Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Size: px
Start display at page:

Download "Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes"

Transcription

1 Supplementary Information Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Galyna Dubinina, Hideki Furutachi, and David A. Vicic * Department of Chemistry, University of Hawaii, 2545 McCarthy Mall, Honolulu, HI and the Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University Kakuma machi, Kanazawa General Considerations. All manipulations were performed using standard Schlenk and highvacuum techniques 1 or in a nitrogen-filled dry box, unless otherwise noted. Solvents were distilled from Na/benzophenone or CaH 2. All reagents were used as received from commercial vendors unless otherwise noted. Aluminum oxide (activated, neutral, Brockmann I, ~150 mesh) and Celite were dried at 200 C under vacuum for two days prior to use. 1 H NMR spectra were recorded at ambient temperature (unless otherwise noted) on a Varian Oxford 300 MHz spectrometer and referenced to residual proton solvent peaks. 31 P spectra were recorded on the Varian Oxford spectrometer operating at 121 MHz and referenced to an 85 % phosphoric acid external standard set to 0 ppm. 19 F spectra were recorded on the Varian Oxford spectrometer operating at 282 MHz and were referenced to CFCl 3 set to zero. A Rigaku SCXMini diffractometer was used for X-ray structure determinations. Preparation of (IPr-TMS)CuCF 3 (2): To a solution of (IPr)CuOtBu (1) (0.525 g, 1.0 mmol) in THF (7 ml) was added 295 ul of CF 3 Si(CH 3 ) 3 (2.0 mmol) and the resulting reaction mixture was stirred for 24 h at ambient temperature. The mixture was evaporated under reduced pressure to give a pale pink solid. NMR yield of 2:2b was quantitative (82:18 of 2:2b). Recrystallization from toluene/pentane gave 2 as a colorless solid. 1 H NMR (CD2Cl2): δ 0.02 (s, 9H, Si(CH 3 ) 3 ), 1.23 (d, J = 6.9 Hz, 12H, CH(CH 3 ) 2 ), 1.29 (d, J = 6.9 Hz, 12H, CH(CH 3 ) 2 ), 2.47 (hept., J = 6.9 Hz, 4H, CH(CH 3 ) 2 ), 7.15 (s, 1H), 7.3 (d, J = 7.1 Hz, 4H), 7.5 (m, 2H). 19 F NMR (C 6 D 6 ): (s). Found: C 62.90%, H 7.72%, N 4.78%, Calcd for C31H44CuF3N2Si: C 62.75%, H 7.47%, N 4.72%. S1

2 ppm (f1) Figure S1: 1 H NMR spectrum of 2 in CD 2 Cl S2

3 ppm (f1) 0-50 Figure S2: 19 F NMR spectrum of 2 in CD 2 Cl (SIiPr)CuCl: A suspension of [SIiPrH][BF 4 ] 2 (1.94 g, 8 mmol), t-buok (900 mg, 8 mmol), and CuCl (900 mg, 9.1 mmol) in 30 ml THF was stirred 20 h at room temperature then filtered through a pad of Celite that was flushed two times with 7 ml of THF. The filtrate was evaporated under high vacuum, and the white residue was washed with pentane and filtered. Yield 64 %. 1 H NMR (CD 2 Cl 2 ): δ 1.23 (d, J = 6.9 Hz, 12H), 3.48 (s, 4H), 4.34 (sept., J = 6.9 Hz, 2H). [(SIiPr)CuO-t-Bu] 2 (5): A suspension of (SIiPr)CuCl (2 g, 7.9 mmol) t-buok (886.5 mg, 7.9 mmol) in 30 ml THF was stirred 2h at room temperature then filtered through a pad of Celite and washed 2 times with 7 ml of THF. The filtrate was evaporated under high vacuum. The white residue was washed with pentane and filtered. Complex 5 is thermally unstable and decomposes at room temperature in ~2 hours. Storage for days at -30 C is possible, but typically 5 was used immediately for further reactions. Yield 69 %. 1 H NMR (THF-d 8 ): δ 1.19 (s, 9H), 1.30 (s broad, 12H), 3.55 (s broad, 4H), 4.63 (s broad, 2H). S3

4 ppm (f1) Figure S3: 1 H NMR spectrum of 5 in THF-d (SIiPr)CuCF 3 (6). A solution of (SIiPr)CuOtBu (500 mg, 1.72 mmol) and CF 3 Si(CH 3 ) 3 (0.379 ml, 2.58 mmol) in 15 ml THF was stirred for 20h at room temperature. The volatiles were then evaporated on a high vacuum line. The off-white oily residue was washed two times with 5 ml of pentane. The oily product crystallized at -24 o C as a white solid over the course of 12 h. Yield 91 %. 1 H NMR (C 6 D 6 ): δ 0.91 (d, J = 6.7 Hz, 12H), 2.65 (s, 4H), 4.07 (sept, J = 6.7 Hz, 2H). 19 F NMR (C 6 D 6 ): δ (s). S4

5 CD2Cl ppm (f1) Figure S4: 1 H NMR of of (SIiPr)CuCF 3 (6) in CD 2 Cl 2. S5

6 ppm (f1) Figure S5: 19 F NMR spectrum of (SIiPr)CuCF 3 in CD 2 Cl Procedures for the trifluoromethylations: THF Method A: A resealable NMR tube was charged with complex 5 (12 mg, 0.04 mmol), internal standard (5 ul), organic halide (0.2 mmol), Me 3 Si-CF 3 (20 ul, 0.13 mmol) and 1 ml THF and kept at room temperature under nitrogen. Yields were monitored by NMR spectroscopy. THF Method B: A resealable NMR tube was charged with complex 6 (11.5 mg, 0.04 mmol), internal standard (5 ul), organic halide (0.2 mmol) and 1 ml THF and kept at room temperature under nitrogen. Yields were monitored by NMR spectroscopy. DMF Method (Table 1 in text): (SIiPr)CuOtBu (73 mg, mmol), 2 eq. of CF 3 Si(CH 3 ) 3, std. (30 μl, 0.24 mmol) were dissolved in 6 ml DMF. 1 ml aliquots (0.042 mmol of the resulting solution were taken for each reaction and 5 eq. of corresponding RHal (0.21 mmol) was added. The solutions were stirred under N 2 at room temperature. S6

7 Table S1. Trifluoromethylations mediated by 5 and 6 in THF solvent. Yields were recorded after 112 h and measured by 19 F NMR relative to 1,3-dimethyl-2-fluorobenzene as an internal standard. Yields based on copper as the limiting reagent. S7

8 X-Ray data: Figure S1: Ortep diagram of 2. Ellipsoids shown at 50 %. All hydrogens omitted for clarity. S8

9 Table S2. Crystal data and structure refinement for compound 2. Identification code compound 2 Empirical formula C31 H44 Cu F3 N2 Si Formula weight Temperature Wavelength Crystal system, space group 193(2) K A monoclinic, P21/c Unit cell dimensions a = 10.86(15) A alpha = 90 deg. b = 14.76(5) A beta = 94.8(3) deg. c = 20.36(10) A gamma = 90 deg. Volume 3252(48) A^3 Z, Calculated density 4, Mg/m^3 Absorption coefficient mm^-1 F(000) 1256 Crystal size Theta range for data collection Limiting indices 0.50 x 0.40 x 0.10 mm 1.71 to deg. -14<=h<=14, -19<=k<=19, -26<=l<=26 Reflections collected / unique / 7834 [R(int) = ] Completeness to theta = % Max. and min. transmission and Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 7834 / 0 / 355 Goodness-of-fit on F^ Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Largest diff. peak and hole and e.a^-3 S9

10 Table S3. Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for compound 2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) Cu(1) 3432(1) 8761(1) 3021(1) 39(1) Si(2) 2015(1) 11834(1) 1226(1) 40(1) F(1) 2640(2) 6984(2) 3239(1) 98(1) F(2) 4571(2) 7090(2) 3309(1) 95(1) F(3) 3582(3) 7557(2) 4088(1) 109(1) N(1) 2753(2) 10184(1) 2030(1) 30(1) N(2) 3313(2) 10739(1) 2980(1) 35(1) C(1) 3612(3) 7561(2) 3437(1) 42(1) C(2) 3192(2) 9939(2) 2654(1) 33(1) C(3) 2600(2) 11131(2) 1962(1) 33(1) C(4) 2956(2) 11454(2) 2572(1) 37(1) C(5) 2599(2) 9564(2) 1477(1) 31(1) C(6) 3654(2) 9339(2) 1152(1) 33(1) C(7) 3453(2) 8826(2) 577(1) 40(1) C(8) 2283(3) 8552(2) 342(1) 48(1) C(9) 1274(3) 8749(2) 687(1) 48(1) C(10) 1407(2) 9256(2) 1270(1) 40(1) C(11) 4952(2) 9596(2) 1419(1) 36(1) C(12) 5627(3) 8756(2) 1720(2) 50(1) C(13) 5706(2) 10034(2) 898(1) 47(1) C(14) 318(2) 9418(2) 1687(2) 54(1) C(15) 308(3) 8705(3) 2225(2) 75(1) C(16) -941(3) 9435(3) 1282(2) 80(1) C(17) 3740(3) 10848(2) 3672(1) 41(1) C(18) 4971(3) 11087(2) 3835(1) 44(1) C(19) 5329(3) 11240(2) 4504(2) 59(1) C(20) 4486(4) 11144(2) 4974(2) 71(1) C(21) 3290(4) 10897(2) 4796(1) 67(1) C(22) 2857(3) 10749(2) 4137(1) 52(1) C(23) 1531(3) 10509(3) 3956(2) 67(1) C(24) 1181(5) 9606(3) 4264(2) 97(1) C(25) 639(4) 11267(3) 4141(3) 102(2) C(26) 5907(3) 11126(2) 3313(1) 47(1) C(27) 6931(3) 11834(2) 3447(2) 64(1) C(28) 6481(3) 10195(2) 3242(2) 66(1) C(29) 301(3) 11746(3) 1069(2) 76(1) C(30) 2754(4) 11522(2) 468(1) 65(1) C(31) 2421(3) 13017(2) 1475(1) 52(1) S10

11 Table S4. Bond lengths [A] and angles [deg] for compound 2. Cu(1)-C(2) 1.902(6) Cu(1)-C(1) 1.967(6) Si(2)-C(30) 1.856(9) Si(2)-C(31) 1.862(6) Si(2)-C(29) 1.87(3) Si(2)-C(3) 1.888(7) F(1)-C(1) 1.389(11) F(2)-C(1) 1.297(12) F(3)-C(1) 1.329(7) N(1)-C(2) 1.367(7) N(1)-C(3) 1.412(5) N(1)-C(5) 1.450(5) N(2)-C(2) 1.355(5) N(2)-C(4) 1.379(5) N(2)-C(17) 1.454(7) C(3)-C(4) 1.356(7) C(4)-H(4A) C(5)-C(10) 1.403(16) C(5)-C(6) 1.411(14) C(6)-C(7) 1.396(6) C(6)-C(11) 1.516(18) C(7)-C(8) 1.380(16) C(7)-H(7A) C(8)-C(9) 1.382(13) C(8)-H(8A) C(9)-C(10) 1.400(6) C(9)-H(9A) C(10)-C(14) 1.532(14) C(11)-C(13) 1.537(9) C(11)-C(12) 1.540(7) C(11)-H(11A) C(12)-H(12A) C(12)-H(12B) C(12)-H(12C) C(13)-H(13A) C(13)-H(13B) C(13)-H(13C) C(14)-C(15) 1.519(6) C(14)-C(16) 1.536(17) C(14)-H(14A) C(15)-H(15A) C(15)-H(15B) C(15)-H(15C) C(16)-H(16A) C(16)-H(16B) C(16)-H(16C) C(17)-C(18) 1.395(18) C(17)-C(22) 1.412(11) C(18)-C(19) 1.403(7) C(18)-C(26) 1.533(12) C(19)-C(20) 1.386(11) C(19)-H(19A) C(20)-C(21) 1.368(17) S11

12 C(20)-H(20A) C(21)-C(22) 1.401(8) C(21)-H(21A) C(22)-C(23) 1.498(19) C(23)-C(24) 1.534(7) C(23)-C(25) 1.547(10) C(23)-H(23A) C(24)-H(24A) C(24)-H(24B) C(24)-H(24C) C(25)-H(25A) C(25)-H(25B) C(25)-H(25C) C(26)-C(28) 1.521(7) C(26)-C(27) 1.533(12) C(26)-H(26A) C(27)-H(27A) C(27)-H(27B) C(27)-H(27C) C(28)-H(28A) C(28)-H(28B) C(28)-H(28C) C(29)-H(29A) C(29)-H(29B) C(29)-H(29C) C(30)-H(30A) C(30)-H(30B) C(30)-H(30C) C(31)-H(31A) C(31)-H(31B) C(31)-H(31C) C(2)-Cu(1)-C(1) (11) C(30)-Si(2)-C(31) 110.5(3) C(30)-Si(2)-C(29) 109.6(5) C(31)-Si(2)-C(29) 108.8(2) C(30)-Si(2)-C(3) 112.5(4) C(31)-Si(2)-C(3) 104.1(3) C(29)-Si(2)-C(3) 111.2(3) C(2)-N(1)-C(3) 112.5(2) C(2)-N(1)-C(5) 124.2(3) C(3)-N(1)-C(5) 122.9(3) C(2)-N(2)-C(4) 111.1(3) C(2)-N(2)-C(17) 125.5(2) C(4)-N(2)-C(17) 123.3(3) F(2)-C(1)-F(3) 106.6(3) F(2)-C(1)-F(1) 102.5(8) F(3)-C(1)-F(1) 101.8(4) F(2)-C(1)-Cu(1) 116.6(3) F(3)-C(1)-Cu(1) 115.1(2) F(1)-C(1)-Cu(1) 112.5(4) N(2)-C(2)-N(1) 103.7(3) N(2)-C(2)-Cu(1) 126.8(3) N(1)-C(2)-Cu(1) (17) C(4)-C(3)-N(1) 103.7(2) C(4)-C(3)-Si(2) 125.7(3) N(1)-C(3)-Si(2) 130.6(2) S12

13 C(3)-C(4)-N(2) 109.1(3) C(3)-C(4)-H(4A) N(2)-C(4)-H(4A) C(10)-C(5)-C(6) 123.2(7) C(10)-C(5)-N(1) 118.8(3) C(6)-C(5)-N(1) 117.9(5) C(7)-C(6)-C(5) 116.5(5) C(7)-C(6)-C(11) 120.8(3) C(5)-C(6)-C(11) 122.7(7) C(8)-C(7)-C(6) 121.6(4) C(8)-C(7)-H(7A) C(6)-C(7)-H(7A) C(7)-C(8)-C(9) 120.6(7) C(7)-C(8)-H(8A) C(9)-C(8)-H(8A) C(8)-C(9)-C(10) 120.9(5) C(8)-C(9)-H(9A) C(10)-C(9)-H(9A) C(9)-C(10)-C(5) 117.1(4) C(9)-C(10)-C(14) 121.6(5) C(5)-C(10)-C(14) 121.2(7) C(6)-C(11)-C(13) 113.0(6) C(6)-C(11)-C(12) 109.7(5) C(13)-C(11)-C(12) 110.5(6) C(6)-C(11)-H(11A) C(13)-C(11)-H(11A) C(12)-C(11)-H(11A) C(11)-C(12)-H(12A) C(11)-C(12)-H(12B) H(12A)-C(12)-H(12B) C(11)-C(12)-H(12C) H(12A)-C(12)-H(12C) H(12B)-C(12)-H(12C) C(11)-C(13)-H(13A) C(11)-C(13)-H(13B) H(13A)-C(13)-H(13B) C(11)-C(13)-H(13C) H(13A)-C(13)-H(13C) H(13B)-C(13)-H(13C) C(15)-C(14)-C(10) 110.2(4) C(15)-C(14)-C(16) 109.7(4) C(10)-C(14)-C(16) 113.5(8) C(15)-C(14)-H(14A) C(10)-C(14)-H(14A) C(16)-C(14)-H(14A) C(14)-C(15)-H(15A) C(14)-C(15)-H(15B) H(15A)-C(15)-H(15B) C(14)-C(15)-H(15C) H(15A)-C(15)-H(15C) H(15B)-C(15)-H(15C) C(14)-C(16)-H(16A) C(14)-C(16)-H(16B) H(16A)-C(16)-H(16B) C(14)-C(16)-H(16C) H(16A)-C(16)-H(16C) H(16B)-C(16)-H(16C) S13

14 C(18)-C(17)-C(22) 123.9(6) C(18)-C(17)-N(2) 118.6(3) C(22)-C(17)-N(2) 117.4(7) C(17)-C(18)-C(19) 117.0(4) C(17)-C(18)-C(26) 121.5(6) C(19)-C(18)-C(26) 121.4(7) C(20)-C(19)-C(18) 120.6(7) C(20)-C(19)-H(19A) C(18)-C(19)-H(19A) C(21)-C(20)-C(19) 120.8(7) C(21)-C(20)-H(20A) C(19)-C(20)-H(20A) C(20)-C(21)-C(22) 121.9(4) C(20)-C(21)-H(21A) C(22)-C(21)-H(21A) C(21)-C(22)-C(17) 115.7(7) C(21)-C(22)-C(23) 120.8(4) C(17)-C(22)-C(23) 123.5(6) C(22)-C(23)-C(24) 111.8(4) C(22)-C(23)-C(25) 112.2(7) C(24)-C(23)-C(25) 110.3(6) C(22)-C(23)-H(23A) C(24)-C(23)-H(23A) C(25)-C(23)-H(23A) C(23)-C(24)-H(24A) C(23)-C(24)-H(24B) H(24A)-C(24)-H(24B) C(23)-C(24)-H(24C) H(24A)-C(24)-H(24C) H(24B)-C(24)-H(24C) C(23)-C(25)-H(25A) C(23)-C(25)-H(25B) H(25A)-C(25)-H(25B) C(23)-C(25)-H(25C) H(25A)-C(25)-H(25C) H(25B)-C(25)-H(25C) C(28)-C(26)-C(27) 109.6(7) C(28)-C(26)-C(18) 109.4(4) C(27)-C(26)-C(18) 114.6(6) C(28)-C(26)-H(26A) C(27)-C(26)-H(26A) C(18)-C(26)-H(26A) C(26)-C(27)-H(27A) C(26)-C(27)-H(27B) H(27A)-C(27)-H(27B) C(26)-C(27)-H(27C) H(27A)-C(27)-H(27C) H(27B)-C(27)-H(27C) C(26)-C(28)-H(28A) C(26)-C(28)-H(28B) H(28A)-C(28)-H(28B) C(26)-C(28)-H(28C) H(28A)-C(28)-H(28C) H(28B)-C(28)-H(28C) Si(2)-C(29)-H(29A) Si(2)-C(29)-H(29B) H(29A)-C(29)-H(29B) S14

15 Si(2)-C(29)-H(29C) H(29A)-C(29)-H(29C) H(29B)-C(29)-H(29C) Si(2)-C(30)-H(30A) Si(2)-C(30)-H(30B) H(30A)-C(30)-H(30B) Si(2)-C(30)-H(30C) H(30A)-C(30)-H(30C) H(30B)-C(30)-H(30C) Si(2)-C(31)-H(31A) Si(2)-C(31)-H(31B) H(31A)-C(31)-H(31B) Si(2)-C(31)-H(31C) H(31A)-C(31)-H(31C) H(31B)-C(31)-H(31C) Symmetry transformations used to generate equivalent atoms: S15

16 Table S5. Anisotropic displacement parameters (A^2 x 10^3) for compound 2. The anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 U h k a* b* U12 ] U11 U22 U33 U23 U13 U12 Cu(1) 46(1) 36(1) 35(1) 4(1) 5(1) 0(1) Si(2) 45(1) 41(1) 34(1) 3(1) -2(1) 7(1) F(1) 91(2) 72(1) 126(2) 27(1) -17(1) -30(1) F(2) 82(2) 72(1) 132(2) 35(1) 25(1) 17(1) F(3) 202(3) 71(1) 55(1) 18(1) 16(2) -8(2) N(1) 27(1) 35(1) 29(1) -1(1) 3(1) -1(1) N(2) 41(1) 36(1) 27(1) -1(1) 3(1) 3(1) C(1) 53(2) 35(1) 40(1) 4(1) 9(1) -6(1) C(2) 32(1) 39(1) 28(1) 0(1) 5(1) -2(1) C(3) 30(1) 37(1) 33(1) -1(1) 3(1) 1(1) C(4) 43(1) 34(1) 33(1) -2(1) 1(1) 3(1) C(5) 31(1) 34(1) 29(1) -1(1) 2(1) -1(1) C(6) 34(1) 35(1) 30(1) 1(1) 4(1) -2(1) C(7) 44(1) 43(1) 34(1) -2(1) 8(1) 1(1) C(8) 55(2) 51(2) 36(1) -11(1) -3(1) -5(1) C(9) 41(1) 56(2) 46(2) -6(1) -7(1) -11(1) C(10) 32(1) 46(1) 41(1) -3(1) 0(1) -5(1) C(11) 29(1) 45(1) 35(1) -2(1) 5(1) 0(1) C(12) 37(1) 58(2) 53(2) 11(1) -1(1) 6(1) C(13) 38(1) 55(2) 48(2) 6(1) 11(1) -4(1) C(14) 26(1) 75(2) 62(2) -12(2) 6(1) -10(1) C(15) 53(2) 108(3) 67(2) 7(2) 19(2) -22(2) C(16) 29(2) 105(3) 103(3) -10(2) -2(2) -5(2) C(17) 58(2) 37(1) 27(1) -1(1) 1(1) 8(1) C(18) 56(2) 37(1) 37(1) -4(1) -7(1) 6(1) C(19) 74(2) 56(2) 44(2) -11(1) -18(2) 8(2) C(20) 108(3) 75(2) 29(2) -9(1) -7(2) 15(2) C(21) 97(3) 75(2) 32(1) -3(1) 11(2) 14(2) C(22) 70(2) 53(2) 35(1) -2(1) 9(1) 12(1) C(23) 63(2) 92(3) 47(2) 0(2) 18(2) 4(2) C(24) 101(3) 98(3) 98(3) 2(3) 36(3) -15(3) C(25) 80(3) 116(4) 112(4) 9(3) 19(3) 30(3) C(26) 43(2) 48(2) 47(2) -4(1) -7(1) 1(1) C(27) 55(2) 48(2) 87(2) -11(2) -6(2) -2(1) C(28) 61(2) 55(2) 81(2) -17(2) 7(2) 4(2) C(29) 50(2) 85(3) 88(3) 22(2) -19(2) 3(2) C(30) 103(3) 54(2) 39(2) 3(1) 9(2) 21(2) C(31) 68(2) 42(2) 46(2) 3(1) 3(1) 8(1) S16

17 Table S6. Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 10^3) for compound 2. x y z U(eq) H(4A) H(7A) H(8A) H(9A) H(11A) H(12A) H(12B) H(12C) H(13A) H(13B) H(13C) H(14A) H(15A) H(15B) H(15C) H(16A) H(16B) H(16C) H(19A) H(20A) H(21A) H(23A) H(24A) H(24B) H(24C) H(25A) H(25B) H(25C) H(26A) H(27A) H(27B) H(27C) H(28A) H(28B) H(28C) H(29A) H(29B) H(29C) H(30A) H(30B) H(30C) H(31A) H(31B) H(31C) S17

18 Figure S2: ORTEP diagram of 5. S18

19 Table S7. Crystal data and structure refinement for compound 5. Identification code compound 5 Empirical formula C13 H27 Cu N2 O Formula weight Temperature Wavelength 173(2) K A Crystal system, space group monoclinic, P2 1 /n Unit cell dimensions a = (4) A alpha = 90 deg. b = 8.528(3) A beta = (7) deg. c = (6) A gamma = 90 deg. Volume (9) A^3 Z, Calculated density 4, Mg/m^3 Absorption coefficient mm^-1 F(000) 624 Crystal size Theta range for data collection Limiting indices 0.37 x 0.30 x 0.15 mm 3.01 to deg. -14<=h<=14, -11<=k<=11, -21<=l<=21 Reflections collected / unique / 3565 [R(int) = ] Completeness to theta = % Max. and min. transmission and Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 3565 / 0 / 161 Goodness-of-fit on F^ Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Largest diff. peak and hole and e.a^-3 S19

20 Table S8. Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for compound 5. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) Cu(1) 8908(1) 5795(1) 274(1) 30(1) O(1) 10576(3) 5355(4) 680(2) 36(1) N(1) 6697(3) 6209(4) 1041(2) 34(1) N(2) 7327(3) 8366(4) 521(2) 33(1) C(1) 7581(4) 6828(5) 632(2) 27(1) C(2) 5820(4) 7361(6) 1278(3) 40(1) C(3) 6154(4) 8799(5) 796(3) 41(1) C(4) 6711(4) 4601(5) 1341(3) 42(1) C(5) 6813(7) 4550(8) 2264(4) 78(2) C(6) 5645(6) 3696(7) 991(4) 63(2) C(7) 7989(4) 9391(5) 6(3) 39(1) C(8) 8446(6) 10828(7) 460(4) 69(2) C(9) 7259(6) 9782(8) -783(4) 69(2) C(10) 11083(4) 5309(6) 1484(3) 36(1) C(11) 10752(6) 3769(8) 1877(4) 65(2) C(12) 10583(5) 6682(8) 1961(3) 65(2) C(13) 12429(4) 5439(7) 1499(3) 53(1) S20

21 Table S9. Bond lengths [A] and angles [deg] for compound 5. Cu(1)-C(1) 1.858(4) Cu(1)-O(1) 1.966(3) Cu(1)-O(1)# (3) Cu(1)-Cu(1)# (12) O(1)-C(10) 1.396(5) O(1)-Cu(1)# (3) N(1)-C(1) 1.344(5) N(1)-C(4) 1.457(6) N(1)-C(2) 1.461(5) N(2)-C(1) 1.351(5) N(2)-C(7) 1.457(6) N(2)-C(3) 1.466(5) C(2)-C(3) 1.522(6) C(2)-H(1) C(2)-H(2) C(3)-H(3) C(3)-H(4) C(4)-C(6) 1.495(8) C(4)-C(5) 1.511(8) C(4)-H(5) C(5)-H(6) C(5)-H(7) C(5)-H(8) C(6)-H(9) C(6)-H(10) C(6)-H(11) C(7)-C(8) 1.503(7) C(7)-C(9) 1.514(7) C(7)-H(12) C(8)-H(22) C(8)-H(23) C(8)-H(24) C(9)-H(25) C(9)-H(26) C(9)-H(27) C(10)-C(13) 1.506(6) C(10)-C(11) 1.522(7) C(10)-C(12) 1.538(7) C(11)-H(13) C(11)-H(14) C(11)-H(15) C(12)-H(16) C(12)-H(17) C(12)-H(18) C(13)-H(19) C(13)-H(20) C(13)-H(21) C(1)-Cu(1)-O(1) (15) C(1)-Cu(1)-O(1)# (15) O(1)-Cu(1)-O(1)# (13) C(1)-Cu(1)-Cu(1)# (14) O(1)-Cu(1)-Cu(1)# (9) S21

22 O(1)#1-Cu(1)-Cu(1)# (8) C(10)-O(1)-Cu(1) 129.1(3) C(10)-O(1)-Cu(1)# (3) Cu(1)-O(1)-Cu(1)# (13) C(1)-N(1)-C(4) 123.4(4) C(1)-N(1)-C(2) 113.7(4) C(4)-N(1)-C(2) 122.2(4) C(1)-N(2)-C(7) 123.4(3) C(1)-N(2)-C(3) 112.8(4) C(7)-N(2)-C(3) 122.2(3) N(1)-C(1)-N(2) 107.1(3) N(1)-C(1)-Cu(1) 127.3(3) N(2)-C(1)-Cu(1) 125.6(3) N(1)-C(2)-C(3) 102.0(3) N(1)-C(2)-H(1) C(3)-C(2)-H(1) N(1)-C(2)-H(2) C(3)-C(2)-H(2) H(1)-C(2)-H(2) N(2)-C(3)-C(2) 102.6(3) N(2)-C(3)-H(3) C(2)-C(3)-H(3) N(2)-C(3)-H(4) C(2)-C(3)-H(4) H(3)-C(3)-H(4) N(1)-C(4)-C(6) 111.6(4) N(1)-C(4)-C(5) 111.4(5) C(6)-C(4)-C(5) 111.5(5) N(1)-C(4)-H(5) C(6)-C(4)-H(5) C(5)-C(4)-H(5) C(4)-C(5)-H(6) C(4)-C(5)-H(7) H(6)-C(5)-H(7) C(4)-C(5)-H(8) H(6)-C(5)-H(8) H(7)-C(5)-H(8) C(4)-C(6)-H(9) C(4)-C(6)-H(10) H(9)-C(6)-H(10) C(4)-C(6)-H(11) H(9)-C(6)-H(11) H(10)-C(6)-H(11) N(2)-C(7)-C(8) 111.7(4) N(2)-C(7)-C(9) 111.4(4) C(8)-C(7)-C(9) 112.7(5) N(2)-C(7)-H(12) C(8)-C(7)-H(12) C(9)-C(7)-H(12) C(7)-C(8)-H(22) C(7)-C(8)-H(23) H(22)-C(8)-H(23) C(7)-C(8)-H(24) H(22)-C(8)-H(24) H(23)-C(8)-H(24) C(7)-C(9)-H(25) C(7)-C(9)-H(26) S22

23 H(25)-C(9)-H(26) C(7)-C(9)-H(27) H(25)-C(9)-H(27) H(26)-C(9)-H(27) O(1)-C(10)-C(13) 110.2(4) O(1)-C(10)-C(11) 109.3(4) C(13)-C(10)-C(11) 109.3(5) O(1)-C(10)-C(12) 108.9(4) C(13)-C(10)-C(12) 109.7(4) C(11)-C(10)-C(12) 109.3(5) C(10)-C(11)-H(13) C(10)-C(11)-H(14) H(13)-C(11)-H(14) C(10)-C(11)-H(15) H(13)-C(11)-H(15) H(14)-C(11)-H(15) C(10)-C(12)-H(16) C(10)-C(12)-H(17) H(16)-C(12)-H(17) C(10)-C(12)-H(18) H(16)-C(12)-H(18) H(17)-C(12)-H(18) C(10)-C(13)-H(19) C(10)-C(13)-H(20) H(19)-C(13)-H(20) C(10)-C(13)-H(21) H(19)-C(13)-H(21) H(20)-C(13)-H(21) Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y+1,-z S23

24 5. Table S10. Anisotropic displacement parameters (A^2 x 10^3) for compound The anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 U h k a* b* U12 ] U11 U22 U33 U23 U13 U12 Cu(1) 27(1) 32(1) 35(1) 5(1) 14(1) 11(1) O(1) 25(2) 53(2) 29(2) -2(1) 3(1) 13(1) N(1) 26(2) 32(2) 46(2) 6(2) 15(2) 8(1) N(2) 27(2) 28(2) 45(2) 2(2) 13(2) 10(2) C(1) 26(2) 31(2) 24(2) 0(2) 2(2) 6(2) C(2) 30(2) 43(3) 49(3) -3(2) 17(2) 9(2) C(3) 30(2) 34(2) 62(3) 2(2) 16(2) 14(2) C(4) 36(3) 35(2) 58(3) 15(2) 13(2) 8(2) C(5) 101(6) 70(4) 63(4) 32(3) -8(4) -15(4) C(6) 61(4) 38(3) 87(5) 2(3) -3(3) 4(3) C(7) 34(3) 38(2) 45(3) 8(2) 11(2) 8(2) C(8) 74(4) 55(4) 81(5) -9(3) 31(4) -22(3) C(9) 55(4) 86(5) 65(4) 31(4) 1(3) -10(3) C(10) 29(2) 46(3) 34(2) -5(2) 8(2) 4(2) C(11) 66(4) 83(4) 47(3) 18(3) 4(3) -11(3) C(12) 58(4) 89(5) 46(3) -26(3) 2(3) 16(3) C(13) 31(3) 70(4) 56(3) -4(3) -1(2) 1(2) S24

25 Table S11. Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 10^3) for compound 5. x y z U(eq) H(1) H(2) H(3) H(4) H(5) H(6) H(7) H(8) H(9) H(10) H(11) H(12) H(22) H(23) H(24) H(25) H(26) H(27) H(13) H(14) H(15) H(16) H(17) H(18) H(19) H(20) H(21) S25

26 Figure S3: ORTEP diagram of 6. Ellipsoids shown at 50 %. S26

27 Table S12. Crystal data and structure refinement for compound 6. Identification code compound 6 Empirical formula C10 H18 B Cu F3 N2 Formula weight Temperature Wavelength 173(2) K A Crystal system, space group Triclinic, P-1 Unit cell dimensions a = 8.249(3) A alpha = (7) deg. b = 9.803(3) A beta = (8) deg. c = (6) A gamma = (8) deg. Volume (8) A^3 Z, Calculated density 4, Mg/m^3 Absorption coefficient mm^-1 F(000) 612 Crystal size Theta range for data collection Limiting indices 0.45 x 0.20 x 0.20 mm 3.08 to deg. -10<=h<=10, -12<=k<=12, -21<=l<=21 Reflections collected / unique / 5932 [R(int) = ] Completeness to theta = % Absorption correction Semi-empirical from equivalents Max. and min. transmission and Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 5932 / 0 / 297 Goodness-of-fit on F^ Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Largest diff. peak and hole and e.a^-3 S27

28 Table S13. Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for compound 6. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) Cu(1) 3532(1) 4341(1) 908(1) 36(1) Cu(2) -1751(1) 1820(1) 5029(1) 39(1) F(1) 3270(5) 2073(4) 4(2) 89(1) F(2) 1188(6) 2631(4) 764(3) 100(1) F(3) 3255(6) 1578(4) 1305(3) 98(1) F(4) -4294(5) 2909(4) 6071(2) 85(1) F(5) -3778(7) 768(5) 6273(3) 130(2) F(6) -2262(5) 2067(5) 6739(2) 100(1) N(1) 3451(4) 7275(3) 1035(2) 35(1) N(2) 5529(5) 6114(3) 1627(2) 44(1) N(3) 857(4) 2329(4) 3790(2) 38(1) N(4) -958(4) 1171(4) 3355(2) 37(1) C(1) 2669(4) 2505(3) 697(2) 15(1) C(2) 4219(5) 6017(4) 1199(3) 36(1) C(3) 5708(6) 7538(4) 1795(3) 43(1) C(4) 4251(6) 8352(4) 1370(3) 43(1) C(5) 2010(5) 7597(4) 543(3) 36(1) C(6) 672(6) 8469(5) 995(3) 50(1) C(7) 2456(6) 8306(6) -299(3) 52(1) C(8) 6703(6) 4956(4) 1900(3) 50(1) C(9) 8333(8) 5041(7) 1415(5) 90(2) C(10) 6879(9) 4867(6) 2816(4) 72(2) C(11) -3120(5) 1781(5) 6104(2) 35(1) C(12) -530(5) 1776(4) 3997(2) 33(1) C(13) 1451(6) 2145(5) 2937(3) 44(1) C(14) 280(5) 1205(5) 2660(3) 43(1) C(15) -2347(5) 345(5) 3375(3) 39(1) C(16) -1770(6) -1194(5) 3457(3) 53(1) C(17) -3349(6) 735(5) 2616(3) 51(1) C(18) 1624(6) 3204(5) 4308(3) 49(1) C(19) 3419(7) 2703(8) 4390(4) 76(2) C(20) 1328(10) 4711(6) 3983(4) 83(2) S28

29 Table S14. Bond lengths [A] and angles [deg] for compound 6. Cu(1)-C(2) 1.906(4) Cu(1)-C(1) 2.072(3) Cu(2)-C(12) 1.906(4) Cu(2)-C(11) 2.022(4) F(1)-C(1) 1.293(4) F(2)-C(1) 1.214(5) F(3)-C(1) 1.346(5) F(4)-C(11) 1.387(5) F(5)-C(11) 1.185(6) F(6)-C(11) 1.350(6) N(1)-C(2) 1.332(5) N(1)-C(5) 1.458(5) N(1)-C(4) 1.467(5) N(2)-C(2) 1.334(5) N(2)-C(8) 1.459(5) N(2)-C(3) 1.473(5) N(3)-C(12) 1.331(5) N(3)-C(13) 1.463(5) N(3)-C(18) 1.471(5) N(4)-C(12) 1.330(5) N(4)-C(15) 1.471(5) N(4)-C(14) 1.478(5) C(3)-C(4) 1.527(6) C(3)-H(1) C(3)-H(2) C(4)-H(3) C(4)-H(4) C(5)-C(7) 1.515(6) C(5)-C(6) 1.521(6) C(5)-H(5) C(6)-H(6) C(6)-H(7) C(6)-H(8) C(7)-H(9) C(7)-H(10) C(7)-H(11) C(8)-C(10) 1.495(8) C(8)-C(9) 1.524(9) C(8)-H(12) C(9)-H(13) C(9)-H(14) C(9)-H(15) C(10)-H(16) C(10)-H(17) C(10)-H(18) C(13)-C(14) 1.521(6) C(13)-H(19) C(13)-H(20) C(14)-H(21) C(14)-H(22) C(15)-C(17) 1.516(6) C(15)-C(16) 1.526(7) C(15)-H(23) S29

30 C(16)-H(24) C(16)-H(25) C(16)-H(26) C(17)-H(27) C(17)-H(28) C(17)-H(29) C(18)-C(19) 1.517(8) C(18)-C(20) 1.517(8) C(18)-H(30) C(19)-H(31) C(19)-H(32) C(19)-H(33) C(20)-H(34) C(20)-H(35) C(20)-H(36) C(2)-Cu(1)-C(1) (15) C(12)-Cu(2)-C(11) (17) C(2)-N(1)-C(5) 125.0(3) C(2)-N(1)-C(4) 113.0(3) C(5)-N(1)-C(4) 122.0(3) C(2)-N(2)-C(8) 124.9(3) C(2)-N(2)-C(3) 113.0(3) C(8)-N(2)-C(3) 122.1(3) C(12)-N(3)-C(13) 113.0(3) C(12)-N(3)-C(18) 124.6(4) C(13)-N(3)-C(18) 121.9(3) C(12)-N(4)-C(15) 124.5(3) C(12)-N(4)-C(14) 112.5(3) C(15)-N(4)-C(14) 122.2(3) F(2)-C(1)-F(1) 114.6(4) F(2)-C(1)-F(3) 109.0(4) F(1)-C(1)-F(3) 106.6(3) F(2)-C(1)-Cu(1) 109.4(3) F(1)-C(1)-Cu(1) 111.5(2) F(3)-C(1)-Cu(1) 105.2(3) N(1)-C(2)-N(2) 108.8(3) N(1)-C(2)-Cu(1) 126.0(3) N(2)-C(2)-Cu(1) 125.2(3) N(2)-C(3)-C(4) 102.3(3) N(2)-C(3)-H(1) C(4)-C(3)-H(1) N(2)-C(3)-H(2) C(4)-C(3)-H(2) H(1)-C(3)-H(2) N(1)-C(4)-C(3) 102.9(3) N(1)-C(4)-H(3) C(3)-C(4)-H(3) N(1)-C(4)-H(4) C(3)-C(4)-H(4) H(3)-C(4)-H(4) N(1)-C(5)-C(7) 110.5(3) N(1)-C(5)-C(6) 111.3(3) C(7)-C(5)-C(6) 111.1(4) N(1)-C(5)-H(5) C(7)-C(5)-H(5) C(6)-C(5)-H(5) S30

31 C(5)-C(6)-H(6) C(5)-C(6)-H(7) H(6)-C(6)-H(7) C(5)-C(6)-H(8) H(6)-C(6)-H(8) H(7)-C(6)-H(8) C(5)-C(7)-H(9) C(5)-C(7)-H(10) H(9)-C(7)-H(10) C(5)-C(7)-H(11) H(9)-C(7)-H(11) H(10)-C(7)-H(11) N(2)-C(8)-C(10) 111.1(4) N(2)-C(8)-C(9) 110.7(4) C(10)-C(8)-C(9) 112.3(5) N(2)-C(8)-H(12) C(10)-C(8)-H(12) C(9)-C(8)-H(12) C(8)-C(9)-H(13) C(8)-C(9)-H(14) H(13)-C(9)-H(14) C(8)-C(9)-H(15) H(13)-C(9)-H(15) H(14)-C(9)-H(15) C(8)-C(10)-H(16) C(8)-C(10)-H(17) H(16)-C(10)-H(17) C(8)-C(10)-H(18) H(16)-C(10)-H(18) H(17)-C(10)-H(18) F(5)-C(11)-F(6) 111.6(5) F(5)-C(11)-F(4) 108.7(4) F(6)-C(11)-F(4) 99.9(4) F(5)-C(11)-Cu(2) 114.8(3) F(6)-C(11)-Cu(2) 111.5(3) F(4)-C(11)-Cu(2) 109.2(3) N(4)-C(12)-N(3) 108.8(3) N(4)-C(12)-Cu(2) 124.2(3) N(3)-C(12)-Cu(2) 127.0(3) N(3)-C(13)-C(14) 102.6(3) N(3)-C(13)-H(19) C(14)-C(13)-H(19) N(3)-C(13)-H(20) C(14)-C(13)-H(20) H(19)-C(13)-H(20) N(4)-C(14)-C(13) 102.2(3) N(4)-C(14)-H(21) C(13)-C(14)-H(21) N(4)-C(14)-H(22) C(13)-C(14)-H(22) H(21)-C(14)-H(22) N(4)-C(15)-C(17) 111.2(3) N(4)-C(15)-C(16) 111.0(4) C(17)-C(15)-C(16) 111.0(4) N(4)-C(15)-H(23) C(17)-C(15)-H(23) C(16)-C(15)-H(23) S31

32 C(15)-C(16)-H(24) C(15)-C(16)-H(25) H(24)-C(16)-H(25) C(15)-C(16)-H(26) H(24)-C(16)-H(26) H(25)-C(16)-H(26) C(15)-C(17)-H(27) C(15)-C(17)-H(28) H(27)-C(17)-H(28) C(15)-C(17)-H(29) H(27)-C(17)-H(29) H(28)-C(17)-H(29) N(3)-C(18)-C(19) 110.4(4) N(3)-C(18)-C(20) 110.9(4) C(19)-C(18)-C(20) 113.2(5) N(3)-C(18)-H(30) C(19)-C(18)-H(30) C(20)-C(18)-H(30) C(18)-C(19)-H(31) C(18)-C(19)-H(32) H(31)-C(19)-H(32) C(18)-C(19)-H(33) H(31)-C(19)-H(33) H(32)-C(19)-H(33) C(18)-C(20)-H(34) C(18)-C(20)-H(35) H(34)-C(20)-H(35) C(18)-C(20)-H(36) H(34)-C(20)-H(36) H(35)-C(20)-H(36) Symmetry transformations used to generate equivalent atoms: S32

33 6. Table S15. Anisotropic displacement parameters (A^2 x 10^3) for compound The anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 U h k a* b* U12 ] U11 U22 U33 U23 U13 U12 Cu(1) 44(1) 24(1) 42(1) -6(1) -9(1) -3(1) Cu(2) 37(1) 51(1) 29(1) -9(1) 3(1) -6(1) F(1) 109(3) 91(3) 74(2) -34(2) 26(2) -37(2) F(2) 109(3) 82(3) 116(3) -36(2) 6(3) -26(2) F(3) 144(4) 57(2) 93(3) -6(2) -2(3) -14(2) F(4) 71(2) 110(3) 70(2) -18(2) 7(2) 15(2) F(5) 156(5) 98(3) 135(4) -30(3) 85(4) -38(3) F(6) 79(3) 166(4) 48(2) -8(2) 2(2) 8(3) N(1) 41(2) 24(2) 43(2) -7(1) -12(1) 0(1) N(2) 51(2) 25(2) 59(2) -8(2) -23(2) 3(1) N(3) 39(2) 46(2) 32(2) -7(1) 0(1) -13(2) N(4) 40(2) 45(2) 28(2) -8(1) 5(1) -14(2) C(1) 17(1) 13(1) 14(1) -2(1) 10(1) 2(1) C(2) 43(2) 28(2) 38(2) -5(2) -8(2) -1(2) C(3) 48(2) 29(2) 53(2) -10(2) -18(2) 1(2) C(4) 53(3) 25(2) 53(3) -9(2) -20(2) 1(2) C(5) 36(2) 32(2) 39(2) -7(2) -8(2) 3(2) C(6) 37(2) 60(3) 53(3) -17(2) -1(2) 4(2) C(7) 48(3) 67(3) 39(2) 0(2) -10(2) 1(2) C(8) 56(3) 30(2) 65(3) -5(2) -26(2) 7(2) C(9) 76(4) 75(4) 106(6) 2(4) 7(4) 36(4) C(10) 92(4) 51(3) 66(4) 9(3) -24(3) 13(3) C(11) 27(2) 49(2) 30(2) -18(2) 1(1) 5(2) C(12) 35(2) 34(2) 31(2) -2(2) -4(2) -5(2) C(13) 42(2) 57(3) 36(2) -7(2) 4(2) -16(2) C(14) 44(2) 58(3) 29(2) -9(2) 7(2) -18(2) C(15) 37(2) 48(2) 34(2) -5(2) 0(2) -15(2) C(16) 49(3) 49(3) 62(3) 12(2) -13(2) -16(2) C(17) 46(3) 47(3) 59(3) 8(2) -15(2) -12(2) C(18) 55(3) 54(3) 44(2) -13(2) -4(2) -21(2) C(19) 58(3) 107(5) 70(4) -22(4) -20(3) -22(3) C(20) 122(6) 56(3) 78(4) -13(3) -15(4) -33(4) S33

34 Table S16. Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 10^3) for compound 6. x y z U(eq) H(1) H(2) H(3) H(4) H(5) H(6) H(7) H(8) H(9) H(10) H(11) H(12) H(13) H(14) H(15) H(16) H(17) H(18) H(19) H(20) H(21) H(22) H(23) H(24) H(25) H(26) H(27) H(28) H(29) H(30) H(31) H(32) H(33) H(34) H(35) H(36) (1) Vicic, D. A.; Jones, G. D. In Comprehensive Organometallic Chemistry III; Crabtree, R. H., Mingos, D. M. P., Eds.; Elsevier: 2006; Vol. 1. (2) Saba, S.; Brescia, A. M.; Kaloustian, M. K. Tetrahedron Lett. 1991, 32, S34

Supplementary Materials for

Supplementary Materials for www.advances.sciencemag.org/cgi/content/full/1/5/e1500304/dc1 Supplementary Materials for Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne click reaction This PDF file includes:

More information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information Experimental Supporting Information for Experimental and DFT Studies Explain Solvent Control of C-H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of eutral and Cationic Heterocycles

More information

Copper Mediated Fluorination of Aryl Iodides

Copper Mediated Fluorination of Aryl Iodides Copper Mediated Fluorination of Aryl Iodides Patrick S. Fier and John F. Hartwig* Department of Chemistry, University of California, Berkeley, California 94720, United States. Supporting Information Table

More information

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Emmanuelle Despagnet-Ayoub, Michael K. Takase, Jay A. Labinger and John E. Bercaw Contents 1. Experimental

More information

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Kang Yuan, Goonay Yousefalizadeh, Felix Saraci, Tai Peng, Igor Kozin, Kevin G. Stamplecoskie, Suning Wang*

More information

Supporting information

Supporting information Supporting information Sensitizing Tb(III) and Eu(III) Emission with Triarylboron Functionalized 1,3-diketonato Ligands Larissa F. Smith, Barry A. Blight, Hee-Jun Park, and Suning Wang* Department of Chemistry,

More information

Stereoselective Synthesis of (-) Acanthoic Acid

Stereoselective Synthesis of (-) Acanthoic Acid 1 Stereoselective Synthesis of (-) Acanthoic Acid Taotao Ling, Bryan A. Kramer, Michael A. Palladino, and Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of California, San

More information

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Supporting Information Ferrocenyl BODIPYs: Synthesis, Structure and Properties Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Department of Chemistry, Indian Institute of Technology

More information

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Electronic supplementary information Strategy to Enhance Solid-State Fluorescence and

More information

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke *

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke * Development of a New Building Block for the Synthesis of Silicon-Based Drugs and Odorants: Alternative Synthesis of the Retinoid Agonist Disila-bexarotene Matthias W. Büttner, Jennifer B. Nätscher, Christian

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Single-Crystal-to-Single-Crystal Transformation of an Anion Exchangeable

More information

Seth B. Harkins and Jonas C. Peters

Seth B. Harkins and Jonas C. Peters Amido-bridged Cu 2 N 2 diamond cores that minimize structural reorganization and facilitate reversible redox behavior between a Cu 1 Cu 1 and a Class III delocalized Cu 1.5 Cu 1.5 species. Seth B. Harkins

More information

Table S2a. Crystal data and structure refinement for 2 Table S2b. Selected bond lengths and angles for 2 Figure S3.

Table S2a. Crystal data and structure refinement for 2 Table S2b. Selected bond lengths and angles for 2 Figure S3. Four-Coordinate, Trigonal Pyramidal Pt(II) and Pd(II) Complexes Charlene Tsay, Neal P. Mankad, Jonas C. Peters* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts

More information

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions Wing-Leung Wong, Kam-Piu Ho, Lawrence Yoon Suk Lee, Kin-Ming Lam, Zhong-Yuan Zhou, Tak

More information

Supporting Information. for

Supporting Information. for Supporting Information for "Inverse-Electron-Demand" Ligand Substitution in Palladium(0) Olefin Complexes Shannon S. Stahl,* Joseph L. Thorman, Namal de Silva, Ilia A. Guzei, and Robert W. Clark Department

More information

Synthesis of Vinyl Germylenes

Synthesis of Vinyl Germylenes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Material for Synthesis of Vinyl Germylenes Małgorzata Walewska, Judith Baumgartner,*

More information

Supplementary Information

Supplementary Information Supplementary Information Eco-Friendly Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones Catalyzed by FeCl 3 /Al 2 O 3 and Analysis of Large 1 H NMR Diastereotopic Effect Isabel Monreal, a Mariano Sánchez-Castellanos,

More information

Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes

Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes Supporting Information for Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes Marco Blangetti, Patricia Fleming and Donal F. O Shea* Centre for Synthesis and Chemical

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 208 Supporting Information Cobalt-Catalyzed Regioselective Syntheses of Indeno[2,-c]pyridines

More information

Supporting Information

Supporting Information Supporting Information A Trinitrosyl Iron Complex (a {Fe(NO) 3 } 10 TNIC) Stabilized by an N- Heterocyclic Carbene and the Cationic and Neutral {Fe(NO) 2 } 9/10 Products of Its NO Release Chung-Hung Hsieh

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Early-Late Heterobimetallic Rh-Ti and Rh-Zr Complexes via Addition of Early Metal Chlorides to Mono- and Divalent Rhodium Dan A. Smith and Oleg V. Ozerov* Department

More information

Supporting Information

Supporting Information Supporting Information Synthesis of H-Indazoles from Imidates and Nitrosobenzenes via Synergistic Rhodium/Copper Catalysis Qiang Wang and Xingwei Li* Dalian Institute of Chemical Physics, Chinese Academy

More information

Structure Report for J. Reibenspies

Structure Report for J. Reibenspies X-ray Diffraction Laboratory Center for Chemical Characterization and Analysis Department of Chemistry Texas A & M University Structure Report for J. Reibenspies Project Name: Sucrose Date: January 29,

More information

Supporting Information. Preparative Scale Synthesis of Vedejs Chiral DMAP Catalysts

Supporting Information. Preparative Scale Synthesis of Vedejs Chiral DMAP Catalysts S1 Preparative Scale Synthesis of Vedejs Chiral DMAP Catalysts Artis Kinens, Simonas Balkaitis and Edgars Suna * Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia University

More information

Supporting Information

Supporting Information Supporting Information One Pot Synthesis of 1,3- Bis(phosphinomethyl)arene PCP/PNP Pincer Ligands and Their Nickel Complexes Wei-Chun Shih and Oleg V. Ozerov* Department of Chemistry, Texas A&M University,

More information

Supporting Information

Supporting Information Supporting Information Divergent Reactivity of gem-difluoro-enolates towards Nitrogen Electrophiles: Unorthodox Nitroso Aldol Reaction for Rapid Synthesis of -Ketoamides Mallu Kesava Reddy, Isai Ramakrishna,

More information

Electronic Supporting Information For. Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization. Content

Electronic Supporting Information For. Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization. Content Electronic Supporting Information For Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization Ananya Banik, Rupankar Paira*,, Bikash Kumar Shaw, Gonela Vijaykumar and Swadhin K. Mandal*,

More information

Chiral Sila[1]ferrocenophanes

Chiral Sila[1]ferrocenophanes Supporting Information Thermal Ring-Opening Polymerization of Planar- Chiral Sila[1]ferrocenophanes Elaheh Khozeimeh Sarbisheh, Jose Esteban Flores, Brady Anderson, Jianfeng Zhu, # and Jens Müller*, Department

More information

Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane

Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane Electronic Supplementary Information (ESI) Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane Jie Liu, ab Qing Meng, a Xiaotao Zhang, a Xiuqiang Lu, a Ping

More information

High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene

High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene Electronic Supplementary Information High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene Experimental details Synthesis of pyreno[4,5-a]coronene: In 1960 E. Clar et.al 1 and

More information

Pyridyl vs bipyridyl anchoring groups of. porphyrin sensitizers for dye sensitized solar. cells

Pyridyl vs bipyridyl anchoring groups of. porphyrin sensitizers for dye sensitized solar. cells Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting Information for Pyridyl vs bipyridyl anchoring groups of porphyrin sensitizers for

More information

Binuclear Rare-Earth Polyhydride Complexes Bearing both

Binuclear Rare-Earth Polyhydride Complexes Bearing both Supporting Information Binuclear Rare-Earth Polyhydride Complexes Bearing both Terminal and Bridging Hydride Ligands Jianhua Cheng, Haiyu Wang, Masayoshi Nishiura and Zhaomin Hou* S1 Contents Experimental

More information

Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies. Supporting Information

Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies. Supporting Information Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies Satheesh Ellipilli, Sandeep Palvai and Krishna N Ganesh* Chemical Biology Unit,

More information

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole James T. Brewster II, a Hadiqa Zafar, a Matthew McVeigh, a Christopher D. Wight, a Gonzalo

More information

The oxide-route for the preparation of

The oxide-route for the preparation of Supporting Information for: The oxide-route for the preparation of mercury(ii) N-heterocyclic carbene complexes. Simon Pelz and Fabian Mohr* Fachbereich C-Anorganische Chemie, Bergische Universität Wuppertal,

More information

Syntheses and Structures of Mono-, Di- and Tetranuclear Rhodium or Iridium Complexes of Thiacalix[4]arene Derivatives

Syntheses and Structures of Mono-, Di- and Tetranuclear Rhodium or Iridium Complexes of Thiacalix[4]arene Derivatives Supplementary Information Syntheses and Structures of Mono-, Di- and Tetranuclear Rhodium or Iridium Complexes of Thiacalix[4]arene Derivatives Kenji Hirata, Toshiaki Suzuki, Ai Noya, Izuru Takei and Masanobu

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 205 Supporting Information Synthesis and Structures of N-Arylcyano-β-diketiminate Zinc Complexes

More information

A Total Synthesis of Paeoveitol

A Total Synthesis of Paeoveitol A Total Synthesis of Paeoveitol Lun Xu, Fengyi Liu, Li-Wen Xu, Ziwei Gao, Yu-Ming Zhao* Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi

More information

Manganese-Calcium Clusters Supported by Calixarenes

Manganese-Calcium Clusters Supported by Calixarenes Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Manganese-Calcium Clusters Supported by Calixarenes Rebecca O. Fuller, George A. Koutsantonis*,

More information

Copper(I) β-boroalkyls from Alkene Insertion: Isolation and Rearrangement

Copper(I) β-boroalkyls from Alkene Insertion: Isolation and Rearrangement Supporting Information for Copper(I) β-boroalkyls from Alkene Insertion: Isolation and Rearrangement David S. Laitar, Emily Y. Tsui, Joseph P. Sadighi* Department of Chemistry, Massachusetts Institute

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Crystal-to-Crystal Transformation between Three Cu(I) Coordination Polymers and Structural Evidence for Luminescence Thermochromism Tae Ho

More information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases Jingming Zhang, a Haohan Wu, a Thomas J. Emge, a and Jing Li* a a Department of Chemistry and Chemical Biology,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information for uminum complexes containing salicylbenzoxazole

More information

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion Supporting Information for Cu(I)-MOF: naked-eye colorimetric sensor for humidity and formaldehyde in single-crystal-to-single-crystal fashion Yang Yu, Xiao-Meng Zhang, Jian-Ping Ma, Qi-Kui Liu, Peng Wang,

More information

Regioselective Synthesis of the Tricyclic Core of Lateriflorone

Regioselective Synthesis of the Tricyclic Core of Lateriflorone Regioselective Synthesis of the Tricyclic Core of Lateriflorone Eric J. Tisdale, Hongmei Li, Binh G. Vong, Sun Hee Kim, Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of

More information

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes Ashley Carter, Alexander Mason, Michael A. Baker, Donald G. Bettler, Angelo Changas, Colin D. McMillen,

More information

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic Supporting information (+)- and ( )-Ecarlottones, Uncommon Chalconoids from Fissistigma latifolium with Proapoptotic Activity Charlotte Gény, Alma Abou Samra, Pascal Retailleau, Bogdan I. Iorga, Hristo

More information

Super-Resolution Monitoring of Mitochondrial Dynamics upon. Time-Gated Photo-Triggered Release of Nitric Oxide

Super-Resolution Monitoring of Mitochondrial Dynamics upon. Time-Gated Photo-Triggered Release of Nitric Oxide Supporting Information for Super-Resolution Monitoring of Mitochondrial Dynamics upon Time-Gated Photo-Triggered Release of Nitric Oxide Haihong He a, Zhiwei Ye b, Yi Xiao b, *, Wei Yang b, *, Xuhong Qian

More information

Supporting Information

Supporting Information Supporting Information Peramivir Phosphonate Derivatives as Influenza Neuraminidase Inhibitors Peng-Cheng Wang a, Jim-Min Fang a,b, *, Keng-Chang Tsai c, Shi-Yun Wang b, Wen-I Huang b, Yin-Chen Tseng b,

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-cinnamyl-chiral alcohol Lab ID: 12040 User:

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-furan-enzymatic alcohol Lab ID: 12042 User:

More information

Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position

Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position Feng Zhou, Xing-Ping Zeng, Chao Wang, Xiao-Li Zhao, and Jian Zhou* [a] Shanghai Key Laboratory

More information

Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine

Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine Supporting Information for: Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine Sílvia Alujas-Burgos, Cristina Oliveras-González, Ángel Álvarez-Larena, Pau

More information

The version of SI posted May 6, 2004 contained errors. The correct version was posted October 21, 2004.

The version of SI posted May 6, 2004 contained errors. The correct version was posted October 21, 2004. The version of SI posted May 6, 2004 contained errors. The correct version was posted October 21, 2004. Sterically Bulky Thioureas as Air and Moisture Stable Ligands for Pd-Catalyzed Heck Reactions of

More information

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex Mechanistic insights on the controlled switch from oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex Emmanuelle Despagnet-Ayoub, *,a,b Michael K. Takase, c Lawrence M.

More information

Supporting Information

Supporting Information Supporting Information Manuscript Title: Synthesis of Semibullvalene Derivatives via Co 2 (CO) 8 -Mediated Cyclodimerization of 1,4-Dilithio-1,3-butadienes Corresponding Author: Zhenfeng Xi Affiliations:

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018 Electronic Supplementary Information

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2840 Cooperative carbon-atom abstraction from alkenes in the core of a pentanuclear nickel cluster Contents:

More information

Efficient Homogeneous Catalysis in the Reduction of CO 2 to CO

Efficient Homogeneous Catalysis in the Reduction of CO 2 to CO Supporting Information for: Efficient Homogeneous Catalysis in the Reduction of CO 2 to CO David S. Laitar, Peter Müller, Joseph P. Sadighi* Full listing for text reference (3): Arakawa, H.; Aresta, M.;

More information

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene Gaurav Bhalla, Xiang Yang Liu, Jonas Oxgaard, William A. Goddard, III, Roy A. Periana* Loker Hydrocarbon

More information

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to Vinyl Sulfone: An Organocatalytic Access to Chiral 3-Fluoro-3-Substituted Oxindoles Xiaowei Dou and Yixin Lu * Department of Chemistry & Medicinal

More information

Dinitrogen chemistry from trigonally coordinated iron and cobalt platforms. Supporting Information

Dinitrogen chemistry from trigonally coordinated iron and cobalt platforms. Supporting Information Dinitrogen chemistry from trigonally coordinated iron and cobalt platforms Theodore A. Betley and Jonas C. Peters Division of Chemistry and Chemical Engineering Arnold and Mabel Beckman Laboratories of

More information

Reaction Progress Kinetics Analysis of 1,3-Disiloxanediols as Hydrogenbonding

Reaction Progress Kinetics Analysis of 1,3-Disiloxanediols as Hydrogenbonding Supporting Information for: Reaction Progress Kinetics Analysis of 1,3-Disiloxanediols as Hydrogenbonding Catalysts Kayla M. Diemoz, Jason E. Hein, Sean O. Wilson, James C. Fettinger, Annaliese K. Franz*

More information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 Asymmetric Friedel-Crafts Alkylations of Indoles with Ethyl Glyoxylate Catalyzed by (S)-BIL-Ti (IV) Complex: Direct

More information

Supporting Information for. Organogold oligomers: exploiting iclick and aurophilic cluster formation to prepare solution stable Au4 repeating units.

Supporting Information for. Organogold oligomers: exploiting iclick and aurophilic cluster formation to prepare solution stable Au4 repeating units. Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Supporting Information for Organogold oligomers: exploiting iclick and aurophilic cluster

More information

Catalytic hydrogenation of liquid alkenes with a silica grafted hydride. pincer iridium(iii) complex: Support for a heterogeneous mechanism

Catalytic hydrogenation of liquid alkenes with a silica grafted hydride. pincer iridium(iii) complex: Support for a heterogeneous mechanism Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 215 Electronic Supplementary Information for Catalysis Science & Technology Catalytic

More information

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK1360707 Vassil I. Elitzin, Kimberly A. Harvey, Hyunjung Kim, Matthew Salmons, Matthew J. Sharp*, Elie

More information

Supporting Information

Supporting Information Supporting Information Non-Heme Diiron Model Complexes Can Mediate Direct NO Reduction: Mechanistic Insight Into Flavodiiron NO Reductases Hai T. Dong, a Corey J. White, a Bo Zhang, b Carsten Krebs, b

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 A rare case of a dye co-crystal showing better dyeing performance Hui-Fen Qian, Yin-Ge Wang,

More information

Supporting Information for XXXXXXX

Supporting Information for XXXXXXX Supporting Information for XXXXXXX The First Imidazolium-Substituted Metal Alkylidene Giovanni Occhipinti, a Hans-René Bjørsvik, a Karl Wilhelm Törnroos, a Alois Fürstner, b and Vidar R. Jensen a, * a

More information

Supporting Information. Table of Contents

Supporting Information. Table of Contents Supporting Information Selective Anion Exchange and Tunable Luminescent Behaviors of Metal-Organic Framework Based Supramolecular Isomers Biplab Manna, Shweta Singh, Avishek Karmakar, Aamod V.Desai and

More information

Gulaim A. Seisenbaeva,, Geoffrey Daniel, Jean-Marie Nedelec,, Vadim G. Kessler,*, Supplementary materials

Gulaim A. Seisenbaeva,, Geoffrey Daniel, Jean-Marie Nedelec,, Vadim G. Kessler,*, Supplementary materials Gulaim A. Seisenbaeva,, Geoffrey Daniel, Jean-Marie Nedelec,, Vadim G. Kessler,*, Department of Chemistry, Biocenter, Swedish University of Agricultural Sciences (SLU), Box 7015, SE-75007, Uppsala, Sweden,

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 Template-directed synthesis

More information

Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts

Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting Information for: Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Carbene Activation of P 4 and Subsequent Derivatization Jason D. Masuda, Wolfgang W. Schoeller, Bruno Donnadieu, and Guy Bertrand * [*] Dr.

More information

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage SUPPORTING INFORMATION Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage Chi Yang, a Ushasree Kaipa, a Qian Zhang Mather,

More information

Supplementary Information

Supplementary Information Supplementary Information J. Braz. Chem. Soc., Vol. 24, No. 10, S1-S17, 2013. Printed in Brazil - 2013 Sociedade Brasileira de Química 0103-5053 $6.00+0.00 SI Structural Analysis and Antitumor Activity

More information

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center Supporting Information Connie C. Lu and Jonas C. Peters* Division of Chemistry and

More information

C-H Activation Reactions of Ruthenium N-Heterocyclic Carbene. Complexes: Application in a Catalytic Tandem Reaction Involving C-C

C-H Activation Reactions of Ruthenium N-Heterocyclic Carbene. Complexes: Application in a Catalytic Tandem Reaction Involving C-C SUPPORTING INFORMATION C-H Activation Reactions of Ruthenium N-Heterocyclic Carbene Complexes: Application in a Catalytic Tandem Reaction Involving C-C Bond Formation from Alcohols Suzanne Burling, Belinda

More information

Evidence for a Boroxinate Based Brønsted Acid Derivative of VAPOL as the. Active Catalyst in the Catalytic Asymmetric Aziridination Reaction.

Evidence for a Boroxinate Based Brønsted Acid Derivative of VAPOL as the. Active Catalyst in the Catalytic Asymmetric Aziridination Reaction. Evidence for a Boroxinate Based Brønsted Acid Derivative of VAPOL as the Active Catalyst in the Catalytic Asymmetric Aziridination Reaction. Gang Hu, Li Huang, Rui Huang and William. D. Wulff* Contribution

More information

Silver-Catalyzed Cascade Reaction of β-enaminones and Isocyanoacetates to Construct Functionalized Pyrroles

Silver-Catalyzed Cascade Reaction of β-enaminones and Isocyanoacetates to Construct Functionalized Pyrroles Supporting Information for Silver-Catalyzed Cascade Reaction of β-enaminones and Isocyanoacetates to Construct Functionalized Pyrroles Guichun Fang, a, Jianquan Liu a,c, Junkai Fu,* a Qun Liu, a and Xihe

More information

Selective total encapsulation of the sulfate anion by neutral nano-jars

Selective total encapsulation of the sulfate anion by neutral nano-jars Supporting Information for Selective total encapsulation of the sulfate anion by neutral nano-jars Isurika R. Fernando, Stuart A. Surmann, Alexander A. Urech, Alexander M. Poulsen and Gellert Mezei* Department

More information

Supporting Information

Supporting Information Remarkably Variable Reaction Modes of Frustrated Lewis Pairs with Non-Conjugated Terminal Diacetylenes Chao Chen, Roland Fröhlich, Gerald Kehr, Gerhard Erker Organisch-Chemisches Institut, Westfälische

More information

Supporting Information

Supporting Information -S1- of 18 Functional Group Chemistry at the Group 4 Bent Metallocene Frameworks: Formation and Metal-free Catalytic Hydrogenation of Bis(imino-Cp)zirconium Complexes Kirill V. Axenov, Gerald Kehr, Roland

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany Sandwich Complexes Containing Bent Palladium ains Yasuki Tatsumi, Katsunori Shirato, Tetsuro Murahashi,* Sensuke Ogoshi and Hideo Kurosawa*

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Supporting Information Unmasking Representative Structures of TMP-Active Hauser and Turbo Hauser Bases Pablo García-Álvarez, David V. Graham,

More information

Supporting Information

Supporting Information Supporting Information Tris(allyl)indium Compounds: Synthesis and Structural Characterization Ilja Peckermann, Gerhard Raabe, Thomas P. Spaniol and Jun Okuda* Synthesis and characterization Figure S1:

More information

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2 S1 Chemistry at Boron: Synthesis and Properties of Red to Near-IR Fluorescent Dyes based on Boron Substituted Diisoindolomethene Frameworks Gilles Ulrich, a, * Sebastien Goeb a, Antoinette De Nicola a,

More information

Supporting Information

Supporting Information Supporting Information Unprecedented solvent-dependent sensitivities in highly efficient detection of metal ions and nitroaromatic compounds by a fluorescent Ba MOF Rongming Wang, Xiaobin Liu, Ao Huang,

More information

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE 139 CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE 6.1 INTRODUCTION This chapter describes the crystal and molecular structure of a dehydroacetic acid substituted

More information

Heterolytic H 2 Activation Mediated by Low Coordinate L 3 Fe-(µ-N)-FeL 3 Complexes to Generate Fe(µ-NH)(µ-H)Fe Species

Heterolytic H 2 Activation Mediated by Low Coordinate L 3 Fe-(µ-N)-FeL 3 Complexes to Generate Fe(µ-NH)(µ-H)Fe Species Heterolytic H 2 Activation Mediated by Low Coordinate L 3 Fe-(µ-N)-FeL 3 Complexes to Generate Fe(µ-NH)(µ-H)Fe Species Steven D. Brown and Jonas C. Peters Division of Chemistry and Chemical Engineering,

More information

Chelsea A. Huff, Jeff W. Kampf, and Melanie S. Sanford* Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109

Chelsea A. Huff, Jeff W. Kampf, and Melanie S. Sanford* Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109 Role of a Non-Innocent Pincer Ligand in the Activation of CO 2 at (PNN)Ru(H)(CO) Chelsea A. Huff, Jeff W. Kampf, and Melanie S. Sanford* Department of Chemistry, University of Michigan, 930 N. University

More information

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or Ethylene Trimerization Catalysts Based on Chromium Complexes with a Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or ortho-thiomethoxy Substituents: Well Defined Catalyst Precursors and

More information

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones Daisuke Uraguchi, Takaki Ito, Shinji Nakamura, and Takashi oi* Department of Applied Chemistry, Graduate School

More information

Supporting Information:

Supporting Information: Supporting Information: An rganocatalytic Asymmetric Sequential Allylic Alkylation/Cyclization of Morita-Baylis-Hillman Carbonates and 3-Hydroxyoxindoles Qi-Lin Wang a,b, Lin Peng a, Fei-Ying Wang a, Ming-Liang

More information

Crystal and molecular structure of cis-dichlorobis(triphenylphosphite)

Crystal and molecular structure of cis-dichlorobis(triphenylphosphite) Molecules 2001, 6, 777-783 molecules ISSN 1420-3049 http://www.mdpi.org Crystal and molecular structure of cis-dichlorobis(triphenylphosphite) Platinum(II) Seyyed Javad Sabounchei * and Ali Naghipour Chemistry.

More information

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe Supporting Information for Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe Ho Yu Au-Yeung, Jefferson Chan, Teera Chantarojsiri and Christopher J. Chang* Departments

More information

Supporting information for Eddaoudi et al. (2002) Proc. Natl. Acad. Sci. USA 99 (8), ( /pnas ) Supporting Information

Supporting information for Eddaoudi et al. (2002) Proc. Natl. Acad. Sci. USA 99 (8), ( /pnas ) Supporting Information Supporting information for Eddaoudi et al. (2002) Proc. Natl. Acad. Sci. USA 99 (8), 4900 4904. (10.1073/pnas.082051899) Supporting Information Table 1. Syntheses of MOF-102 112 MOFn MOF- 102 Link and

More information

Supporting Information

Supporting Information Supporting Information New Hexaphosphane Ligands 1,3,5-C 6 H 3 {p-c 6 H 4 N(PX 2 ) 2 } 3 [X = Cl, F, C 6 H 3 OMe(C 3 H 5 )]: Synthesis, Derivatization and, Palladium(II) and Platinum(II) Complexes Sowmya

More information

Phosphirenium-Borate Zwitterion: Formation in the 1,1-Carboboration Reaction of Phosphinylalkynes. Supporting Information

Phosphirenium-Borate Zwitterion: Formation in the 1,1-Carboboration Reaction of Phosphinylalkynes. Supporting Information Phosphirenium-Borate Zwitterion: Formation in the 1,1-Carboboration Reaction of Phosphinylalkynes Olga Ekkert, Gerald Kehr, Roland Fröhlich and Gerhard Erker Supporting Information Experimental Section

More information