(2)# (2) Zn(1)-O(1) 2.045(2) Zn(1)-O(4)# (2) Zn(1)-Zn(1)# (9) O(1)-C(1) 1.256(4) O(2)-C(1) 1.254(4) O(2)-Zn(1)# (2) O(3)-C(12) 1.266(4) O(3)-Zn(1)# (2) O(4)-C(12) 1.257(4) O(4)-Zn(1)# (2) O(5)-C(13) 1.251(4) C(1)-C(2) 1.502(4) C(2)-C(11) 1.368(4) C(2)-C(3) 1.429(4) C(3)-C(4) 1.357(4) C(4)-C(5) 1.416(5) C(5)-C(6) 1.424(4) C(5)-C(10) 1.428(4) C(6)-C(7) 1.366(4) C(7)-C(8) 1.419(4) C(7)-C(12) 1.498(4) C(8)-C(9) 1.370(4) C(9)-C(10) 1.422(5) C(10)-C(11) 1.415(4) C(13)-N(1) 1.316(4) N(1)-C(14) 1.445(5) N(1)-C(15) 1.469(4) O(5)-Zn(1)-O(3)# (10) O(5)-Zn(1)-O(2)# (9) O(3)#1-Zn(1)-O(2)# (10) O(5)-Zn(1)-O(1) 99.78(10) O(3)#1-Zn(1)-O(1) 89.24(10) O(2)#2-Zn(1)-O(1) (10) O(5)-Zn(1)-O(4)# (9) O(3)#1-Zn(1)-O(4)# (10) O(2)#2-Zn(1)-O(4)# (10) O(1)-Zn(1)-O(4)# (10) O(5)-Zn(1)-Zn(1)# (7) O(3)#1-Zn(1)-Zn(1)# (7) O(2)#2-Zn(1)-Zn(1)# (7) O(1)-Zn(1)-Zn(1)# (7) O(4)#3-Zn(1)-Zn(1)# (7) C(1)-O(1)-Zn(1) 125.5(2) C(1)-O(2)-Zn(1)# (2) C(12)-O(3)-Zn(1)# (2) C(12)-O(4)-Zn(1)# (2) C(13)-O(5)-Zn(1) 122.6(2) O(2)-C(1)-O(1) 125.8(3) O(2)-C(1)-C(2) 116.6(3) O(1)-C(1)-C(2) 117.5(3) C(11)-C(2)-C(3) 119.2(3) C(11)-C(2)-C(1) 120.6(3) C(3)-C(2)-C(1) 120.2(3) C(4)-C(3)-C(2) 121.2(3) C(3)-C(4)-C(5) 120.4(3) C(4)-C(5)-C(6) 122.3(3) C(4)-C(5)-C(10) 119.0(3) C(6)-C(5)-C(10) 118.7(3) C(7)-C(6)-C(5) 121.1(3) C(6)-C(7)-C(8) 120.0(3) C(6)-C(7)-C(12) 120.5(3) C(8)-C(7)-C(12) 119.4(3) C(9)-C(8)-C(7) 120.6(3) 34

35 Table 19 (continued) C(8)-C(9)-C(10) 120.6(3) C(11)-C(10)-C(9) 121.9(3) C(11)-C(10)-C(5) 119.0(3) C(9)-C(10)-C(5) 118.9(3) C(2)-C(11)-C(10) 121.0(3) O(4)-C(12)-O(3) 125.5(3) O(4)-C(12)-C(7) 117.7(3) O(3)-C(12)-C(7) 116.8(3) O(5)-C(13)-N(1) 123.7(3) C(13)-N(1)-C(14) 119.6(3) C(13)-N(1)-C(15) 122.0(3) C(14)-N(1)-C(15) 118.2(3) Symmetry transformations used to generate equivalent atoms: #1 x 1, y + 1/2, z 1/2 #2 x + 1, y + 1, z #3 x + 2, y + 1/2, z + 1/2 #4 x + 1, y + 1/2, z + 1/2 #5 x + 2, y 1/2, z + 1/2 35

36 Table 20. Anisotropic displacement parameters (Å ) for MOF-105 [the anisotropic displacement factor exponent takes the form: -2π 2 [ h 2 a* 2 U h k a* b* U 12 ]] U 11 U 22 U 33 U 23 U 13 U 12 Zn(1) 20(1) 22(1) 17(1) 0(1) 4(1) 0(1) O(1) 29(2) 42(2) 27(1) 3(1) 7(1) 12(1) O(2) 34(2) 40(2) 28(1) 11(1) 4(1) 8(1) O(3) 37(2) 34(1) 24(1) 5(1) 2(1) 12(1) O(4) 28(2) 35(1) 35(1) 9(1) 1(1) 11(1) O(5) 26(1) 34(1) 23(1) 6(1) 2(1) 1(1) C(1) 31(2) 22(2) 27(2) 2(2) 10(2) 1(2) C(2) 24(2) 23(2) 21(2) 2(1) 5(1) 3(2) C(3) 22(2) 28(2) 29(2) 3(2) 2(2) 1(2) C(4) 29(2) 29(2) 21(2) 3(2) 1(1) 0(2) C(5) 25(2) 21(2) 18(2) 1(1) 2(1) 1(1) C(6) 26(2) 24(2) 21(2) 1(1) 3(2) 1(2) C(7) 29(2) 21(2) 22(2) 1(1) 8(2) 1(1) C(8) 23(2) 28(2) 32(2) 4(2) 5(2) 3(2) C(9) 27(2) 28(2) 28(2) 8(2) 1(2) 1(2) C(10) 27(2) 24(2) 20(2) 2(1) 5(1) 0(2) C(11) 29(2) 23(2) 23(2) 3(1) 4(2) 4(2) C(12) 23(2) 22(2) 32(2) 1(2) 9(2) 1(2) C(13) 30(2) 30(2) 25(2) 6(2) 1(2) 2(2) C(15) 56(3) 38(2) 34(2) 10(2) 7(2) 3(2) C(14) 80(4) 83(4) 62(3) 34(3) 42(3) 38(3) 36

37 Table 21. Hydrogen coordinates ( 10 4 ) and isotropic displacement parameters (Å ) for MOF-105 x y z U(eq) H(3) (3) H(4) (3) H(6) (3) H(8) (3) H(9) (3) H(11) (3) H(13) (3) H(15A) (3) H(15B) (3) H(15C) (3) H(14A) (3) H(14B) (3) H(14C) (3) 37

38 X-Ray Crystallography of MOF-106. A yellow rod crystal ( mm) of MOF-106 was coated with a light hydrocarbon-based inert oil and mounted on a standard Bruker SMART APEX CCD-based x-ray diffractometer equipped with a normal focus Mo-target x-ray tube (λ = Å). The x-ray intensities were measured at 153(2) K. Data frames were collected with a scan width of 0.3 in ω and phi with an exposure time of 30 s per frame. The frames were integrated with the Bruker SAINT software package with a narrow frame algorithm [SAINT PLUS, V. 6.01, Bruker Analytical X-ray, Madison, WI]. The integration of the data yielded a total of 13,081 reflections to a maximum 2θ value of 56.62, of which 5,458 were independent and 3,608 were greater than 2σ(I). The final cell constants (Table 1) were based on xyz centroids of 1,707 reflections above 10σ(I). Analysis of the data showed negligible decay during data collection. Absorption correction was not applied for the integrated intensity data. The structure was solved by direct methods and the subsequent difference Fourier methods. Refinement processes were carried out with the Bruker SHELXTL (Version 5.10) software package [Sheldrick, G. M. (1997) SHELXTL, V (Bruker Analytical X-ray, Madison, WI)], using the centrosymmetric space group C2/c with Z = 4 for the formula. There were two independent half Cl 2 BDC links and a copper atom in general positions. The axial positions of the copper atoms were coordinated with DMF molecules. Two DMF and a water molecules were included in the pore as guests. The water (O1W) and one of two DMF molecules shared the same site with partial occupancies. The oxygen atom of the disordered DMF was disordered over two sites with O7 and O7. All nonhydrogen atoms were refined anisotropically. All hydrogen atoms were also included with ideal geometry. Final full-matrix least-squares refinement converged to R1 = (I > 2σ(I)) and wr2 = (all data) with GOF = Additional details are presented in the following table. 38

39 Fig. 7. ORTEP drawing of MOF

40 Table 22. Crystal data and structure refinement for MOF-106 Identification code MOF-106 Empirical formula C44.80 H53.75 Fe2 N5.60 O14 Formula weight Temperature 153(2) K Wavelength Å Crystal system Monoclinic Space group C2/c Unit cell dimensions a = (4) Å α= 90. b = (2) Å β= (2). c = (17) Å γ = 90. Volume (12) Å 3 Z 4 Density (calculated) Mg/m 3 Absorption coefficient mm 1 F(000) 2103 Crystal size mm 3 Theta range for data collection 1.51 to Index ranges 36<=h<=20, 19<=k<=20, 15<=l<=15 Reflections collected Independent reflections 5458 [R(int) = ] Completeness to theta = % Absorption correction None Refinement method Full-matrix least-squares on F 2 Data/restraints/parameters 5458/0/293 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Largest diff. peak and hole and e.å 3 40

41 Table 23. Atomic coordinates ( 10 4 ) and equivalent isotropic displacement parameters (Å ) for MOF-106 [U(eq) is defined as one-third of the trace of the orthogonalized U ij tensor] x y z U(eq) Fe(1) 2727(1) 2483(1) 1089(1) 16(1) O(1) 2263(2) 1205(3) 775(4) 35(1) O(2) 2609(2) 1175(3) 963(3) 30(1) O(3) 3350(1) 2280(3) 153(3) 33(1) O(4) 3228(1) 2628(3) 2475(3) 26(1) O(5) 2019(1) 2636(3) 1557(3) 25(1) O(6) 646(2) 759(5) 865(5) 78(2) N(1) 3959(2) 2988(4) 3371(4) 32(1) N(2) 894(2) 573(4) 967(5) 44(2) C(1) 2435(2) 803(4) 75(5) 21(1) C(2) 2444(2) 169(3) 48(5) 21(1) C(3) 2314(2) 628(4) 921(5) 24(1) C(4) 2336(2) 1528(4) 946(5) 25(1) C(5) 2495(2) 2015(3) 3(5) 19(1) C(6) 2612(2) 1554(4) 992(5) 21(1) C(7) 2590(2) 643(4) 1021(5) 24(1) C(8) 1647(2) 2746(3) 879(4) 20(1) C(9) 1162(2) 2920(4) 1361(4) 20(1) C(10) 739(3) 3065(7) 689(6) 64(3) C(11) 291(3) 3169(7) 1135(6) 72(3) C(12) 244(2) 3144(4) 2262(5) 24(1) C(13) 667(2) 3044(6) 2926(5) 56(2) C(14) 1124(2) 2927(6) 2493(5) 51(2) C(15) 3671(2) 2816(4) 2470(5) 30(1) C(16) 3772(3) 2980(7) 4456(6) 67(3) C(17) 4489(3) 3165(6) 3316(7) 63(3) C(18) 1301(3) 452(6) 1814(7) 60(2) C(19) 966(3) 634(6) 99(7) 60(2) C(20) 404(2) 699(6) 1369(4) 72(3) N(3) 3977(2) 529(3) 2913(4) 56(2) C(23) 3528(2) 437(3) 3425(4) 66(3) 41

42 Table 23 (continued) C(22) 4409(2) 748(3) 3562(4) 101(5) C(21) 3960(2) 366(3) 1715(4) 96(5) O(7) 4417(2) 936(3) 4471(4) 79(5) O(7') 4784(2) 860(3) 3574(4) 98(6) O(1W) 4112(2) 216(3) 4654(4) 82(10) 42

43 Table 24. Bond lengths (Å) and angles ( ) for MOF-106 Fe(1)-O(2) 2.026(4) Fe(1)-O(1)# (4) Fe(1)-O(5) 2.059(4) Fe(1)-O(4) 2.073(4) Fe(1)-O(3) 2.125(4) Fe(1)-Fe(1)# (14) O(1)-C(1) 1.248(7) O(1)-Fe(1)# (4) O(2)-C(1) 1.266(7) O(3)-C(8)# (6) O(4)-C(15) 1.236(7) O(5)-C(8) 1.256(6) O(6)-C(19) 1.227(9) N(1)-C(15) 1.310(7) N(1)-C(16) 1.436(9) N(1)-C(17) 1.469(8) N(2)-C(19) 1.314(10) N(2)-C(18) 1.453(9) N(2)-C(20) 1.462(7) C(1)-C(2) 1.485(7) C(2)-C(3) 1.379(8) C(2)-C(7) 1.404(8) C(3)-C(4) 1.376(8) C(4)-C(5) 1.400(8) C(5)-C(6) 1.395(8) C(5)-C(5)# (9) C(6)-C(7) 1.392(8) C(8)-C(9) 1.503(7) C(9)-C(10) 1.365(8) C(9)-C(14) 1.372(8) C(10)-C(11) 1.376(9) C(11)-C(12) 1.370(9) C(12)-C(13) 1.352(8) C(12)-C(12)# (11) C(13)-C(14) 1.391(9) N(3)-C(22) N(3)-C(23) N(3)-C(21) C(22)-O(7') C(22)-O(7) O(2)-Fe(1)-O(1)# (15) O(2)-Fe(1)-O(5) 89.24(17) O(1)#1-Fe(1)-O(5) 87.98(18) O(2)-Fe(1)-O(4) (16) O(1)#1-Fe(1)-O(4) 91.53(16) O(5)-Fe(1)-O(4) (15) O(2)-Fe(1)-O(3) 86.82(18) O(1)#1-Fe(1)-O(3) 91.30(19) O(5)-Fe(1)-O(3) (14) O(4)-Fe(1)-O(3) 86.77(15) O(2)-Fe(1)-Fe(1)# (12) O(1)#1-Fe(1)-Fe(1)# (12) O(5)-Fe(1)-Fe(1)# (10) O(4)-Fe(1)-Fe(1)# (12) O(3)-Fe(1)-Fe(1)# (11) C(1)-O(1)-Fe(1)# (4) C(1)-O(2)-Fe(1) 123.5(4) C(8)#1-O(3)-Fe(1) 127.1(4) C(15)-O(4)-Fe(1) 126.5(4) C(8)-O(5)-Fe(1) 123.9(3) C(15)-N(1)-C(16) 121.1(5) C(15)-N(1)-C(17) 121.5(6) C(16)-N(1)-C(17) 117.4(6) C(19)-N(2)-C(18) 121.7(7) C(19)-N(2)-C(20) 121.5(6) C(18)-N(2)-C(20) 116.6(6) 43

44 Table 24 (continued) O(1)-C(1)-O(2) 123.9(5) O(1)-C(1)-C(2) 118.6(6) O(2)-C(1)-C(2) 117.5(5) C(3)-C(2)-C(7) 118.4(5) C(3)-C(2)-C(1) 121.5(6) C(7)-C(2)-C(1) 120.1(5) C(4)-C(3)-C(2) 121.2(5) C(3)-C(4)-C(5) 121.5(5) C(6)-C(5)-C(4) 117.4(4) C(6)-C(5)-C(5)# (7) C(4)-C(5)-C(5)# (7) C(7)-C(6)-C(5) 121.2(5) C(6)-C(7)-C(2) 120.2(5) O(3)#1-C(8)-O(5) 125.0(5) O(3)#1-C(8)-C(9) 117.9(5) O(5)-C(8)-C(9) 117.1(5) C(10)-C(9)-C(14) 117.3(5) C(10)-C(9)-C(8) 121.3(5) C(14)-C(9)-C(8) 121.4(5) C(9)-C(10)-C(11) 120.9(6) C(12)-C(11)-C(10) 122.5(6) C(13)-C(12)-C(11) 116.3(5) C(13)-C(12)-C(12)# (7) C(11)-C(12)-C(12)# (7) C(12)-C(13)-C(14) 122.2(6) C(9)-C(14)-C(13) 120.7(6) O(4)-C(15)-N(1) 124.0(6) O(6)-C(19)-N(2) 126.1(8) C(22)-N(3)-C(23) C(22)-N(3)-C(21) C(23)-N(3)-C(21) O(7')-C(22)-N(3) O(7)-C(22)-N(3) Symmetry transformations used to generate equivalent atoms: #1 x + 1/2, y + 1/2, z #2 x + 1/2, y 1/2, z #3 x, y, z + 1/2 44

45 Table 25. Anisotropic displacement parameters (Å ) for MOF-106 [the anisotropic displacement factor exponent takes the form: 2π 2 [ h 2 a* 2 U h k a* b* U 12 ]] U 11 U 22 U 33 U 23 U 13 U 12 Fe(1) 18(1) 13(1) 17(1) 2(1) 3(1) 1(1) O(1) 50(3) 24(2) 31(2) 11(2) 8(2) 1(2) O(2) 52(3) 14(2) 25(2) 1(2) 1(2) 1(2) O(3) 23(2) 59(3) 18(2) 3(2) 5(2) 7(2) O(4) 24(2) 27(2) 25(2) 4(2) 1(2) 1(2) O(5) 20(2) 34(3) 22(2) 6(2) 3(2) 0(2) O(6) 68(4) 108(6) 57(4) 4(4) 16(3) 17(4) N(1) 19(3) 48(3) 27(3) 5(2) 4(2) 4(2) N(2) 35(3) 46(4) 50(4) 2(3) 4(3) 6(3) C(1) 12(3) 21(3) 32(3) 2(3) 12(2) 1(2) C(2) 23(3) 14(2) 28(3) 0(3) 6(2) 1(2) C(3) 33(3) 18(3) 21(3) 4(2) 5(3) 4(3) C(4) 40(4) 18(3) 17(3) 2(2) 3(3) 6(3) C(5) 21(2) 14(2) 22(2) 3(3) 2(2) 1(3) C(6) 26(3) 18(3) 19(3) 1(2) 2(2) 3(2) C(7) 29(3) 22(3) 20(3) 4(2) 2(2) 0(2) C(8) 20(3) 21(3) 19(3) 1(2) 1(2) 1(2) C(9) 19(3) 20(3) 22(3) 0(2) 8(2) 1(2) C(10) 28(4) 147(9) 19(3) 7(4) 7(3) 27(5) C(11) 18(4) 172(10) 26(4) 13(5) 1(3) 22(5) C(12) 22(3) 24(3) 25(3) 1(2) 6(2) 0(2) C(13) 23(4) 126(8) 19(3) 12(4) 4(3) 1(4) C(14) 16(3) 113(7) 23(3) 16(4) 1(3) 6(4) C(15) 28(3) 41(4) 20(3) 2(3) 4(2) 1(3) C(16) 41(5) 127(9) 31(4) 5(5) 5(3) 19(5) C(17) 37(4) 101(7) 48(5) 13(5) 7(4) 19(5) C(18) 60(5) 64(6) 55(5) 15(4) 1(4) 4(4) C(19) 49(5) 69(6) 63(6) 9(5) 9(4) 10(4) C(20) 47(5) 85(7) 87(7) 23(6) 20(5) 8(5) N(3) 58(6) 40(5) 67(6) 8(4) 14(4) 8(4) C(23) 67(8) 59(7) 76(8) 1(6) 25(6) 8(6) C(22) 52(8) 69(9) 180(17) 25(10) 7(9) 5(7) C(21) 116(12) 75(9) 97(11) 1(8) 0(9) 36(9) 45

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Single-Crystal-to-Single-Crystal Transformation of an Anion Exchangeable

More information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases Jingming Zhang, a Haohan Wu, a Thomas J. Emge, a and Jing Li* a a Department of Chemistry and Chemical Biology,

More information

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage SUPPORTING INFORMATION Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage Chi Yang, a Ushasree Kaipa, a Qian Zhang Mather,

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-cinnamyl-chiral alcohol Lab ID: 12040 User:

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-furan-enzymatic alcohol Lab ID: 12042 User:

More information

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin Page S16 Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin Tarek Sammakia,* Deidre M. Johns, Ganghyeok Kim, and Martin

More information

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center Supporting Information Connie C. Lu and Jonas C. Peters* Division of Chemistry and

More information

Supporting Information. Table of Contents

Supporting Information. Table of Contents Supporting Information Selective Anion Exchange and Tunable Luminescent Behaviors of Metal-Organic Framework Based Supramolecular Isomers Biplab Manna, Shweta Singh, Avishek Karmakar, Aamod V.Desai and

More information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information Experimental Supporting Information for Experimental and DFT Studies Explain Solvent Control of C-H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of eutral and Cationic Heterocycles

More information

Supplementary Information

Supplementary Information Site-Selective Cyclometalation of a Metal-Organic Framework Phuong V. Dau, Min Kim, and Seth M. Cohen* Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive,

More information

Supporting Information. for

Supporting Information. for Supporting Information for "Inverse-Electron-Demand" Ligand Substitution in Palladium(0) Olefin Complexes Shannon S. Stahl,* Joseph L. Thorman, Namal de Silva, Ilia A. Guzei, and Robert W. Clark Department

More information

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Supplementary Information Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Galyna Dubinina, Hideki Furutachi, and David A. Vicic * Department of Chemistry, University of Hawaii,

More information

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion Supporting Information for Cu(I)-MOF: naked-eye colorimetric sensor for humidity and formaldehyde in single-crystal-to-single-crystal fashion Yang Yu, Xiao-Meng Zhang, Jian-Ping Ma, Qi-Kui Liu, Peng Wang,

More information

Electronic Supplementary Information. Pd(diimine)Cl 2 Embedded Heterometallic Compounds with Porous Structures as Efficient Heterogeneous Catalysts

Electronic Supplementary Information. Pd(diimine)Cl 2 Embedded Heterometallic Compounds with Porous Structures as Efficient Heterogeneous Catalysts Electronic Supplementary Information Pd(diimine)Cl 2 Embedded Heterometallic Compounds with Porous Structures as Efficient Heterogeneous Catalysts Sheng-Li Huang, Ai-Quan Jia and Guo-Xin Jin* Experimental

More information

Structure Report for J. Reibenspies

Structure Report for J. Reibenspies X-ray Diffraction Laboratory Center for Chemical Characterization and Analysis Department of Chemistry Texas A & M University Structure Report for J. Reibenspies Project Name: Sucrose Date: January 29,

More information

A supramoleculear self-assembled flexible open framework based on coordination honeycomb layers possessing octahedral and tetrahedral Co II geometries

A supramoleculear self-assembled flexible open framework based on coordination honeycomb layers possessing octahedral and tetrahedral Co II geometries Supporting Information A supramoleculear self-assembled flexible open framework based on coordination honeycomb layers possessing octahedral and tetrahedral Co II geometries Yang Zou,* a Yuanyuan Li, a

More information

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene Gaurav Bhalla, Xiang Yang Liu, Jonas Oxgaard, William A. Goddard, III, Roy A. Periana* Loker Hydrocarbon

More information

Table of Contents. Section S1. Full Synthetic Procedures of ZIF-1 to ZIF-12. Section S3. Experimental and Simulated PXRD Patterns

Table of Contents. Section S1. Full Synthetic Procedures of ZIF-1 to ZIF-12. Section S3. Experimental and Simulated PXRD Patterns Table of Contents Section S1. Full Synthetic Procedures of ZIF-1 to ZIF-12 Section S2. X-ray Crystallography of ZIF-1 to ZIF-12 Section S3. Experimental and Simulated PXRD Patterns Section S4. Chemical

More information

Copper Mediated Fluorination of Aryl Iodides

Copper Mediated Fluorination of Aryl Iodides Copper Mediated Fluorination of Aryl Iodides Patrick S. Fier and John F. Hartwig* Department of Chemistry, University of California, Berkeley, California 94720, United States. Supporting Information Table

More information

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J.

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J. Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically Crowded (C 5 Me 5 ) 3 M Complexes Thomas J. Mueller, Joseph W. Ziller, and William J. Evans * Department of Chemistry, University

More information

Selective Binding and Removal of Organic Molecules in a Flexible Polymeric Material with Stretchable Metallosalen Chains

Selective Binding and Removal of Organic Molecules in a Flexible Polymeric Material with Stretchable Metallosalen Chains Selective Binding and Removal of Organic Molecules in a Flexible Polymeric Material with Stretchable Metallosalen Chains Gao Li, Chengfeng Zhu, Xiaobing Xi and Yong Cui* School of Chemistry and Chemical

More information

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Emmanuelle Despagnet-Ayoub, Michael K. Takase, Jay A. Labinger and John E. Bercaw Contents 1. Experimental

More information

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes Ashley Carter, Alexander Mason, Michael A. Baker, Donald G. Bettler, Angelo Changas, Colin D. McMillen,

More information

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence APPENDIX E Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence Temperature Designation CCDC Page 100 K MLC18 761599 E2 200 K MLC17 762705 E17 300 K MLC19 763335 E31 E2 CALIFORNIA INSTITUTE

More information

(Supporting Information: 47 pages including this page) Pradip Pachfule, Chandan Dey, Kumar Vanka and Rahul Banerjee*

(Supporting Information: 47 pages including this page) Pradip Pachfule, Chandan Dey, Kumar Vanka and Rahul Banerjee* Structural Diversity in Fluorinated Metal Organic Frameworks (F-MOFs) Composed of Divalent Transition Metals, 1,10-Phenanthroline and Fluorinated Carboxylic Acid (Supporting Information: 47 pages including

More information

Stereoselective Synthesis of (-) Acanthoic Acid

Stereoselective Synthesis of (-) Acanthoic Acid 1 Stereoselective Synthesis of (-) Acanthoic Acid Taotao Ling, Bryan A. Kramer, Michael A. Palladino, and Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of California, San

More information

Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II)

Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II) Asian Journal of Chemistry Vol. 20, No. 8 (2008), 5834-5838 Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II) HAMID GLCHUBIAN Department of Chemistry, Mazandaran University, P..

More information

Supporting Information Strong Luminescent Copper(I)-halide Coordination Polymers and Dinuclear Complexes with Thioacetamide and N,N-donor ligands

Supporting Information Strong Luminescent Copper(I)-halide Coordination Polymers and Dinuclear Complexes with Thioacetamide and N,N-donor ligands Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2016 Supporting Information Strong Luminescent Copper(I)-halide Coordination Polymers and Dinuclear

More information

Selective total encapsulation of the sulfate anion by neutral nano-jars

Selective total encapsulation of the sulfate anion by neutral nano-jars Supporting Information for Selective total encapsulation of the sulfate anion by neutral nano-jars Isurika R. Fernando, Stuart A. Surmann, Alexander A. Urech, Alexander M. Poulsen and Gellert Mezei* Department

More information

Scandium and Yttrium Metallocene Borohydride Complexes: Comparisons of (BH 4 ) 1 vs (BPh 4 ) 1 Coordination and Reactivity

Scandium and Yttrium Metallocene Borohydride Complexes: Comparisons of (BH 4 ) 1 vs (BPh 4 ) 1 Coordination and Reactivity Scandium and Yttrium Metallocene Borohydride Complexes: Comparisons of (BH 4 ) 1 vs (BPh 4 ) 1 Coordination and Reactivity Selvan Demir, Nathan A. Siladke, Joseph W. Ziller, and William J. Evans * Department

More information

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information Cyanide-bridged tetradecanuclear Ru II 3M II 11 clusters (M II = Zn II and Cu II ) based on the high connectivity building block [Ru 3 (HAT)(CN) 12 ] 6+ : structural and photophysical properties Juan Manuel

More information

Reversible dioxygen binding on asymmetric dinuclear rhodium centres

Reversible dioxygen binding on asymmetric dinuclear rhodium centres Electronic Supporting Information for Reversible dioxygen binding on asymmetric dinuclear rhodium centres Takayuki Nakajima,* Miyuki Sakamoto, Sachi Kurai, Bunsho Kure, Tomoaki Tanase* Department of Chemistry,

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY APPENDIX F Crystallographic Data for TBA Tb(DO2A)(F-DPA) CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY Date 11 January 2010 Crystal Structure Analysis of: MLC23

More information

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Electronic supplementary information Strategy to Enhance Solid-State Fluorescence and

More information

Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N

Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N Supporting information for: Crystallographic characterization of the geometry changes upon electron loss from 2-tertbutyl-3-aryl-2,3-diazabicyclo[2.2.2]octanes Stephen F. Nelsen, Asgeir E. Konradsson,

More information

Supporting Information

Supporting Information Supporting Information Methanetrisamidines in Coordination Chemistry - Syntheses, Structures and CH-NH Tautomerism Benjamin Gutschank, Stephan Schulz,* Dieter Bläser and Christoph Wölper Crystallographic

More information

The CB[n] Family: Prime Components for Self-Sorting Systems Supporting Information

The CB[n] Family: Prime Components for Self-Sorting Systems Supporting Information The CB[n] Family: Prime Components for Self-Sorting Systems Supporting Information by Simin Liu, Christian Ruspic, Pritam Mukhopadhyay,Sriparna Chakrabarti, Peter Y. Zavalij, and Lyle Isaacs* Department

More information

Thermochemistry of Paddle Wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1

Thermochemistry of Paddle Wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1 Supporting Information for Thermochemistry of Paddle Wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1 Manas K Bhunia, James T. Hughes, James C. Fettinger and Alexandra Navrotsky*, Peter A Rock Thermochemistry Laboratory,

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Crystal-to-Crystal Transformation between Three Cu(I) Coordination Polymers and Structural Evidence for Luminescence Thermochromism Tae Ho

More information

Supporting Information for the Article Entitled

Supporting Information for the Article Entitled Supporting Information for the Article Entitled Catalytic Production of Isothiocyanates via a Mo(II) / Mo(IV) Cycle for the Soft Sulfur Oxidation of Isonitriles authored by Wesley S. Farrell, Peter Y.

More information

A Third Generation Breathing MOF with Selective, Stepwise, Reversible and Hysteretic Adsorption properties

A Third Generation Breathing MOF with Selective, Stepwise, Reversible and Hysteretic Adsorption properties Supporting information for A Third Generation Breathing MOF with Selective, Stepwise, Reversible and Hysteretic Adsorption properties Suresh Sanda, Srinivasulu Parshamoni and SanjitKonar* Department of

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 A rare case of a dye co-crystal showing better dyeing performance Hui-Fen Qian, Yin-Ge Wang,

More information

Supporting Information

Supporting Information Submitted to Cryst. Growth Des. Version 1 of August 22, 2007 Supporting Information Engineering Hydrogen-Bonded Molecular Crystals Built from 1,3,5-Substituted Derivatives of Benzene: 6,6',6''-(1,3,5-Phenylene)tris-1,3,5-triazine-2,4-diamines

More information

metal-organic compounds

metal-organic compounds metal-organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 = 86.130 (2) = 81.155 (2) = 76.289 (3) V = 699.69 (4) Å 3 Z =2 Mo K radiation = 1.58 mm 1 T = 293 (2) K

More information

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage Kapil S. Lokare,* a Robert J. Nielsen, *b Muhammed Yousufuddin, c William A. Goddard III, b and Roy A. Periana*,a a Scripps

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Information (ESI) S1 Experimental Section: Materials and methods: All commercially available chemicals were used as supplied without further purification. The Q[5] was synthesized

More information

Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide. Ka-Cheong Lau, Richard F. Jordan*

Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide. Ka-Cheong Lau, Richard F. Jordan* Supporting Information for: Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide Ka-Cheong Lau, Richard F. Jordan* Department of Chemistry, The University of Chicago, 5735 South Ellis

More information

Reversible uptake of HgCl 2 in a porous coordination polymer based on the dual functions of carboxylate and thioether

Reversible uptake of HgCl 2 in a porous coordination polymer based on the dual functions of carboxylate and thioether Supplementary Information Reversible uptake of HgCl 2 in a porous coordination polymer based on the dual functions of carboxylate and thioether Xiao-Ping Zhou, a Zhengtao Xu,*,a Matthias Zeller, b Allen

More information

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Kang Yuan, Goonay Yousefalizadeh, Felix Saraci, Tai Peng, Igor Kozin, Kevin G. Stamplecoskie, Suning Wang*

More information

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes Ruth Castro-Rodrigo, Sumit Chakraborty, Lloyd Munjanja, William W. Brennessel, and William D. Jones* Department

More information

Supporting Information. for. Angew. Chem. Int. Ed Wiley-VCH 2004

Supporting Information. for. Angew. Chem. Int. Ed Wiley-VCH 2004 Supporting Information for Angew. Chem. Int. Ed. 246736 Wiley-VCH 24 69451 Weinheim, Germany 1 Challenges in Engineering Spin Crossover. Structures and Magnetic Properties of six Alcohol Solvates of Iron(II)

More information

Z =8 Mo K radiation = 0.35 mm 1. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Z =8 Mo K radiation = 0.35 mm 1. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 4-Amino-3-(4-pyridyl)-1,2,4-triazole- 5(4H)-thione Fang Zou, Wei-Min Xuan, Xue-Ming Fang and Hui Zhang* State

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Bridging-Ligand-Substitution Strategy for the Preparation of Metal-Organic Polyhedra Jian-Rong Li and Hong-Cai Zhou Department of Chemistry, Texas A&M University, College Station,

More information

Supporting Information. Justin M. Salvant, Anne V. Edwards, Daniel Z. Kurek and Ryan E. Looper*

Supporting Information. Justin M. Salvant, Anne V. Edwards, Daniel Z. Kurek and Ryan E. Looper* Supporting Information Regioselective base-mediated cyclizations of mono-n-acylpropargylguanadines. Justin M. Salvant, Anne V. Edwards, Daniel Z. Kurek and Ryan E. Looper* * Department of Chemistry, University

More information

Understanding the relationship between crystal structure, plasticity and compaction behavior of theophylline, methyl gallate and their 1:1 cocrystal

Understanding the relationship between crystal structure, plasticity and compaction behavior of theophylline, methyl gallate and their 1:1 cocrystal Understanding the relationship between crystal structure, plasticity and compaction behavior of theophylline, methyl gallate and their 1:1 cocrystal Sayantan Chattoraj, Limin Shi and Changquan Calvin Sun

More information

Rare double spin canting antiferromagnetic behaviours in a. [Co 24 ] cluster

Rare double spin canting antiferromagnetic behaviours in a. [Co 24 ] cluster Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Rare double spin canting antiferromagnetic behaviours in a [Co 24 ] cluster Guang-Ming Liang, Qing-Ling

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany A New Melt Approach to the Synthesis of catena- Phosphorus Dications to Access the First Derivatives of 2+ ** [P 6 Ph 4 R 4 ] Jan J. Weigand*,

More information

Copyright WILEY-VCH Verlag GmbH, D Weinheim, 2000 Angew. Chem Supporting Information For Binding Cesium Ion with Nucleoside Pentamers.

Copyright WILEY-VCH Verlag GmbH, D Weinheim, 2000 Angew. Chem Supporting Information For Binding Cesium Ion with Nucleoside Pentamers. Copyright WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000 Angew. Chem. 2000 Supporting Information For Binding Cesium Ion with Nucleoside Pentamers. Templated Self-Assembly of an Isoguanosine Decamer.**

More information

White Phosphorus is Air-Stable Within a Self-Assembled Tetrahedral Capsule

White Phosphorus is Air-Stable Within a Self-Assembled Tetrahedral Capsule www.sciencemag.org/cgi/content/full/324/5935/1697/dc1 Supporting Online Material for White Phosphorus is Air-Stable Within a Self-Assembled Tetrahedral Capsule Prasenjit Mal, Boris Breiner, Kari Rissanen,

More information

Supporting Information

Supporting Information Supporting Information A Sn IV -Porphyrin-Based Metal-Organic Framework for the Selective Photo-Oxygenation of Phenol and Sulfides Ming-Hua Xie, Xiu-Li Yang, Chao Zou and Chuan-De Wu* Department of Chemistry,

More information

Impeller-like dodecameric water clusters in metal organic nanotubes

Impeller-like dodecameric water clusters in metal organic nanotubes Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Impeller-like dodecameric water clusters in metal organic

More information

Manganese-Calcium Clusters Supported by Calixarenes

Manganese-Calcium Clusters Supported by Calixarenes Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Manganese-Calcium Clusters Supported by Calixarenes Rebecca O. Fuller, George A. Koutsantonis*,

More information

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex Mechanistic insights on the controlled switch from oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex Emmanuelle Despagnet-Ayoub, *,a,b Michael K. Takase, c Lawrence M.

More information

4.1 1-acryloyl-3-methyl-2,6-bis(3,4,5-trimethoxy phenyl)piperidine-4-one (1)

4.1 1-acryloyl-3-methyl-2,6-bis(3,4,5-trimethoxy phenyl)piperidine-4-one (1) 4 Piperidine derivatives 4.1 1-acryloyl-3-methyl-2,6-bis(3,4,5-trimethoxy phenyl)piperidine-4-one (1) 4.1.1 Synthesis To a well stirred solution of 3-methyl-2,6-bis(3,4,5-trimethoxyphenyl)piperi dine-4-one

More information

Microporous Manganese Formate: A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties

Microporous Manganese Formate: A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties Supporting Information Microporous Manganese Formate: A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties Danil N. Dybtsev, Hyungphil Chun,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 Supporting Information Rare metal-ion metathesis of tetrahedral Zn(II) core of a noncentrosymmetric

More information

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK1360707 Vassil I. Elitzin, Kimberly A. Harvey, Hyunjung Kim, Matthew Salmons, Matthew J. Sharp*, Elie

More information

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions Wing-Leung Wong, Kam-Piu Ho, Lawrence Yoon Suk Lee, Kin-Ming Lam, Zhong-Yuan Zhou, Tak

More information

Supplementary Figure S1 a, wireframe view of the crystal structure of compound 11. b, view of the pyridinium sites. c, crystal packing of compound

Supplementary Figure S1 a, wireframe view of the crystal structure of compound 11. b, view of the pyridinium sites. c, crystal packing of compound a b c Supplementary Figure S1 a, wireframe view of the crystal structure of compound 11. b, view of the pyridinium sites. c, crystal packing of compound 11. 1 a b c Supplementary Figure S2 a, wireframe

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supporting Information Over or under: Hydride attack at the metal versus the coordinated

More information

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or Ethylene Trimerization Catalysts Based on Chromium Complexes with a Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or ortho-thiomethoxy Substituents: Well Defined Catalyst Precursors and

More information

Supporting Information for

Supporting Information for Supporting Information for Tris(carbene)borate ligands featuring imidazole-2-ylidene, benzimidazol-2-ylidene and 1,3,4-triazol-2-ylidene donors. Evaluation of donor properties in four-coordinate {NiNO}

More information

Hydrophobic Ionic Liquids with Strongly Coordinating Anions

Hydrophobic Ionic Liquids with Strongly Coordinating Anions Supporting material Hydrophobic Ionic Liquids with Strongly Coordinating Anions Hasan Mehdi, Koen Binnemans*, Kristof Van Hecke, Luc Van Meervelt, Peter Nockemann* Experimental details: General techniques.

More information

An Unusual High Thermal Stable 2D 3D Polycatenated. Fe(II) Metal-Organic Framework Showing. Guest-Dependent Spin-Crossover Behavior and High

An Unusual High Thermal Stable 2D 3D Polycatenated. Fe(II) Metal-Organic Framework Showing. Guest-Dependent Spin-Crossover Behavior and High Supporting Information for Crystal Growth & Design An Unusual High Thermal Stable 2D 3D Polycatenated Fe(II) Metal-Organic Framework Showing Guest-Dependent Spin-Crossover Behavior and High Spin-Transition

More information

Nerve Agent Surrogate

Nerve Agent Surrogate Supporting Information A Porous Metal-Organic Replica of α-pbo 2 for Capture of Nerve Agent Surrogate Ruqiang Zou, Ruiqin Zhong, Songbai Han, Hongwu Xu, Anthony K. Burrell, Neil Henson, Jonathan L. Cape,

More information

Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O 2

Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O 2 Electronic Supplementary Information for: Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O - and H O Includes Conversion of a Peroxomanganese(III) Adduct to a Bis(µ- O)dimanganese(III,IV)

More information

Controllable Growth of Bulk Cubic-Phase CH 3 NH 3 PbI 3 Single Crystal with Exciting Room-Temperature Stability

Controllable Growth of Bulk Cubic-Phase CH 3 NH 3 PbI 3 Single Crystal with Exciting Room-Temperature Stability Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Controllable Growth of Bulk Cubic-Phase CH 3 NH 3 PbI

More information

A Clipped [3]Rotaxane Derived From Bis-nor-seco-Cucurbit[10]uril

A Clipped [3]Rotaxane Derived From Bis-nor-seco-Cucurbit[10]uril A Clipped [3]Rotaxane Derived From Bis-nor-seco-Cucurbit[10]uril Supplementary Information by James B. Wittenberg, Matthew G. Costales, Peter Y. Zavalij, and Lyle Isaacs* Department of Chemistry and Biochemistry,

More information

Supporting Information

Supporting Information Supporting Information The Heptacyanotungstate(IV) Anion: A New 5 d Transition-Metal Member of the Rare Heptacyanometallate Family of Anions Francisco J. Birk, Dawid Pinkowicz, and Kim R. Dunbar* anie_201602949_sm_miscellaneous_information.pdf

More information

Department of Chemistry, Tianjin University, Tianjin , P. R. China Tel:

Department of Chemistry, Tianjin University, Tianjin , P. R. China   Tel: Electronic Supplementary Information Analysis of factors governing the formation of single-stranded helical coordination polymers from a macrocyclic metalloligand and Ca 2+, Mn 2+, Fe 2+, Co 2+, Ni 2+,

More information

metal-organic compounds

metal-organic compounds metal-organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Poly[tetra-l-cyanido-dipyridinecadmium(II)zinc(II)] Sheng Li,* Kun Tang and Fu-Li Zhang College of Medicine,

More information

in a Porous Metal-Organic Framework [Zn 2 (BPnDC) 2 (bpy)]

in a Porous Metal-Organic Framework [Zn 2 (BPnDC) 2 (bpy)] Supporting Information Stepwise and Hysteretic Sorption N 2, O 2, CO 2, and H 2 Gases in a Porous Metal-Organic Framework [Zn 2 (BPnDC) 2 (bpy)] Hye Jeong Park and Myunghyun Paik Suh Contribution from

More information

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE 139 CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE 6.1 INTRODUCTION This chapter describes the crystal and molecular structure of a dehydroacetic acid substituted

More information

b = (13) Å c = (13) Å = (2) V = (19) Å 3 Z =2 Data collection Refinement

b = (13) Å c = (13) Å = (2) V = (19) Å 3 Z =2 Data collection Refinement organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 b = 12.4861 (13) Å c = 12.9683 (13) Å = 90.748 (2) V = 1051.10 (19) Å 3 Z =2 Mo K radiation = 3.87 mm 1 T = 193

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Carbene Activation of P 4 and Subsequent Derivatization Jason D. Masuda, Wolfgang W. Schoeller, Bruno Donnadieu, and Guy Bertrand * [*] Dr.

More information

1. General Experiments... S2. 2. Synthesis and Experiments... S2 S3. 3. X-Ray Crystal Structures... S4 S8

1. General Experiments... S2. 2. Synthesis and Experiments... S2 S3. 3. X-Ray Crystal Structures... S4 S8 Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Gate-Opening upon CO 2 Adsorption on a Metal Organic

More information

= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 1-(3-Amino-1H-inden-2-yl)ethanone Dong-Yue Hu and Zhi-Rong Qu* Ordered Matter Science Research Center, College

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFRMATIN Activating efficient phosphorescence from purely-organic materials by crystal design nas Bolton 1, Kangwon Lee 1, Hyong-Jun Kim 1, Kevin Y. Lin 2, Jinsang Kim 1,2,3,4 1 Department

More information

Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement

Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 N 0 -(3,4-Dimethylbenzylidene)furan-2- carbohydrazide Yu-Feng Li a and Fang-Fang Jian b * a Microscale Science

More information

Supporting Information

Supporting Information Supporting Information Tris(allyl)indium Compounds: Synthesis and Structural Characterization Ilja Peckermann, Gerhard Raabe, Thomas P. Spaniol and Jun Okuda* Synthesis and characterization Figure S1:

More information

Supplementary Information

Supplementary Information Supplementary Information Tuning the Luminescence of Metal-Organic Frameworks for Detection of Energetic Heterocyclic Compounds Yuexin Guo, Xiao Feng,*, Tianyu Han, Shan Wang, Zhengguo Lin, Yuping Dong,

More information

metal-organic compounds

metal-organic compounds metal-organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Dichloridotris(trimethylphosphine)- nickel(ii) Ruixia Cao, Qibao Wang and Hongjian Sun* School of Chemistry

More information

,

, 2013. 54, 6. 1115 1120 UDC 548.737:547.12 CHARACTERIZATION AND CRYSTAL STRUCTURES OF SOLVATED N -(4-HYDROXY-3-NITROBENZYLIDENE)-3-METHYLBENZOHYDRAZIDE AND N -(4-DIMETHYLAMINOBENZYLIDENE)-3-METHYLBENZOHYDRAZIDE

More information

the multiple helices

the multiple helices Supporting Information A 3D porous metal-organic framework containing nanotubes based on the multiple helices Lei Hou,* Li-Na Jia, Wen-Juan Shi, Li-Yun Du, Jiang Li, Yao-Yu Wang* and Qi-Zhen Shi Key Laboratory

More information

Spin Transition and Structural Transformation in a

Spin Transition and Structural Transformation in a Supporting Information for Spin Transition and Structural Transformation in a Mononuclear Cobalt(II) Complex Ying Guo, Xiu-Long Yang, Rong-Jia Wei, Lan-Sun Zheng, and Jun Tao* State Key Laboratory of Physical

More information

Decomposition of Ruthenium Olefin Metathesis. Catalysts

Decomposition of Ruthenium Olefin Metathesis. Catalysts Supporting Information for: Decomposition of Ruthenium Olefin Metathesis Catalysts Soon Hyeok Hong, Anna G. Wenzel, Tina T. Salguero, Michael W. Day and Robert H. Grubbs* The Arnold and Mabel Beckman Laboratory

More information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008 Supporting Information pyright Wiley-VCH Verlag GmbH &. KGaA, 69451 Weinheim, 2008 Time-Evolving Self-rganization and Autonomous Structural Adaptation of balt(ii) rganic Framework Materials with Nets scu

More information

Supporting Information. Integration of accessible secondary metal sites into MOFs for H 2 S removal

Supporting Information. Integration of accessible secondary metal sites into MOFs for H 2 S removal Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is the Partner Organisations 2014 Supporting Information Integration of accessible secondary metal sites into MOFs

More information

1,4-Dihydropyridyl Complexes of Magnesium: Synthesis by Pyridine. Insertion into the Magnesium-Silicon Bond of Triphenylsilyls and

1,4-Dihydropyridyl Complexes of Magnesium: Synthesis by Pyridine. Insertion into the Magnesium-Silicon Bond of Triphenylsilyls and Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 Electronic Supporting Information 1,4-Dihydropyridyl Complexes of Magnesium: Synthesis

More information

Supporting Information

Supporting Information S1 Submitted to J. Am. Chem. Soc. Supporting Information A porous coordination copolymer with over 5000 m 2 /g BET surface area Kyoungmoo Koh, Antek G. Wong-Foy, and Adam J. Matzger* Department of Chemistry,

More information