Supporting Information. for

Size: px
Start display at page:

Download "Supporting Information. for"

Transcription

1 Supporting Information for "Inverse-Electron-Demand" Ligand Substitution in Palladium(0) Olefin Complexes Shannon S. Stahl,* Joseph L. Thorman, Namal de Silva, Ilia A. Guzei, and Robert W. Clark Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI Experimental General Procedures. All manipulations were performed under an inert atmosphere of nitrogen using a H. M. Braun glovebox. All solvents were rigorously degassed and dried prior to use. Methylene chloride-d 2, diethyl ether, hexanes, methylene chloride, and toluene were dried by passage through a column of activated alumina. (bc)pd(dba) was prepared according to the published procedure. 1 The following compounds, β-nitrostyrene derivatives, bathocuproine (Aldrich) were obtained from commercial sources and used as received. 1 H NMR data were recorded at 27.0 ºC, unless otherwise stated using a Varian Unity ( 1 H: 500 MHz), a Bruker Avance ( 1 H: 360 MHz), or Bruker Inova ( 1 H: 300 MHz) spectrometers. Chemical shifts were referenced to residual protons in the deuterated solvent (i.e., CDHCl 2 : δ 5.32). Synthesis of (bc)pd(ns X ) derivatives. Each of these complexes (bc = bathocuproine, 2,9- dimethyl-4,7-diphenyl-1,10-phenananthroline; ns X = p-x-trans-β-nitrostyrene, X = CH 3 O, CH 3, H, Br, CF 3 ) were all synthesized in an analogous manner. Representative procedure for (bc)pd(ns CH3 ): In a glovebox at ambient temperature (ca. 23 C), a 100 ml round bottom flask was charged with 1 Stahl, S. S.; Thorman, J. L.; Nelson, R. C.; Kozee, M. A. J. Am. Chem. Soc. 2001, 123,

2 (bc)pd(dba) (215.5 mg, mmol), p-methyl-trans-β-nitrostyrene (60.6 mg, 0.37 mmol), and dichloromethane (ca. 10 ml) to give a light orange solution. After 10 minutes the solution was filtered over a celite pad and the filtrate reduced in volume under vacuum (ca. 1 ml). Et 2 O (ca. 10 ml) was then added and placed in freezer (-30 C) for 30 minutes, after which the mixture was filtered. The solid was then dissolved in minimal CH 2 Cl 2 (ca. 2 ml) and hexanes added (ca. 15 ml), mixed thoroughly and placed in the freezer (-30 C) for 15 minutes. This solution was then filtered and dried under vacuum to yield pure product (153 mg, 71 % yield). Analytically pure samples could be obtained by layering a toluene solution with hexanes (1:2 V:V), allowing to stand at -25 C, filtering, and drying the solid in vacuo. Crystals suitable for X-ray diffraction analysis were obtained by dissolving solid sample in a minimum of CH 2 Cl 2, layering with hexane and allowing to stand undisturbed at 30 C. Crystallographic data are provided below. 1 H NMR (δ, CD 2 Cl 2, 360 MHz): (bc)pd(ns OCH3 ):7.81 (m, 2H, bc Ar-H), 7.69 (s, 1H, bc Ar-H), 7.57 (s, 1H, bc Ar-H), 7.53 (m, 10H, bc Ar-H), 7.33 (d, 2H, 3 J H-H = 9 Hz, ns OCH3 Ar-H), 6.68 (d, 2H, 3 J H-H = 9 Hz, ns OCH3 Ar-H), 5.94 (d, 2H, 3 J H-H = 8 Hz, ns OCH3 CH=CH), 4.64 (d, 2H, 3 J H-H = 8 Hz, ns OCH3 CH=CH), 3.68 (s, 3H, ns OCH3 CH 3 ).3.11 (s, 3H, bc CH 3 ), 2.81 (s, 3H, bc CH 3 ). (bc)pd(ns CH3 ):7.79 (m, 2H, bc Ar-H), 7.71 (s, 1H, bc Ar-H), 7.58 (s, 1H, bc Ar-H), 7.54 (m, 10H, bc Ar-H), 7.36 (d, 2H, 3 J H-H = 8 Hz, ns CH3 Ar-H), 6.96 (d, 2H, 3 J H-H = 8 Hz, ns CH3 Ar-H), 5.96 (d, 2H, 3 J H-H = 8 Hz, ns CH3 CH=CH), 4.73 (d, 2H, 3 J H-H = 8 Hz, ns CH3 CH=CH), 3.21 (s, 3H, bc CH 3 ), 2.89 (s, 3H, bc CH 3 ), 2.17 (s, 3H, ns CH3 CH 3 ). (bc)pd(ns H ):7.80 (m, 2H, bc Ar-H), 7.72 (s, 1H, bc Ar-H), 7.59 (s, 1H, bc Ar-H), 7.6 (m, 12H, bc Ar-H and ns H Ar-H), 7.13 (m, 3H, ns H Ar-H), 5.98 (d, 2H, 3 J H-H = 8 Hz, ns H CH=CH), 4.74 (d, 2H, 3 J H-H = 8 Hz, ns H CH=CH), 3.21 (s, 3H, bc CH 3 ), 2.88 (s, 3H, bc CH 3 ). (bc)pd(ns Br ): 7.80 (m, 2H, bc Ar-H), 7.70 (s, 1H, bc Ar-H), 7.55 (m, 11H, bc Ar-H), 7.38 (d, 2H, 3 J H-H = 8 Hz, ns Br Ar-H), 7.27 (d, 2H, 3 J H-H = 8 Hz, ns Br Ar-H), 5.98 (d, 2H, 3 J H-H = 7 Hz, ns Br CH=CH), 4.76 (d, 2H, 3 J H-H = 7 Hz, ns Br CH=CH), 3.24 (s, 3H, bc CH 3 ), 2.88 (s, 3H, bc CH 3 ). (bc)pd(ns CF3 ): 7.79 (m, 2H, bc Ar-H), 7.68 (s, 1H, bc Ar-H), 7.5 (m, 15H, bc Ar-H and ns CF3 Ar- 2

3 H), 6.00 (d, 2H, 3 J H-H = 8 Hz, ns CF3 CH=CH), 4.68 (d, 2H, 3 J H-H = 8 Hz, ns CF3 CH=CH), 3.10 (s, 3H, bc CH 3 ), 2.78 (s, 3H, bc CH 3 ), 13 C NMR (δ, CD 2 Cl 2, 90.5 MHz): (bc)pd(ns OCH3 ): 161.9, 161.7, 157.6, 150.5, 150.4, 147.2, 137.5, 130.1, 130.0, 129.6, 129.4, 128.3, 126.4, 126.3, 126.2, 124.0, 123.9, 81.33, 55.7, 47.0, 29.9, (bc)pd(ns CH3 ): 161.9, 161.7, 150.5, 150.3, 147.2, 146.6, 142.2, 137.6, 134.6, 130.1, 130.0, 129.6, 129.4, 127.2, 126.4, 126.2, 124.0, 123.9, 81.4, 47.2, 30.0, 28.8, (bc)pd(ns H ): 161.9, 161.7, 150.5, 150.4, 147.2, 146.6, 145.4, 137.6, 137.5, 130.1, 130.0, 129.6, 129.4, 129.3, 128.9, 127.3, 126.4, 126.2, 124.9, 124.0, 123.9, 81.3, 47.2, 30.0, (bc)pd(ns Br ): 162.0, 161.6, 150.6, 150.5, 147.2, 146.7, 144.8, 137.5, 137.4, 131.8, 130.1, 130.0, 129.6, 129.4, 129.4, 128.9, 126.4, 126.4, 126.2, 124.1, 124.0, 117.8, 80.9, 46.1, 30.1, (bc)pd(ns CF3 ): 162.0, 161.6, 150.7, 150.6, 150.0, 147.2, 143.4, 137.4, 135.5, 131.0, 130.0, 129.7, 129.5, 129.4, 128.9, 127.3, 126.4, 126.2, 126.1, 124.8, 124.0, 80.8, 46.0, 30.1, X-ray: (see data below). Line-broadening investigations: All data were collected on a Varian Unity 500 with sw=8000, nt=32, d1=5 s. A representative run follows: An NMR tube was charged with 1,3,5-tritert-butylbenzene (2.92 µmol), (bc)pd(ns CF3 ) (3.6 mg, 5.21 µmol), ns CF3 (7.35 mg, µmol), and CD 2 Cl 2 (555 µl total volume). Spectra were obtained at the desired temperature after allowing at least 25 min for temperature equilibration. Lineshape simulations for the methine resonances of the bound olefin were carried out with GNMR v4.1 and compared with the experimental spectra to calculate the line width at half height. Equilibrium constant investigations: All data were collected on the Bruker Avance 360 with ds=2, sw=15 ppm, ns=32, d1=10 s. Baseline correction and line broadening, 0.3 Hz, were utilized. A representative run follows: An NMR tube was charged with 1,3,5-tri-tert-butylbenzene (3.06 µmol), (bc)pd(ns CF3 ) (3.9 mg, 5.68 µmol), ns Br (7.4 mg, µmol), and CD 2 Cl 2 (489 µl total 3

4 volume). Spectra were taken at the desired temperature after allowing at least 25 min for temperature equilibration. Integrations of the bound olefin resonances were used to obtain the equilibrium constants. UV-visible Kinetics of Olefin Exchange. UV-visible data were acquired on a pccontrolled Cary 3E spectrophotometer with WinUV 2.01 software. Temperature was maintained with a Cary 1x1 peltier temperature controller. A representative kinetics experiment follows: Stock solutions of (bc)pd(ns CH3 ) (1mM) and ns CF3 (2mM) were prepared in the glovebox and removed from the glovebox in a schlenk tube equipped with a 4mm Kontes Teflon valve. The (bc)pd(ns CH3 ) stock solution was maintained at -78 C in between kinetic runs to avoid decomposition, which takes place slowly over several hours in solution. A gastight UV-visible cell equipped with a side-arm reservoir was employed to allow both stock solutions to be added to the cell under a nitrogen atmosphere prior to initiating the reaction. The palladium stock solution (300 µl) and CH 2 Cl 2 (2.55 ml) were added via syringe to the UV-visible cell, and the ns CF3 solution (150 µl) was added to the side-arm. After obtaining the initial absorbance reading of the (bc)pd(ns CH3 ) solution, the contents of the cell and sidearm were mixed rapidly and single-wavelength (425nm) data collection was initiated. Most reactions were complete (> 5 half-lives) within 5 minutes. A text file of the data was imported into Microsoft Excel for data fitting. For data fitting, a kinetic model based on bimolecular approach to equilibrium was employed, and the data were fit by minimizing the sum of the squared deviations between the experimental data and a fourth-order Runge-Kutta numerical simulation of bimolecular kinetic model. The equilibrium constants for olefin binding were required for fitting and these data were obtained by 1 H NMR experiments, as described above. A representative data set and fit is shown in Figure 3 of the main text. 4

5 X-ray data for (bc)pd(ns H ), (bc)pd(ns CH3 ), (bc)pd(ns Br ). (bc)pd(ns H ): Data Collection An orange air-sensitive crystal with approximate dimensions 0.15 x 0.08 x 0.03 mm 3 was selected under oil under ambient conditions and attached to the tip of a glass capillary. The crystal was mounted in a stream of cold nitrogen at 173(2) K and centered in the X-ray beam by using a video camera. The crystal evaluation and data collection were performed on a Bruker CCD-1000 diffractometer with Mo Kα (λ = Å) radiation and the diffractometer to crystal distance of 4.9 cm. The initial cell constants were obtained from three series of ω scans at different starting angles. Each series consisted of 20 frames collected at intervals of 0.3º in a 6º range about ω with the exposure time of 30 seconds per frame. A total of 44 reflections was obtained. The reflections were successfully indexed by an automated indexing routine built in the SMART program. The final cell constants were calculated from a set of 3913 strong reflections from the actual data collection. The data were collected by using the hemisphere data collection routine. The reciprocal space was surveyed to the extent of a full sphere to a resolution of 0.80 Å. A total of 15900data were harvested by collecting three sets of frames with 0.3º scans in ω with an exposure time 120 sec per frame. These highly redundant datasets were corrected for Lorentz and polarization effects. The absorption correction was based on fitting a function to the empirical transmission surface as sampled by multiple equivalent measurements. 2 Structure Solution and Refinement The systematic absences in the diffraction data were uniquely consistent for the space group P2 1 /n that yielded chemically reasonable and computationally stable results of refinement. 3 A successful solution by the direct methods provided most non-hydrogen atoms from the E-map. The remaining non-hydrogen atoms were located in an alternating series of least-squares cycles and difference Fourier maps. All non-hydrogen atoms were refined with anisotropic displacement coefficients. All hydrogen atoms were included in the structure factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients. All phenyl groups were refined with idealized geometries. The phenyl groups at atom C(17) is disordered over two positions in a 55:45 ratio. There is also 0.5 solvate molecule of dichloromethane disordered over a crystallographic center per Pd complex in the lattice. The solvate molecule was refined with soft constraints and restraints. The final least-squares refinement of 317 parameters against 4493 data resulted in residuals R (based on F 2 for I 2σ) and wr (based on F 2 for all data) of and , respectively. The final difference Fourier map was featureless. The ORTEP diagrams are drawn with 30% probability ellipsoids. 2 Blessing, R.H. Acta Cryst. 1995, A51, All software and sources of the scattering factors are contained in the SHELXTL (version 5.1) program library (G. 5

6 Figure S1. ORTEP drawing of the β-nitrostyrene adduct of bathocuproine-coordinated palladium(0), (bc)pd(ns H ). Sheldrick, Bruker Analytical X-Ray Systems, Madison, WI). 6

7 Table S1. Crystal data and structure refinement for (bc)pd(ns H ). Identification code sta05 Empirical formula C 34 H 27 N 3 O 2 Pd 1/2 CH 2 Cl 2 Formula weight Temperature 173(2) K Wavelength Å Crystal system Monoclinic Space group P2 1 /n Unit cell dimensions a = (14) Å α= 90. b = (3) Å β= (3). c = (3) Å γ = 90. Volume (7) Å 3 Z 4 Density (calculated) Mg/m 3 Absorption coefficient mm -1 F(000) 1340 Crystal size 0.15 x 0.08 x 0.03 mm 3 Theta range for data collection 2.29 to Index ranges -7<=h<=11, -20<=k<=16, -19<=l<=19 Reflections collected Independent reflections 4493 [R(int) = ] Completeness to theta = % Absorption correction Empirical with SADABS Max. and min. transmission and Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 4493 / 8 / 317 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Largest diff. peak and hole and e.å -3 7

8 Table S2. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for (bc)pd(ns H ). U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) Pd(1) 2840(1) 1301(1) 3808(1) 42(1) Cl(1) 6293(5) 384(3) 217(4) 160(2) O(1) 4595(10) 1417(6) 1853(5) 102(3) O(2) 4938(9) 2337(6) 2648(7) 93(3) N(1) 2130(8) 1165(4) 4985(5) 44(2) N(2) 3527(8) 184(4) 4141(4) 38(2) N(3) 4216(13) 1818(7) 2378(6) 71(3) C(1) 1679(16) 2488(6) 5216(8) 102(5) C(2) 1564(13) 1668(6) 5433(7) 60(3) C(3) 922(11) 1460(6) 6117(6) 58(3) C(4) 788(10) 716(6) 6330(6) 44(3) C(5) 139(7) 521(4) 7073(3) 44(3) C(6) -1186(7) 791(3) 7177(4) 55(3) C(7) -1826(6) 615(4) 7864(5) 62(3) C(8) -1142(8) 170(4) 8448(4) 64(3) C(9) 183(8) -99(3) 8344(3) 56(3) C(10) 823(5) 76(4) 7656(4) 49(3) C(11) 1373(10) 163(5) 5838(6) 41(2) C(12) 1265(10) -623(5) 5971(6) 42(3) C(13) 1991(10) -1112(5) 5550(6) 46(3) C(14) 2834(10) -865(5) 4946(5) 40(2) C(15) 2817(9) -109(5) 4740(5) 33(2) C(16) 2071(10) 427(5) 5193(5) 38(2) C(17) 3693(9) -1353(5) 4537(5) 40(2) C(18) 3866(8) -2151(3) 4793(4) 55(2) C(19) 4290(10) -2405(4) 5553(4) 55(2) C(20) 4428(10) -3170(4) 5700(4) 55(2) C(21) 4141(9) -3683(3) 5087(5) 55(2) C(22) 3718(11) -3429(4) 4327(4) 55(2) C(23) 3580(10) -2663(4) 4180(3) 55(2) C(18A) 3646(8) -2182(3) 4665(4) 55(2) C(19A) 4775(7) -2475(4) 5124(5) 55(2) C(20A) 4793(7) -3229(4) 5338(5) 55(2) C(21A) 3682(9) -3691(3) 5092(5) 55(2) C(22A) 2552(8) -3398(4) 4633(6) 55(2) C(23A) 2534(8) -2644(4) 4420(6) 55(2) C(24) 4458(10) -1048(6) 3971(6) 45(3) C(25) 4344(10) -278(6) 3768(5) 41(3) C(26) 5157(10) 47(6) 3130(6) 52(3) C(27) 2889(11) 1697(6) 2675(6) 54(3) C(28) 2266(10) 2249(6) 3147(6) 48(3) C(29) 778(6) 2474(4) 3040(4) 47(3) C(30) 392(8) 3136(4) 3402(4) 63(3) C(31) -985(10) 3369(4) 3326(5) 89(5) C(32) -1976(6) 2941(6) 2889(6) 97(5) C(33) -1589(8) 2280(6) 2527(5) 91(4) C(34) -213(9) 2046(4) 2602(5) 69(3) C(35) 4527(16) 344(18) 307(19) 142(14) 8

9 Table S3. Bond lengths [Å] and angles [ ] for (bc)pd(ns H ). Pd(1)-C(27) 2.040(10) C(14)-C(17) 1.415(12) Pd(1)-C(28) 2.075(9) C(15)-C(16) 1.447(12) Pd(1)-N(2) 2.156(7) C(17)-C(24) 1.362(12) Pd(1)-N(1) 2.161(8) C(17)-C(18) 1.491(10) Cl(1)-C(35) 1.726(14) C(17)-C(18A) 1.493(10) Cl(1)-C(35)# (14) C(18)-C(19) O(1)-N(3) 1.215(12) C(18)-C(23) O(2)-N(3) 1.224(12) C(19)-C(20) N(1)-C(2) 1.317(12) C(20)-C(21) N(1)-C(16) 1.364(11) C(21)-C(22) N(2)-C(25) 1.330(11) C(22)-C(23) N(2)-C(15) 1.368(11) C(18A)-C(19A) N(3)-C(27) 1.427(14) C(18A)-C(23A) C(1)-C(2) 1.510(14) C(19A)-C(20A) C(2)-C(3) 1.400(14) C(20A)-C(21A) C(3)-C(4) 1.380(13) C(21A)-C(22A) C(4)-C(11) 1.431(12) C(22A)-C(23A) C(4)-C(5) 1.483(11) C(24)-C(25) 1.416(13) C(5)-C(6) C(25)-C(26) 1.494(12) C(5)-C(10) C(27)-C(28) 1.427(14) C(6)-C(7) C(28)-C(29) 1.490(11) C(7)-C(8) C(29)-C(30) C(8)-C(9) C(29)-C(34) C(9)-C(10) C(30)-C(31) C(11)-C(16) 1.404(13) C(31)-C(32) C(11)-C(12) 1.423(12) C(32)-C(33) C(12)-C(13) 1.352(12) C(33)-C(34) C(13)-C(14) 1.421(13) C(35)-Cl(1)# (14) C(14)-C(15) 1.390(12) 9

10 C(27)-Pd(1)-C(28) 40.6(4) C(27)-Pd(1)-N(2) 122.2(4) C(28)-Pd(1)-N(2) 162.6(4) C(27)-Pd(1)-N(1) 158.4(4) C(28)-Pd(1)-N(1) 119.5(4) N(2)-Pd(1)-N(1) 76.8(3) C(35)-Cl(1)-C(35)#1 66.1(15) C(2)-N(1)-C(16) 118.8(9) C(2)-N(1)-Pd(1) 128.7(7) C(16)-N(1)-Pd(1) 111.4(6) C(25)-N(2)-C(15) 117.5(8) C(25)-N(2)-Pd(1) 129.0(6) C(15)-N(2)-Pd(1) 112.5(6) O(1)-N(3)-O(2) 121.3(13) O(1)-N(3)-C(27) 119.7(13) O(2)-N(3)-C(27) 119.0(11) N(1)-C(2)-C(3) 121.5(10) N(1)-C(2)-C(1) 118.5(10) C(3)-C(2)-C(1) 120.0(10) C(4)-C(3)-C(2) 121.6(9) C(3)-C(4)-C(11) 117.4(9) C(3)-C(4)-C(5) 119.9(9) C(11)-C(4)-C(5) 122.6(8) C(6)-C(5)-C(10) C(6)-C(5)-C(4) 118.6(6) C(10)-C(5)-C(4) 121.4(6) C(5)-C(6)-C(7) C(6)-C(7)-C(8) C(9)-C(8)-C(7) C(8)-C(9)-C(10) C(9)-C(10)-C(5) C(16)-C(11)-C(12) 119.7(8) C(16)-C(11)-C(4) 117.0(9) C(12)-C(11)-C(4) 123.3(9) C(13)-C(12)-C(11) 120.2(9) C(12)-C(13)-C(14) 121.8(9) C(15)-C(14)-C(17) 117.9(9) C(15)-C(14)-C(13) 118.7(9) C(17)-C(14)-C(13) 123.3(9) N(2)-C(15)-C(14) 123.8(9) N(2)-C(15)-C(16) 115.8(8) C(14)-C(15)-C(16) 120.3(8) N(1)-C(16)-C(11) 123.6(9) N(1)-C(16)-C(15) 117.9(8) C(11)-C(16)-C(15) 118.5(8) C(24)-C(17)-C(14) 117.8(9) C(24)-C(17)-C(18) 121.8(9) C(14)-C(17)-C(18) 120.0(8) C(24)-C(17)-C(18A) 121.3(9) C(14)-C(17)-C(18A) 120.7(8) C(18)-C(17)-C(18A) 11.41(8) C(19)-C(18)-C(23) C(19)-C(18)-C(17) 126.5(4) C(23)-C(18)-C(17) 113.5(5) C(20)-C(19)-C(18) C(21)-C(20)-C(19) C(20)-C(21)-C(22) C(23)-C(22)-C(21)

11 C(22)-C(23)-C(18) C(19A)-C(18A)-C(23A) C(19A)-C(18A)-C(17) 114.8(4) C(23A)-C(18A)-C(17) 125.0(4) C(18A)-C(19A)-C(20A) C(21A)-C(20A)-C(19A) C(20A)-C(21A)-C(22A) C(23A)-C(22A)-C(21A) C(22A)-C(23A)-C(18A) C(17)-C(24)-C(25) 121.3(9) N(2)-C(25)-C(24) 121.5(9) N(2)-C(25)-C(26) 117.7(9) C(24)-C(25)-C(26) 120.9(9) N(3)-C(27)-C(28) 121.3(11) N(3)-C(27)-Pd(1) 117.8(7) C(28)-C(27)-Pd(1) 71.0(6) C(27)-C(28)-C(29) 124.2(9) C(27)-C(28)-Pd(1) 68.4(6) C(29)-C(28)-Pd(1) 120.0(6) C(30)-C(29)-C(34) C(30)-C(29)-C(28) 117.6(7) C(34)-C(29)-C(28) 122.4(7) C(29)-C(30)-C(31) C(30)-C(31)-C(32) C(31)-C(32)-C(33) C(34)-C(33)-C(32) C(33)-C(34)-C(29) Cl(1)-C(35)-Cl(1)# (15) Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z 11

12 Table S4. Anisotropic displacement parameters (Å 2 x 10 3 ) for (bc)pd(ns H ). The anisotropic displacement factor exponent takes the form: -2π 2 [ h 2 a* 2 U h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 Pd(1) 43(1) 34(1) 48(1) 7(1) -4(1) -7(1) Cl(1) 141(4) 115(4) 224(6) -16(4) 17(4) 31(3) O(1) 116(8) 136(9) 59(6) 30(6) 31(5) 38(7) O(2) 64(6) 82(7) 135(9) 28(6) 17(6) -9(5) N(1) 59(6) 27(5) 44(5) 4(4) 2(4) -1(4) N(2) 43(5) 28(5) 40(5) 2(4) -2(4) 0(4) N(3) 103(10) 73(9) 41(6) 22(6) 17(6) 9(7) C(1) 207(17) 32(7) 73(9) 10(7) 42(10) 17(9) C(2) 97(10) 36(7) 48(7) -1(6) 4(6) 6(6) C(3) 78(8) 36(8) 60(7) -5(6) 14(6) 15(6) C(4) 47(7) 39(7) 45(6) 0(5) -2(5) 1(5) C(5) 54(7) 31(6) 47(6) -6(5) -1(5) 0(5) C(6) 40(7) 64(8) 60(7) -23(6) -1(6) 7(6) C(7) 57(8) 50(8) 80(9) -21(7) 12(7) 1(6) C(8) 82(10) 50(8) 65(8) -22(6) 37(7) -3(7) C(9) 90(10) 34(7) 43(7) -11(5) 0(6) -4(6) C(10) 43(7) 44(7) 59(7) -9(6) 5(6) -3(5) C(11) 48(6) 32(6) 42(6) -6(5) 2(5) 13(5) C(12) 41(6) 33(6) 52(6) 6(5) 1(5) 4(5) C(13) 59(7) 20(6) 59(7) 7(5) 1(5) 3(5) C(14) 46(7) 36(6) 37(6) 8(5) 1(5) -2(5) C(15) 21(5) 39(6) 37(5) 12(5) -3(4) 1(4) C(16) 43(6) 28(6) 41(6) 4(5) -5(5) -2(5) C(17) 41(6) 33(6) 46(6) 1(5) 1(5) 6(5) C(18) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(19) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(20) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(21) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(22) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(23) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(18A) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(19A) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(20A) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(21A) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(22A) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(23A) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(24) 36(6) 49(7) 49(6) 1(5) 2(5) 11(5) C(25) 36(6) 50(7) 37(6) 1(5) -6(5) -8(5) C(26) 44(7) 62(8) 52(7) 11(6) 9(5) -5(6) C(27) 48(7) 69(8) 44(6) 20(6) 5(5) -3(6) C(28) 46(7) 43(7) 52(7) 21(5) -3(5) -10(5) C(29) 41(7) 40(7) 60(7) 16(5) 0(5) -3(5) C(30) 54(8) 54(8) 81(9) 11(7) 19(6) 2(6) C(31) 62(9) 78(10) 130(13) 44(9) 21(9) 20(8) C(32) 60(10) 97(13) 132(14) 59(11) 6(9) 20(9) C(33) 78(11) 72(11) 120(12) 28(9) -5(9) -15(8) C(34) 58(8) 43(7) 105(10) 14(7) 4(7) -6(7) C(35) 100(20) 220(40) 120(30) -90(30) 50(20) 20(20) 12

13 Table S5. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (Å 2 x 10 3 ) for (bc)pd(ns H ). x y z U(eq) H(1A) H(1B) H(1C) H(3) H(6) H(7) H(8) H(9) H(10) H(12) H(13) H(19) H(20) H(21) H(22) H(23) H(19A) H(20A) H(21A) H(22A) H(23A) H(24) H(26A) H(26B) H(26C) H(27) H(28) H(30) H(31) H(32) H(33) H(34) H(35A) H(35B)

14 (bc)pd(ns CH3 ): Data Collection A yellow air-sensitive crystal with approximate dimensions 0.4 x 0.3 x 0.2 mm 3 was selected under oil under ambient conditions and attached to the tip of a glass capillary. The crystal was mounted in a stream of cold nitrogen at 173(2) K and centered in the X-ray beam by using a video camera. The crystal evaluation and data collection were performed on a Bruker CCD-1000 diffractometer with Mo Kα (λ = Å) radiation and the diffractometer to crystal distance of 4.9 cm. The initial cell constants were obtained from three series of ω scans at different starting angles. Each series consisted of 20 frames collected at intervals of 0.3º in a 6º range about ω with the exposure time of 10 seconds per frame. A total of 44 reflections was obtained. The reflections were successfully indexed by an automated indexing routine built in the SMART program. The final cell constants were calculated from a set of 7790 strong reflections from the actual data collection. The data were collected by using the hemisphere data collection routine. The reciprocal space was surveyed to the extent of a full sphere to a resolution of 0.80 Å. A total of data were harvested by collecting three sets of frames with 0.3º scans in ω with an exposure time 90 sec per frame. These highly redundant datasets were corrected for Lorentz and polarization effects. The absorption correction was based on fitting a function to the empirical transmission surface as sampled by multiple equivalent measurements. 2 Structure Solution and Refinement The systematic absences in the diffraction data were consistent for the space groups P1 and P1. 3 The E- statistics strongly suggested the centrosymmetric space group P1 that yielded chemically reasonable and computationally stable results of refinement. A successful solution by the direct methods provided most non-hydrogen atoms from the E-map. The remaining non-hydrogen atoms were located in an alternating series of least-squares cycles and difference Fourier maps. All non-hydrogen atoms were refined with anisotropic displacement coefficients. All hydrogen atoms were included in the structure factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients. There are two symmetry independent molecules of the complex in the lattice. There was one solvate molecule present in the asymmetric unit. A significant amount of time was invested in identifying and refining the disordered molecule. Bond length restraints were applied to model that molecule but the resulting isotropic displacement coefficients suggested the molecules were mobile. In addition, the refinement was computationally unstable. Option SQUEEZE of program PLATON [3] was used to correct the diffraction data for diffuse scattering effects and to identify the solvate molecule. PLATON calculated the upper limit of volume that can be occupied by the solvent to be Å 3, or 10.7% of the unit cell volume. The program calculated 57 electrons in the unit cell for the diffuse species. This roughly corresponds to 1.35 molecules of diethyl ether per two molecules of the Pd complex. Please note that all derived results in the following tables are based on known contents. No data are given for the diffusely scattering species. The final least-squares refinement of 745 parameters against 9373 data resulted in residuals R (based on F 2 for 14

15 I 2σ) and wr (based on F 2 for all data) of and , respectively. The ORTEP diagrams are drawn with 30% probability ellipsoids. 15

16 Figure S2. ORTEP drawing of the p-methyl-β-nitrostyrene adduct of bathocuproine-coordinated palladium(0), (bc)pd(ns CH3 ). 16

17 Table S6. Crystal data and structure refinement for sta04. Identification code sta04 Empirical formula C 35 H 29 N 3 O 2 Pd. solvent Formula weight Temperature 173(2) K Wavelength Å Crystal system Triclinic Space group P1 Unit cell dimensions a = (15) Å a= (2). b = (15) Å b= (2). c = (17) Å g = (2). Volume (5) Å 3 Z 4 Density (calculated) Mg/m 3 Absorption coefficient mm -1 F(000) 1288 Crystal size 0.18 x 0.12 x 0.05 mm 3 Theta range for data collection 1.31 to Index ranges -16<=h<=16, -15<=k<=17, 0<=l<=19 Reflections collected Independent reflections 9373 [R(int) = ] Completeness to theta = % Absorption correction Empirical with SADABS Max. and min. transmission and Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 9373 / 0 / 745 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Largest diff. peak and hole and e.å -3 17

18 Table S7. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for (bc)pd(ns CH3 ). U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) Pd(1) 7622(1) 8116(1) 4737(1) 31(1) Pd(2) 6334(1) 1287(1) 322(1) 29(1) O(1) 8794(5) 6521(6) 6955(4) 65(2) O(2) 8881(4) 8068(5) 6249(4) 52(2) O(1A) 6978(6) 2810(6) 995(4) 64(2) O(2A) 8499(5) 1737(6) 709(5) 78(2) N(1) 6143(5) 8086(5) 5082(4) 28(2) N(2) 6589(5) 9499(5) 3721(4) 28(2) N(3) 8876(5) 7223(7) 6277(5) 47(2) N(1A) 6949(5) -422(5) 1218(4) 31(2) N(2A) 5037(5) 934(5) 513(4) 27(2) N(3A) 7566(7) 2253(7) 581(5) 51(2) C(1) 6842(6) 6359(7) 6317(5) 43(2) C(2) 5935(6) 7340(6) 5741(5) 30(2) C(3) 4952(6) 7412(7) 5902(5) 35(2) C(4) 4119(6) 8297(7) 5387(5) 32(2) C(5) 4307(6) 9141(6) 4706(5) 28(2) C(6) 3495(6) 10173(6) 4199(5) 29(2) C(7) 3717(6) 10909(6) 3546(5) 28(2) C(8) 4765(6) 10718(6) 3312(5) 26(2) C(9) 5044(6) 11450(6) 2585(5) 27(2) C(10) 6076(6) 11162(7) 2467(5) 32(2) C(11) 6822(6) 10201(6) 3038(5) 28(2) C(12) 7961(5) 9914(7) 2893(5) 39(2) C(13) 5332(5) 8967(6) 4572(5) 23(2) C(14) 5562(6) 9758(6) 3844(5) 25(2) C(15) 3069(6) 8341(7) 5543(6) 40(2) C(16) 2448(7) 8628(7) 4866(6) 50(3) C(17) 1500(8) 8649(8) 5021(8) 66(3) C(18) 1148(8) 8383(9) 5854(9) 72(4) C(19) 1744(8) 8080(8) 6518(8) 64(3) C(20) 2695(7) 8063(7) 6360(6) 43(2) C(21) 4298(6) 12486(6) 1971(5) 29(2) C(22) 4455(6) 13418(7) 1656(5) 36(2) C(23) 3788(7) 14398(7) 1052(5) 41(2) C(24) 2948(7) 14484(7) 739(6) 51(3) C(25) 2780(6) 13564(7) 1024(6) 46(2) C(26) 3440(6) 12578(7) 1641(5) 37(2) C(27) 8930(6) 7031(7) 5485(5) 35(2) C(28) 9175(6) 7753(7) 4718(5) 37(2) C(29) 9802(6) 7300(7) 4051(5) 35(2) C(30) 9871(6) 6379(7) 3956(6) 43(2) C(31) 10489(7) 5999(8) 3318(6) 55(3) C(32) 11021(6) 6530(7) 2756(5) 38(2) C(33) 10973(6) 7440(8) 2841(6) 46(2) C(34) 10378(7) 7813(7) 3490(6) 48(2) C(35) 11590(7) 6151(8) 2035(6) 63(3) C(1A) 8771(6) -860(7) 1078(6) 47(2) 18

19 C(2A) 7920(6) -1157(7) 1479(5) 34(2) C(3A) 8149(6) -2192(7) 2123(5) 39(2) C(4A) 7387(6) -2494(6) 2551(5) 31(2) C(5A) 6349(6) -1703(6) 2294(5) 28(2) C(6A) 5489(6) -1909(7) 2669(5) 36(2) C(7A) 4519(6) -1192(6) 2346(5) 35(2) C(8A) 4325(5) -220(6) 1605(5) 25(2) C(9A) 3351(6) 481(6) 1180(5) 26(2) C(10A) 3288(6) 1310(6) 420(5) 30(2) C(11A) 4124(6) 1544(6) 106(5) 30(2) C(12A) 4003(6) 2532(6) -693(5) 37(2) C(13A) 6178(6) -726(6) 1611(5) 25(2) C(14A) 5144(6) 36(6) 1237(5) 26(2) C(15A) 7663(6) -3620(7) 3202(6) 39(2) C(16A) 8269(7) -4512(8) 2944(7) 63(3) C(17A) 8520(8) -5570(8) 3521(8) 73(3) C(18A) 8203(7) -5752(8) 4371(7) 57(3) C(19A) 7698(9) -4909(8) 4625(7) 69(3) C(20A) 7412(8) -3814(8) 4031(6) 58(3) C(21A) 2397(6) 359(6) 1540(5) 30(2) C(22A) 1862(6) 183(7) 1082(6) 40(2) C(23A) 926(7) 174(8) 1363(6) 48(3) C(24A) 544(7) 328(8) 2120(6) 52(3) C(25A) 1065(7) 492(8) 2590(6) 54(3) C(26A) 2007(7) 498(8) 2306(6) 51(3) C(27A) 7162(7) 2174(7) -100(6) 39(2) C(28A) 6108(6) 2884(6) -374(5) 32(2) C(29A) 5812(7) 3396(7) -1295(5) 41(2) C(30A) 6355(7) 2944(8) -1893(6) 47(2) C(31A) 6015(10) 3463(10) -2738(7) 70(3) C(32A) 5107(12) 4431(11) -3008(7) 75(4) C(33A) 4546(9) 4884(9) -2419(7) 68(3) C(34A) 4901(7) 4388(8) -1576(6) 50(3) C(35A) 4738(12) 4935(11) -3938(7) 125(6) 19

20 Table S8. Bond lengths [Å] and angles [ ] for (bc)pd(ns CH3 ). Pd(1)-C(27) 2.045(8) C(24)-C(25) 1.385(12) Pd(1)-C(28) 2.087(8) C(25)-C(26) 1.397(11) Pd(1)-N(2) 2.145(6) C(27)-C(28) 1.436(11) Pd(1)-N(1) 2.175(6) C(28)-C(29) 1.498(11) Pd(2)-C(27A) 2.057(8) C(29)-C(30) 1.400(11) Pd(2)-C(28A) 2.066(8) C(29)-C(34) 1.401(11) Pd(2)-N(2A) 2.159(6) C(30)-C(31) 1.408(11) Pd(2)-N(1A) 2.182(6) C(31)-C(32) 1.368(11) O(1)-N(3) 1.238(8) C(32)-C(33) 1.387(12) O(2)-N(3) 1.244(9) C(32)-C(35) 1.507(11) O(1A)-N(3A) 1.226(9) C(33)-C(34) 1.408(12) O(2A)-N(3A) 1.220(9) C(1A)-C(2A) 1.491(10) N(1)-C(2) 1.337(9) C(2A)-C(3A) 1.398(11) N(1)-C(13) 1.360(9) C(3A)-C(4A) 1.389(11) N(2)-C(11) 1.335(9) C(4A)-C(5A) 1.420(10) N(2)-C(14) 1.373(9) C(4A)-C(15A) 1.486(11) N(3)-C(27) 1.469(11) C(5A)-C(13A) 1.385(10) N(1A)-C(2A) 1.334(9) C(5A)-C(6A) 1.428(10) N(1A)-C(13A) 1.389(9) C(6A)-C(7A) 1.353(10) N(2A)-C(11A) 1.332(9) C(7A)-C(8A) 1.423(10) N(2A)-C(14A) 1.366(9) C(8A)-C(14A) 1.406(10) N(3A)-C(27A) 1.463(11) C(8A)-C(9A) 1.414(10) C(1)-C(2) 1.523(10) C(9A)-C(10A) 1.359(10) C(2)-C(3) 1.388(10) C(9A)-C(21A) 1.498(10) C(3)-C(4) 1.382(11) C(10A)-C(11A) 1.399(10) C(4)-C(5) 1.429(10) C(11A)-C(12A) 1.504(10) C(4)-C(15) 1.501(11) C(13A)-C(14A) 1.457(10) C(5)-C(13) 1.399(10) C(15A)-C(20A) 1.342(12) C(5)-C(6) 1.439(10) C(15A)-C(16A) 1.395(12) C(6)-C(7) 1.332(10) C(16A)-C(17A) 1.379(13) C(7)-C(8) 1.444(10) C(17A)-C(18A) 1.397(14) C(8)-C(14) 1.401(10) C(18A)-C(19A) 1.320(13) C(8)-C(9) 1.432(10) C(19A)-C(20A) 1.419(12) C(9)-C(10) 1.372(10) C(21A)-C(22A) 1.376(11) C(9)-C(21) 1.469(10) C(21A)-C(26A) 1.382(11) C(10)-C(11) 1.395(10) C(22A)-C(23A) 1.385(11) C(11)-C(12) 1.523(10) C(23A)-C(24A) 1.374(12) C(13)-C(14) 1.447(10) C(24A)-C(25A) 1.359(12) C(15)-C(20) 1.376(11) C(25A)-C(26A) 1.393(11) C(15)-C(16) 1.398(12) C(27A)-C(28A) 1.428(11) C(16)-C(17) 1.364(12) C(28A)-C(29A) 1.479(11) C(17)-C(18) 1.387(15) C(29A)-C(30A) 1.370(12) C(18)-C(19) 1.348(15) C(29A)-C(34A) 1.403(12) C(19)-C(20) 1.372(12) C(30A)-C(31A) 1.382(13) C(21)-C(22) 1.390(10) C(31A)-C(32A) 1.383(15) C(21)-C(26) 1.402(10) C(32A)-C(33A) 1.364(15) C(22)-C(23) 1.387(11) C(32A)-C(35A) 1.523(14) C(23)-C(24) 1.367(12) C(33A)-C(34A) 1.386(13) 20

21 C(27)-Pd(1)-C(28) 40.7(3) C(27)-Pd(1)-N(2) 160.4(3) C(28)-Pd(1)-N(2) 120.0(3) C(27)-Pd(1)-N(1) 123.4(3) C(28)-Pd(1)-N(1) 164.0(3) N(2)-Pd(1)-N(1) 76.0(2) C(27A)-Pd(2)-C(28A) 40.5(3) C(27A)-Pd(2)-N(2A) 159.3(3) C(28A)-Pd(2)-N(2A) 118.8(3) C(27A)-Pd(2)-N(1A) 123.8(3) C(28A)-Pd(2)-N(1A) 163.1(3) N(2A)-Pd(2)-N(1A) 76.7(2) C(2)-N(1)-C(13) 117.0(6) C(2)-N(1)-Pd(1) 128.3(5) C(13)-N(1)-Pd(1) 114.7(5) C(11)-N(2)-C(14) 116.8(6) C(11)-N(2)-Pd(1) 127.1(5) C(14)-N(2)-Pd(1) 115.7(5) O(1)-N(3)-O(2) 122.9(8) O(1)-N(3)-C(27) 116.5(8) O(2)-N(3)-C(27) 120.6(8) C(2A)-N(1A)-C(13A) 117.4(7) C(2A)-N(1A)-Pd(2) 129.8(5) C(13A)-N(1A)-Pd(2) 112.6(5) C(11A)-N(2A)-C(14A) 117.3(6) C(11A)-N(2A)-Pd(2) 129.1(5) C(14A)-N(2A)-Pd(2) 112.8(5) O(2A)-N(3A)-O(1A) 123.1(9) O(2A)-N(3A)-C(27A) 116.6(9) O(1A)-N(3A)-C(27A) 120.3(8) N(1)-C(2)-C(3) 123.2(7) N(1)-C(2)-C(1) 116.9(7) C(3)-C(2)-C(1) 119.9(7) C(4)-C(3)-C(2) 120.7(8) C(3)-C(4)-C(5) 117.5(7) C(3)-C(4)-C(15) 120.2(7) C(5)-C(4)-C(15) 122.3(7) C(13)-C(5)-C(4) 117.4(7) C(13)-C(5)-C(6) 119.3(7) C(4)-C(5)-C(6) 123.2(7) C(7)-C(6)-C(5) 120.6(7) C(6)-C(7)-C(8) 122.4(7) C(14)-C(8)-C(9) 118.0(7) C(14)-C(8)-C(7) 117.6(7) C(9)-C(8)-C(7) 124.5(7) C(10)-C(9)-C(8) 117.2(7) C(10)-C(9)-C(21) 118.6(7) C(8)-C(9)-C(21) 124.2(7) C(9)-C(10)-C(11) 121.3(7) N(2)-C(11)-C(10) 123.0(7) N(2)-C(11)-C(12) 117.0(7) C(10)-C(11)-C(12) 119.9(7) N(1)-C(13)-C(5) 124.1(7) N(1)-C(13)-C(14) 117.0(6) 21

22 C(5)-C(13)-C(14) 118.9(7) N(2)-C(14)-C(8) 123.7(7) N(2)-C(14)-C(13) 115.7(6) C(8)-C(14)-C(13) 120.6(7) C(20)-C(15)-C(16) 117.4(8) C(20)-C(15)-C(4) 121.3(8) C(16)-C(15)-C(4) 121.3(8) C(17)-C(16)-C(15) 120.5(10) C(16)-C(17)-C(18) 119.9(11) C(19)-C(18)-C(17) 120.5(10) C(18)-C(19)-C(20) 119.4(11) C(19)-C(20)-C(15) 122.1(10) C(22)-C(21)-C(26) 116.8(7) C(22)-C(21)-C(9) 120.1(7) C(26)-C(21)-C(9) 123.0(7) C(23)-C(22)-C(21) 121.7(8) C(24)-C(23)-C(22) 121.1(8) C(23)-C(24)-C(25) 118.9(9) C(24)-C(25)-C(26) 120.3(9) C(25)-C(26)-C(21) 121.2(8) C(28)-C(27)-N(3) 116.4(8) C(28)-C(27)-Pd(1) 71.2(4) N(3)-C(27)-Pd(1) 112.4(5) C(27)-C(28)-C(29) 118.6(7) C(27)-C(28)-Pd(1) 68.1(4) C(29)-C(28)-Pd(1) 115.2(6) C(30)-C(29)-C(34) 117.1(8) C(30)-C(29)-C(28) 124.4(8) C(34)-C(29)-C(28) 118.5(8) C(29)-C(30)-C(31) 120.8(8) C(32)-C(31)-C(30) 121.5(9) C(31)-C(32)-C(33) 118.8(8) C(31)-C(32)-C(35) 119.2(9) C(33)-C(32)-C(35) 121.9(8) C(32)-C(33)-C(34) 120.3(8) C(29)-C(34)-C(33) 121.5(8) N(1A)-C(2A)-C(3A) 121.1(7) N(1A)-C(2A)-C(1A) 119.0(7) C(3A)-C(2A)-C(1A) 119.8(7) C(4A)-C(3A)-C(2A) 122.4(7) C(3A)-C(4A)-C(5A) 116.8(7) C(3A)-C(4A)-C(15A) 120.8(7) C(5A)-C(4A)-C(15A) 122.3(7) C(13A)-C(5A)-C(4A) 117.9(7) C(13A)-C(5A)-C(6A) 119.1(7) C(4A)-C(5A)-C(6A) 122.8(7) C(7A)-C(6A)-C(5A) 121.4(8) C(6A)-C(7A)-C(8A) 120.9(7) C(14A)-C(8A)-C(9A) 117.4(7) C(14A)-C(8A)-C(7A) 119.5(7) C(9A)-C(8A)-C(7A) 123.0(7) C(10A)-C(9A)-C(8A) 117.8(7) C(10A)-C(9A)-C(21A) 119.4(7) C(8A)-C(9A)-C(21A) 122.8(7) 22

23 C(9A)-C(10A)-C(11A) 121.6(7) N(2A)-C(11A)-C(10A) 121.9(7) N(2A)-C(11A)-C(12A) 117.5(7) C(10A)-C(11A)-C(12A) 120.6(7) C(5A)-C(13A)-N(1A) 124.1(7) C(5A)-C(13A)-C(14A) 120.0(7) N(1A)-C(13A)-C(14A) 115.9(7) N(2A)-C(14A)-C(8A) 123.6(7) N(2A)-C(14A)-C(13A) 117.5(7) C(8A)-C(14A)-C(13A) 118.8(7) C(20A)-C(15A)-C(16A) 119.1(9) C(20A)-C(15A)-C(4A) 122.9(8) C(16A)-C(15A)-C(4A) 117.8(8) C(17A)-C(16A)-C(15A) 119.8(10) C(16A)-C(17A)-C(18A) 120.1(10) C(19A)-C(18A)-C(17A) 119.5(10) C(18A)-C(19A)-C(20A) 120.8(10) C(15A)-C(20A)-C(19A) 120.4(9) C(22A)-C(21A)-C(26A) 119.4(7) C(22A)-C(21A)-C(9A) 120.0(7) C(26A)-C(21A)-C(9A) 120.5(7) C(21A)-C(22A)-C(23A) 120.9(8) C(24A)-C(23A)-C(22A) 118.8(8) C(25A)-C(24A)-C(23A) 121.3(8) C(24A)-C(25A)-C(26A) 119.8(9) C(21A)-C(26A)-C(25A) 119.7(8) C(28A)-C(27A)-N(3A) 119.6(8) C(28A)-C(27A)-Pd(2) 70.1(4) N(3A)-C(27A)-Pd(2) 114.8(5) C(27A)-C(28A)-C(29A) 120.9(8) C(27A)-C(28A)-Pd(2) 69.4(4) C(29A)-C(28A)-Pd(2) 119.6(6) C(30A)-C(29A)-C(34A) 117.2(9) C(30A)-C(29A)-C(28A) 124.2(9) C(34A)-C(29A)-C(28A) 118.6(9) C(29A)-C(30A)-C(31A) 120.6(10) C(30A)-C(31A)-C(32A) 121.8(11) C(33A)-C(32A)-C(31A) 118.5(11) C(33A)-C(32A)-C(35A) 121.9(13) C(31A)-C(32A)-C(35A) 119.6(14) C(32A)-C(33A)-C(34A) 120.0(11) C(33A)-C(34A)-C(29A) 121.8(10) Symmetry transformations used to generate equivalent atoms: 23

24 Table S9. Anisotropic displacement parameters (Å 2 x 10 3 ) for sta04. The anisotropic displacement factor exponent takes the form: -2p 2 [ h 2 a* 2 U h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 Pd(1) 23(1) 32(1) 36(1) -13(1) 1(1) -10(1) Pd(2) 26(1) 31(1) 32(1) -10(1) 4(1) -17(1) O(1) 70(5) 69(5) 45(4) -10(4) 4(4) -35(4) O(2) 43(4) 57(4) 65(5) -34(4) -3(3) -18(3) O(1A) 76(5) 84(6) 58(5) -28(4) 6(4) -56(5) O(2A) 49(5) 75(5) 109(6) -15(5) -25(4) -34(4) N(1) 30(4) 22(4) 35(4) -17(3) 7(3) -12(3) N(2) 26(4) 27(4) 30(4) -11(3) 3(3) -13(3) N(3) 27(4) 45(5) 47(5) -7(5) 7(4) -11(4) N(1A) 26(4) 33(4) 37(4) -20(3) 1(3) -9(3) N(2A) 28(4) 23(4) 33(4) -14(3) 0(3) -9(3) N(3A) 44(5) 55(6) 58(6) 3(5) -1(4) -44(5) C(1) 44(6) 37(5) 34(5) 0(4) -1(4) -18(5) C(2) 31(5) 31(5) 39(5) -19(4) 4(4) -18(4) C(3) 45(5) 35(5) 28(5) -10(4) 10(4) -24(5) C(4) 37(5) 35(5) 34(5) -19(4) 9(4) -23(4) C(5) 27(5) 38(5) 26(5) -19(4) 8(4) -17(4) C(6) 19(4) 38(5) 37(5) -19(4) 5(4) -15(4) C(7) 21(4) 33(5) 38(5) -21(4) 4(4) -13(4) C(8) 26(4) 33(5) 27(5) -20(4) 6(4) -14(4) C(9) 27(5) 25(4) 32(5) -16(4) -2(4) -9(4) C(10) 35(5) 40(5) 28(5) -14(4) 4(4) -21(4) C(11) 20(4) 32(5) 35(5) -18(4) 4(4) -11(4) C(12) 20(4) 43(5) 47(6) -17(5) 7(4) -10(4) C(13) 17(4) 21(4) 31(5) -14(4) 2(3) -5(3) C(14) 22(4) 25(4) 31(5) -13(4) 4(4) -12(4) C(15) 32(5) 34(5) 58(6) -17(5) 15(5) -21(4) C(16) 48(6) 58(6) 54(6) -14(5) -1(5) -36(5) C(17) 43(6) 60(7) 104(10) -34(7) 3(6) -30(6) C(18) 40(7) 62(8) 130(12) -43(8) 28(7) -36(6) C(19) 56(7) 57(7) 93(9) -45(7) 45(7) -38(6) C(20) 49(6) 37(5) 54(6) -21(5) 17(5) -30(5) C(21) 29(5) 26(5) 33(5) -14(4) 5(4) -11(4) C(22) 35(5) 42(6) 31(5) -14(5) 3(4) -17(4) C(23) 40(6) 35(5) 45(6) -11(5) 5(5) -19(5) C(24) 52(6) 32(6) 50(6) -14(5) -4(5) -4(5) C(25) 32(5) 48(6) 50(6) -22(5) -12(5) -5(5) C(26) 42(5) 38(5) 36(5) -23(5) 6(4) -17(4) C(27) 26(5) 39(5) 34(5) -18(4) 5(4) -8(4) C(28) 21(4) 37(5) 43(6) -10(5) 0(4) -8(4) C(29) 25(5) 37(5) 33(5) -10(4) 6(4) -10(4) C(30) 36(5) 33(5) 47(6) -12(5) 3(4) -10(4) C(31) 50(6) 41(6) 49(6) -8(5) -1(5) -9(5) C(32) 23(5) 43(6) 37(6) -7(5) 7(4) -15(4) C(33) 38(5) 54(6) 43(6) -14(5) 14(5) -26(5) C(34) 41(6) 47(6) 54(6) -12(5) 1(5) -24(5) C(35) 52(6) 71(7) 53(7) -26(6) 16(5) -21(6) C(1A) 24(5) 54(6) 56(6) -15(5) 6(4) -20(5) 24

25 C(2A) 24(5) 41(5) 38(5) -15(5) -3(4) -16(4) C(3A) 23(5) 39(5) 46(6) -15(5) -7(4) -5(4) C(4A) 33(5) 34(5) 33(5) -16(4) -4(4) -15(4) C(5A) 26(4) 24(4) 36(5) -12(4) -5(4) -11(4) C(6A) 49(6) 29(5) 31(5) -9(4) 1(4) -19(4) C(7A) 24(5) 33(5) 43(5) -10(4) 7(4) -15(4) C(8A) 20(4) 26(4) 32(5) -13(4) 6(4) -12(4) C(9A) 24(4) 29(5) 31(5) -15(4) 0(4) -14(4) C(10A) 22(4) 34(5) 37(5) -16(4) -1(4) -12(4) C(11A) 28(5) 33(5) 32(5) -17(4) 2(4) -13(4) C(12A) 29(5) 39(5) 34(5) 0(4) -5(4) -19(4) C(13A) 25(4) 16(4) 36(5) -14(4) 1(4) -6(4) C(14A) 26(4) 23(4) 33(5) -12(4) -2(4) -11(4) C(15A) 30(5) 36(5) 42(6) -10(5) -1(4) -10(4) C(16A) 55(7) 51(7) 63(7) -17(6) -1(6) -12(6) C(17A) 78(8) 34(6) 80(9) -9(6) -8(7) -12(6) C(18A) 55(7) 22(5) 77(8) 4(6) -30(6) -14(5) C(19A) 96(9) 43(7) 46(7) 1(6) -16(6) -25(6) C(20A) 79(8) 36(6) 58(7) -21(6) -2(6) -21(5) C(21A) 25(4) 32(5) 38(5) -14(4) 10(4) -20(4) C(22A) 39(5) 46(6) 45(6) -22(5) 9(4) -26(5) C(23A) 33(5) 68(7) 58(7) -32(6) -4(5) -24(5) C(24A) 32(5) 60(7) 62(7) -18(6) 9(5) -27(5) C(25A) 41(6) 85(8) 52(6) -37(6) 13(5) -35(6) C(26A) 53(6) 87(8) 45(6) -34(6) 22(5) -54(6) C(27A) 42(5) 47(6) 41(5) -15(5) 6(4) -33(5) C(28A) 38(5) 29(5) 34(5) -9(4) -1(4) -19(4) C(29A) 54(6) 43(6) 35(6) 0(5) 0(5) -41(5) C(30A) 55(6) 61(7) 32(6) -13(5) 10(5) -37(5) C(31A) 118(11) 77(9) 50(7) -21(7) 15(7) -77(9) C(32A) 129(12) 74(9) 45(7) 10(7) -28(8) -79(9) C(33A) 93(9) 60(7) 55(8) 9(6) -25(7) -54(7) C(34A) 52(6) 52(6) 45(6) -4(5) -9(5) -33(5) C(35A) 243(19) 109(11) 54(8) 6(8) -52(10) -114(13) 25

26 Table S10. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (Å 2 x 10 3 ) for (bc)pd(ns CH3 ). x y z U(eq) H(1A) H(1B) H(1C) H(3) H(6) H(7) H(10) H(12A) H(12B) H(12C) H(16) H(17) H(18) H(19) H(20) H(22) H(23) H(24) H(25) H(26) H(27) H(28) H(30) H(31) H(33) H(34) H(35A) H(35B) H(35C) H(1A1) H(1A2) H(1A3) H(3A) H(6A) H(7A) H(10A) H(12D) H(12E) H(12F) H(16A) H(17A) H(18A) H(19A) H(20A) H(22A) H(23A) H(24A)

27 H(25A) H(26A) H(27A) H(28A) H(30A) H(31A) H(33A) H(34A) H(35D) H(35E) H(35F)

28 (bc)pd(ns Br ): Data collection. A red air- and moisture-sensitive crystal with approximate dimensions 0.30 x 0.20 x 0.10 mm 3 was selected under oil at ambient conditions and attached to the tip of a glass capillary. The crystal was mounted in a stream of cold nitrogen at 173(2) K and centered in the X-ray beam by using a video camera. The crystal evaluation and data collection were performed on a Bruker CCD-1000 diffractometer with Mo Kα (λ = Å) radiation and a diffractometer to crystal distance of cm. The initial cell constants were obtained from three series of ω scans at different starting angles. Each series consisted of 20 frames collected at intervals of 0.3º in a 6º range about ω with the exposure time of 10 seconds per frame. A total of 57 reflections was obtained. The reflections were successfully indexed by an automated indexing routine built in the SMART program. The final cell constants were calculated from a set of 7685 strong reflections from the actual data collection. The data were collected by using the multirun data collection routine. The reciprocal space was surveyed to the extent of a full sphere to a resolution of 0.80 Å. A total of data were harvested by collecting three sets of frames with 0.3º scans in ω with an exposure time 30 sec per frame. This highly redundant dataset was corrected for Lorentz and polarization effects. The absorption correction was based on fitting a function to the empirical transmission surface as sampled by multiple equivalent measurements. 2 Structure Solution and Refinement The systematic absences in the diffraction data were consistent for the space groups P1 and P1. 3 The E-statistics strongly suggested the centrosymmetric space group P1 that yielded chemically reasonable and computationally stable results of refinement. A successful solution by the direct methods provided most non-hydrogen atoms from the E-map. The remaining non-hydrogen atoms were located in an alternating series of 28

29 least-squares cycles and difference Fourier maps. All non-hydrogen atoms were refined with anisotropic displacement coefficients. All hydrogen atoms were included in the structure factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients. There is one palladium complex and two solvate molecules of dichloromethane in the asymmetric unit. The final least-squares refinement of 426 parameters against 6935 data resulted in residuals R (based on F 2 for I 2σ) and wr (based on F 2 for all data) of and , respectively. The final difference Fourier map was featureless. The ORTEP diagrams are drawn with 30% probability ellipsoids. 29

30 Figure S3. ORTEP drawing of the p-methyl-β-nitrostyrene adduct of bathocuproine-coordinated palladium(0), (bc)pd(ns Br ). 30

31 Table S11. Crystal data and structure refinement for (bc)pd(ns Br ). Identification code sta03 Empirical formula C 36 H 30 Br Cl 4 N 3 O 2 Pd Formula weight Temperature 173(2) K Wavelength Å Crystal system Triclinic Space group P1 Unit cell dimensions a = (8) Å α= (1). b = (9) Å β= (1). c = (10) Å γ = (1). Volume (2) Å 3 Z 2 Density (calculated) Mg/m 3 Absorption coefficient mm -1 F(000) 864 Crystal size 0.30 x 0.20 x 0.10 mm 3 Theta range for data collection 1.66 to Index ranges -12<=h<=13, -14<=k<=16, 0<=l<=17 Reflections collected Independent reflections 6935 [R(int) = ] Completeness to theta = % Absorption correction Empirical with SADABS Max. and min. transmission and Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 6935 / 0 / 426 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Largest diff. peak and hole and e.å -3 31

32 Table S12. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for (bc)pd(ns Br ). U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) Pd 6947(1) 11031(1) 2186(1) 22(1) Br 5501(1) 16749(1) 1488(1) 50(1) Cl(1) 8107(1) 8103(1) 1897(1) 50(1) Cl(2) 9265(2) 8250(1) 3599(1) 54(1) Cl(3) 1073(2) 5636(2) 1701(2) 86(1) Cl(4) 2650(2) 4586(2) 3383(2) 73(1) O(1) 9054(3) 11132(3) 44(3) 42(1) O(2) 7527(4) 11413(3) -884(3) 46(1) N(1) 5722(3) 9584(3) 2984(3) 22(1) N(2) 7254(3) 10395(3) 3860(3) 23(1) N(3) 7973(4) 11470(3) -132(3) 32(1) C(1) 4985(4) 9191(4) 2514(3) 27(1) C(2) 4184(4) 8279(4) 3127(4) 27(1) C(3) 4133(4) 7719(4) 4234(3) 25(1) C(4) 4905(4) 8138(3) 4738(3) 23(1) C(5) 4891(4) 7681(4) 5895(3) 25(1) C(6) 5687(4) 8073(4) 6327(3) 24(1) C(7) 6577(4) 8955(3) 5666(3) 23(1) C(8) 7515(4) 9331(4) 6071(3) 25(1) C(9) 8246(4) 10236(4) 5352(3) 26(1) C(10) 8091(4) 10768(3) 4261(3) 24(1) C(11) 6520(4) 9494(3) 4547(3) 21(1) C(12) 5686(4) 9060(3) 4077(3) 22(1) C(13) 5045(5) 9760(4) 1310(4) 36(1) C(14) 3298(4) 6729(4) 4842(4) 26(1) C(15) 1997(5) 6798(4) 4752(4) 35(1) C(16) 1203(5) 5880(4) 5295(4) 41(1) C(17) 1712(5) 4866(5) 5913(4) 44(1) C(18) 2993(5) 4792(4) 5997(4) 41(1) C(19) 3781(5) 5715(4) 5481(4) 33(1) C(20) 7770(4) 8769(4) 7209(3) 26(1) C(21) 7869(4) 7616(4) 7711(4) 30(1) C(22) 8202(5) 7111(4) 8742(4) 35(1) C(23) 8444(5) 7738(4) 9280(4) 36(1) C(24) 8350(5) 8888(4) 8798(4) 35(1) C(25) 8018(4) 9402(4) 7758(4) 30(1) C(26) 8881(4) 11757(4) 3503(4) 31(1) C(27) 7174(4) 11970(4) 536(3) 28(1) C(28) 7808(4) 12488(4) 1059(3) 28(1) C(29) 7219(4) 13493(4) 1192(3) 28(1) C(30) 5940(4) 13779(4) 1132(3) 29(1) C(31) 5413(5) 14731(4) 1231(4) 35(1) C(32) 6195(5) 15413(4) 1406(4) 36(1) C(33) 7484(5) 15155(4) 1484(4) 34(1) C(34) 7976(4) 14208(4) 1377(4) 31(1) C(35) 9145(5) 8870(4) 2216(4) 41(1) C(36) 1920(7) 5807(6) 2607(7) 72(2) 32

33 Table S13. Bond lengths [Å] and angles [ ] for (bc)pd(ns Br ). Pd-C(28) 2.057(4) C(7)-C(8) 1.424(6) Pd-C(27) 2.060(4) C(8)-C(9) 1.376(6) Pd-N(1) 2.160(3) C(8)-C(20) 1.490(6) Pd-N(2) 2.169(3) C(9)-C(10) 1.399(6) Br-C(32) 1.897(5) C(10)-C(26) 1.489(6) Cl(1)-C(35) 1.764(5) C(11)-C(12) 1.447(6) Cl(2)-C(35) 1.750(6) C(14)-C(19) 1.387(7) Cl(3)-C(36) 1.744(8) C(14)-C(15) 1.396(6) Cl(4)-C(36) 1.743(8) C(15)-C(16) 1.383(7) O(1)-N(3) 1.225(5) C(16)-C(17) 1.390(8) O(2)-N(3) 1.235(5) C(17)-C(18) 1.372(8) N(1)-C(1) 1.341(5) C(18)-C(19) 1.383(7) N(1)-C(12) 1.360(5) C(20)-C(25) 1.394(6) N(2)-C(10) 1.335(5) C(20)-C(21) 1.396(6) N(2)-C(11) 1.363(5) C(21)-C(22) 1.389(6) N(3)-C(27) 1.453(6) C(22)-C(23) 1.372(7) C(1)-C(2) 1.391(6) C(23)-C(24) 1.390(7) C(1)-C(13) 1.494(6) C(24)-C(25) 1.400(6) C(2)-C(3) 1.379(6) C(27)-C(28) 1.437(6) C(3)-C(4) 1.422(6) C(28)-C(29) 1.488(6) C(3)-C(14) 1.482(6) C(29)-C(30) 1.385(6) C(4)-C(12) 1.400(6) C(29)-C(34) 1.404(6) C(4)-C(5) 1.442(6) C(30)-C(31) 1.384(7) C(5)-C(6) 1.347(6) C(31)-C(32) 1.380(7) C(6)-C(7) 1.433(6) C(32)-C(33) 1.393(7) C(7)-C(11) 1.410(6) C(33)-C(34) 1.372(7) 33

34 C(28)-Pd-C(27) 40.86(18) C(28)-Pd-N(1) (15) C(27)-Pd-N(1) (15) C(28)-Pd-N(2) (16) C(27)-Pd-N(2) (16) N(1)-Pd-N(2) 76.59(13) C(1)-N(1)-C(12) 118.4(4) C(1)-N(1)-Pd 126.5(3) C(12)-N(1)-Pd 115.0(3) C(10)-N(2)-C(11) 118.5(3) C(10)-N(2)-Pd 127.2(3) C(11)-N(2)-Pd 114.3(3) O(1)-N(3)-O(2) 121.8(4) O(1)-N(3)-C(27) 120.7(4) O(2)-N(3)-C(27) 117.6(4) N(1)-C(1)-C(2) 121.1(4) N(1)-C(1)-C(13) 118.1(4) C(2)-C(1)-C(13) 120.8(4) C(3)-C(2)-C(1) 122.1(4) C(2)-C(3)-C(4) 117.0(4) C(2)-C(3)-C(14) 119.9(4) C(4)-C(3)-C(14) 123.1(4) C(12)-C(4)-C(3) 118.1(4) C(12)-C(4)-C(5) 118.7(4) C(3)-C(4)-C(5) 123.2(4) C(6)-C(5)-C(4) 120.9(4) C(5)-C(6)-C(7) 121.9(4) C(11)-C(7)-C(8) 117.6(4) C(11)-C(7)-C(6) 118.4(4) C(8)-C(7)-C(6) 124.0(4) C(9)-C(8)-C(7) 117.4(4) C(9)-C(8)-C(20) 119.2(4) C(7)-C(8)-C(20) 123.4(4) C(8)-C(9)-C(10) 121.8(4) N(2)-C(10)-C(9) 121.3(4) N(2)-C(10)-C(26) 117.9(4) C(9)-C(10)-C(26) 120.8(4) N(2)-C(11)-C(7) 123.2(4) N(2)-C(11)-C(12) 117.3(3) C(7)-C(11)-C(12) 119.5(4) N(1)-C(12)-C(4) 123.2(4) N(1)-C(12)-C(11) 116.6(4) C(4)-C(12)-C(11) 120.2(4) C(19)-C(14)-C(15) 118.5(4) C(19)-C(14)-C(3) 121.7(4) C(15)-C(14)-C(3) 119.8(4) C(16)-C(15)-C(14) 120.9(5) C(15)-C(16)-C(17) 119.6(5) C(18)-C(17)-C(16) 119.7(5) C(17)-C(18)-C(19) 120.8(5) C(18)-C(19)-C(14) 120.4(4) C(25)-C(20)-C(21) 118.7(4) C(25)-C(20)-C(8) 119.8(4) C(21)-C(20)-C(8) 121.3(4) C(22)-C(21)-C(20) 120.6(4) C(23)-C(22)-C(21) 120.5(4) C(22)-C(23)-C(24) 120.1(4) C(23)-C(24)-C(25) 119.7(4) C(20)-C(25)-C(24) 120.5(4) C(28)-C(27)-N(3) 117.8(4) C(28)-C(27)-Pd 69.5(2) N(3)-C(27)-Pd 115.0(3) C(27)-C(28)-C(29) 118.8(4) C(27)-C(28)-Pd 69.7(2) C(29)-C(28)-Pd 113.5(3) C(30)-C(29)-C(34) 117.1(4) C(30)-C(29)-C(28) 123.2(4) C(34)-C(29)-C(28) 119.7(4) C(31)-C(30)-C(29) 122.6(4) C(32)-C(31)-C(30) 118.4(5) C(31)-C(32)-C(33) 121.2(5) C(31)-C(32)-Br 118.8(4) C(33)-C(32)-Br 120.0(4) C(34)-C(33)-C(32) 118.9(4) C(33)-C(34)-C(29) 121.9(4) Cl(2)-C(35)-Cl(1) 110.7(3) Cl(4)-C(36)-Cl(3) 112.8(4) Symmetry transformations used to generate equivalent atoms:

35 Table S14. Anisotropic displacement parameters (Å 2 x 10 3 ) for (bc)pd(ns Br ). The anisotropic displacement factor exponent takes the form: -2π 2 [ h 2 a* 2 U h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 Pd 25(1) 24(1) 17(1) -6(1) -4(1) 1(1) Br 53(1) 40(1) 67(1) -30(1) -19(1) 12(1) Cl(1) 52(1) 53(1) 53(1) -27(1) -13(1) -3(1) Cl(2) 54(1) 55(1) 56(1) -21(1) -24(1) 11(1) Cl(3) 109(2) 90(1) 56(1) -24(1) -14(1) -15(1) Cl(4) 81(1) 78(1) 71(1) -40(1) -12(1) 3(1) O(1) 38(2) 49(2) 38(2) -20(2) -6(2) 11(2) O(2) 56(2) 56(2) 35(2) -26(2) -12(2) -2(2) N(1) 24(2) 27(2) 17(2) -10(1) -5(1) 2(1) N(2) 24(2) 25(2) 20(2) -9(2) -4(1) 2(1) N(3) 38(2) 32(2) 25(2) -11(2) -2(2) -1(2) C(1) 26(2) 34(2) 23(2) -13(2) -7(2) 4(2) C(2) 23(2) 34(2) 29(2) -17(2) -6(2) -1(2) C(3) 25(2) 27(2) 26(2) -12(2) -6(2) 2(2) C(4) 21(2) 26(2) 24(2) -12(2) -5(2) 1(2) C(5) 23(2) 26(2) 19(2) -4(2) -1(2) -2(2) C(6) 25(2) 29(2) 15(2) -5(2) -3(2) 0(2) C(7) 24(2) 26(2) 20(2) -9(2) -5(2) 2(2) C(8) 28(2) 26(2) 22(2) -11(2) -7(2) 1(2) C(9) 28(2) 25(2) 26(2) -9(2) -10(2) 0(2) C(10) 25(2) 24(2) 24(2) -11(2) -3(2) 0(2) C(11) 23(2) 24(2) 18(2) -10(2) -4(2) 2(2) C(12) 22(2) 23(2) 20(2) -9(2) -4(2) 5(2) C(13) 37(3) 48(3) 21(2) -10(2) -7(2) -10(2) C(14) 27(2) 30(2) 29(2) -17(2) -6(2) -2(2) C(15) 31(2) 35(3) 41(3) -15(2) -13(2) 1(2) C(16) 28(3) 43(3) 55(3) -21(3) -9(2) -9(2) C(17) 47(3) 41(3) 42(3) -11(2) -5(2) -16(2) C(18) 51(3) 31(3) 37(3) -7(2) -12(2) -4(2) C(19) 31(2) 34(3) 31(2) -10(2) -6(2) -2(2) C(20) 24(2) 31(2) 23(2) -8(2) -7(2) -2(2) C(21) 34(2) 32(2) 26(2) -13(2) -8(2) -5(2) C(22) 42(3) 31(3) 26(2) -3(2) -9(2) -3(2) C(23) 41(3) 40(3) 22(2) -5(2) -11(2) -7(2) C(24) 38(3) 43(3) 32(3) -20(2) -11(2) -1(2) C(25) 33(2) 32(2) 27(2) -10(2) -10(2) -1(2) C(26) 30(2) 35(3) 27(2) -9(2) -5(2) -10(2) C(27) 32(2) 28(2) 20(2) -6(2) -3(2) 1(2) C(28) 29(2) 29(2) 22(2) -7(2) 0(2) -2(2) C(29) 34(2) 27(2) 17(2) -1(2) -3(2) -3(2) C(30) 33(2) 28(2) 24(2) -9(2) -3(2) -2(2) C(31) 36(3) 37(3) 30(2) -11(2) -9(2) 6(2) C(32) 44(3) 33(3) 33(3) -16(2) -7(2) 4(2) C(33) 40(3) 32(3) 31(2) -12(2) -7(2) -4(2) C(34) 29(2) 32(2) 29(2) -8(2) -6(2) -1(2) C(35) 40(3) 33(3) 51(3) -19(2) -6(2) -4(2) C(36) 64(4) 68(5) 90(5) -43(4) -2(4) -9(4)

Complex Promoted by Electron-Deficient Alkenes. Brian V. Popp and Shannon S. Stahl*

Complex Promoted by Electron-Deficient Alkenes. Brian V. Popp and Shannon S. Stahl* Oxidatively-Induced Reductive Elimination of Dioxygen from an η 2 -Peroxopalladium(II) Complex Promoted by Electron-Deficient Alkenes Brian V. Popp and Shannon S. Stahl* Department of Chemistry, University

More information

Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N

Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N Supporting information for: Crystallographic characterization of the geometry changes upon electron loss from 2-tertbutyl-3-aryl-2,3-diazabicyclo[2.2.2]octanes Stephen F. Nelsen, Asgeir E. Konradsson,

More information

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Emmanuelle Despagnet-Ayoub, Michael K. Takase, Jay A. Labinger and John E. Bercaw Contents 1. Experimental

More information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information Experimental Supporting Information for Experimental and DFT Studies Explain Solvent Control of C-H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of eutral and Cationic Heterocycles

More information

Supporting Information

Supporting Information Supporting Information Characterization of Peroxo and Hydroperoxo Intermediates in the Aerobic Oxidation of N-Heterocyclic-Carbene-Coordinated Palladium(0) Michael M. Konnick, Ilia A. Guzei, and Shannon

More information

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Supplementary Information Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Galyna Dubinina, Hideki Furutachi, and David A. Vicic * Department of Chemistry, University of Hawaii,

More information

Supplementary Materials for

Supplementary Materials for www.advances.sciencemag.org/cgi/content/full/1/5/e1500304/dc1 Supplementary Materials for Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne click reaction This PDF file includes:

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Single-Crystal-to-Single-Crystal Transformation of an Anion Exchangeable

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Carbene Activation of P 4 and Subsequent Derivatization Jason D. Masuda, Wolfgang W. Schoeller, Bruno Donnadieu, and Guy Bertrand * [*] Dr.

More information

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin Page S16 Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin Tarek Sammakia,* Deidre M. Johns, Ganghyeok Kim, and Martin

More information

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene Gaurav Bhalla, Xiang Yang Liu, Jonas Oxgaard, William A. Goddard, III, Roy A. Periana* Loker Hydrocarbon

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-cinnamyl-chiral alcohol Lab ID: 12040 User:

More information

Structure Report for J. Reibenspies

Structure Report for J. Reibenspies X-ray Diffraction Laboratory Center for Chemical Characterization and Analysis Department of Chemistry Texas A & M University Structure Report for J. Reibenspies Project Name: Sucrose Date: January 29,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Early-Late Heterobimetallic Rh-Ti and Rh-Zr Complexes via Addition of Early Metal Chlorides to Mono- and Divalent Rhodium Dan A. Smith and Oleg V. Ozerov* Department

More information

Synthesis of Vinyl Germylenes

Synthesis of Vinyl Germylenes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Material for Synthesis of Vinyl Germylenes Małgorzata Walewska, Judith Baumgartner,*

More information

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole James T. Brewster II, a Hadiqa Zafar, a Matthew McVeigh, a Christopher D. Wight, a Gonzalo

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-furan-enzymatic alcohol Lab ID: 12042 User:

More information

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center Supporting Information Connie C. Lu and Jonas C. Peters* Division of Chemistry and

More information

Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide. Ka-Cheong Lau, Richard F. Jordan*

Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide. Ka-Cheong Lau, Richard F. Jordan* Supporting Information for: Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide Ka-Cheong Lau, Richard F. Jordan* Department of Chemistry, The University of Chicago, 5735 South Ellis

More information

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J.

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J. Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically Crowded (C 5 Me 5 ) 3 M Complexes Thomas J. Mueller, Joseph W. Ziller, and William J. Evans * Department of Chemistry, University

More information

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage SUPPORTING INFORMATION Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage Chi Yang, a Ushasree Kaipa, a Qian Zhang Mather,

More information

Supporting Information. Table of Contents

Supporting Information. Table of Contents Supporting Information Selective Anion Exchange and Tunable Luminescent Behaviors of Metal-Organic Framework Based Supramolecular Isomers Biplab Manna, Shweta Singh, Avishek Karmakar, Aamod V.Desai and

More information

Supporting Information

Supporting Information Submitted to Cryst. Growth Des. Version 1 of August 22, 2007 Supporting Information Engineering Hydrogen-Bonded Molecular Crystals Built from 1,3,5-Substituted Derivatives of Benzene: 6,6',6''-(1,3,5-Phenylene)tris-1,3,5-triazine-2,4-diamines

More information

Binuclear Rare-Earth Polyhydride Complexes Bearing both

Binuclear Rare-Earth Polyhydride Complexes Bearing both Supporting Information Binuclear Rare-Earth Polyhydride Complexes Bearing both Terminal and Bridging Hydride Ligands Jianhua Cheng, Haiyu Wang, Masayoshi Nishiura and Zhaomin Hou* S1 Contents Experimental

More information

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage Kapil S. Lokare,* a Robert J. Nielsen, *b Muhammed Yousufuddin, c William A. Goddard III, b and Roy A. Periana*,a a Scripps

More information

Supporting Information

Supporting Information Supporting Information Tris(allyl)indium Compounds: Synthesis and Structural Characterization Ilja Peckermann, Gerhard Raabe, Thomas P. Spaniol and Jun Okuda* Synthesis and characterization Figure S1:

More information

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Supporting Information Ferrocenyl BODIPYs: Synthesis, Structure and Properties Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Department of Chemistry, Indian Institute of Technology

More information

Scandium and Yttrium Metallocene Borohydride Complexes: Comparisons of (BH 4 ) 1 vs (BPh 4 ) 1 Coordination and Reactivity

Scandium and Yttrium Metallocene Borohydride Complexes: Comparisons of (BH 4 ) 1 vs (BPh 4 ) 1 Coordination and Reactivity Scandium and Yttrium Metallocene Borohydride Complexes: Comparisons of (BH 4 ) 1 vs (BPh 4 ) 1 Coordination and Reactivity Selvan Demir, Nathan A. Siladke, Joseph W. Ziller, and William J. Evans * Department

More information

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes Ruth Castro-Rodrigo, Sumit Chakraborty, Lloyd Munjanja, William W. Brennessel, and William D. Jones* Department

More information

Copper Mediated Fluorination of Aryl Iodides

Copper Mediated Fluorination of Aryl Iodides Copper Mediated Fluorination of Aryl Iodides Patrick S. Fier and John F. Hartwig* Department of Chemistry, University of California, Berkeley, California 94720, United States. Supporting Information Table

More information

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Electronic supplementary information Strategy to Enhance Solid-State Fluorescence and

More information

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes Ashley Carter, Alexander Mason, Michael A. Baker, Donald G. Bettler, Angelo Changas, Colin D. McMillen,

More information

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion Supporting Information for Cu(I)-MOF: naked-eye colorimetric sensor for humidity and formaldehyde in single-crystal-to-single-crystal fashion Yang Yu, Xiao-Meng Zhang, Jian-Ping Ma, Qi-Kui Liu, Peng Wang,

More information

Supporting Information. Table of Contents

Supporting Information. Table of Contents Supporting Information Cyclo-P 3 Complexes of Vanadium. Redox Properties and Origin of the 31 P NMR Chemical Shift. Balazs Pinter,, Kyle T. Smith, Masahiro Kamitani, Eva M. Zolnhofer,ǁ Ba L. Tran, Skye

More information

Spain c Departament de Química Orgànica, Universitat de Barcelona, c/ Martí I Franqués 1-11, 08080, Barcelona, Spain.

Spain c Departament de Química Orgànica, Universitat de Barcelona, c/ Martí I Franqués 1-11, 08080, Barcelona, Spain. a Institute of Chemical Research of Catalonia, Av. Països Catalans, 16, 43007 Tarragona, Spain. b Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193 Barcelona, Spain

More information

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex Mechanistic insights on the controlled switch from oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex Emmanuelle Despagnet-Ayoub, *,a,b Michael K. Takase, c Lawrence M.

More information

Stereoselective Synthesis of (-) Acanthoic Acid

Stereoselective Synthesis of (-) Acanthoic Acid 1 Stereoselective Synthesis of (-) Acanthoic Acid Taotao Ling, Bryan A. Kramer, Michael A. Palladino, and Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of California, San

More information

Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts

Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting Information for: Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their

More information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases Jingming Zhang, a Haohan Wu, a Thomas J. Emge, a and Jing Li* a a Department of Chemistry and Chemical Biology,

More information

Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes to Borinic Esters Lauren E. Longobardi, Connie Tang, and Douglas W.

Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes to Borinic Esters Lauren E. Longobardi, Connie Tang, and Douglas W. Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Supplementary Data for: Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes

More information

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Kang Yuan, Goonay Yousefalizadeh, Felix Saraci, Tai Peng, Igor Kozin, Kevin G. Stamplecoskie, Suning Wang*

More information

Stabilization of a Reactive Polynuclear Silver Carbide Cluster through the Encapsulation within Supramolecular Cage

Stabilization of a Reactive Polynuclear Silver Carbide Cluster through the Encapsulation within Supramolecular Cage Supporting Information Stabilization of a Reactive Polynuclear Silver Carbide Cluster through the Encapsulation within Supramolecular Cage Cai-Yan Gao, Liang Zhao,* and Mei-Xiang Wang* The Key Laboratory

More information

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2 S1 Chemistry at Boron: Synthesis and Properties of Red to Near-IR Fluorescent Dyes based on Boron Substituted Diisoindolomethene Frameworks Gilles Ulrich, a, * Sebastien Goeb a, Antoinette De Nicola a,

More information

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or Ethylene Trimerization Catalysts Based on Chromium Complexes with a Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or ortho-thiomethoxy Substituents: Well Defined Catalyst Precursors and

More information

Catalytic hydrogenation of liquid alkenes with a silica grafted hydride. pincer iridium(iii) complex: Support for a heterogeneous mechanism

Catalytic hydrogenation of liquid alkenes with a silica grafted hydride. pincer iridium(iii) complex: Support for a heterogeneous mechanism Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 215 Electronic Supplementary Information for Catalysis Science & Technology Catalytic

More information

Supporting Information for the Article Entitled

Supporting Information for the Article Entitled Supporting Information for the Article Entitled Catalytic Production of Isothiocyanates via a Mo(II) / Mo(IV) Cycle for the Soft Sulfur Oxidation of Isonitriles authored by Wesley S. Farrell, Peter Y.

More information

Crystal structure analysis of N,2-diphenylacetamide

Crystal structure analysis of N,2-diphenylacetamide International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.9, No.04 pp 301-305, 2016 Crystal structure analysis of N,2-diphenylacetamide K. Elumalai 1, Subramaniyan Sathiyaraj 2,

More information

Selective total encapsulation of the sulfate anion by neutral nano-jars

Selective total encapsulation of the sulfate anion by neutral nano-jars Supporting Information for Selective total encapsulation of the sulfate anion by neutral nano-jars Isurika R. Fernando, Stuart A. Surmann, Alexander A. Urech, Alexander M. Poulsen and Gellert Mezei* Department

More information

Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II)

Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II) Asian Journal of Chemistry Vol. 20, No. 8 (2008), 5834-5838 Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II) HAMID GLCHUBIAN Department of Chemistry, Mazandaran University, P..

More information

Seth B. Harkins and Jonas C. Peters

Seth B. Harkins and Jonas C. Peters Amido-bridged Cu 2 N 2 diamond cores that minimize structural reorganization and facilitate reversible redox behavior between a Cu 1 Cu 1 and a Class III delocalized Cu 1.5 Cu 1.5 species. Seth B. Harkins

More information

Supplementary Information

Supplementary Information Supplementary Information Eco-Friendly Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones Catalyzed by FeCl 3 /Al 2 O 3 and Analysis of Large 1 H NMR Diastereotopic Effect Isabel Monreal, a Mariano Sánchez-Castellanos,

More information

White Phosphorus is Air-Stable Within a Self-Assembled Tetrahedral Capsule

White Phosphorus is Air-Stable Within a Self-Assembled Tetrahedral Capsule www.sciencemag.org/cgi/content/full/324/5935/1697/dc1 Supporting Online Material for White Phosphorus is Air-Stable Within a Self-Assembled Tetrahedral Capsule Prasenjit Mal, Boris Breiner, Kari Rissanen,

More information

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK1360707 Vassil I. Elitzin, Kimberly A. Harvey, Hyunjung Kim, Matthew Salmons, Matthew J. Sharp*, Elie

More information

Supporting information

Supporting information Supporting information Sensitizing Tb(III) and Eu(III) Emission with Triarylboron Functionalized 1,3-diketonato Ligands Larissa F. Smith, Barry A. Blight, Hee-Jun Park, and Suning Wang* Department of Chemistry,

More information

Supplementary Information. Single Crystal X-Ray Diffraction

Supplementary Information. Single Crystal X-Ray Diffraction Supplementary Information Single Crystal X-Ray Diffraction Single crystal diffraction data were collected on an Oxford Diffraction Gemini R Ultra diffractometer equipped with a Ruby CCD-detector with Mo-K

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supporting Information Over or under: Hydride attack at the metal versus the coordinated

More information

Understanding the relationship between crystal structure, plasticity and compaction behavior of theophylline, methyl gallate and their 1:1 cocrystal

Understanding the relationship between crystal structure, plasticity and compaction behavior of theophylline, methyl gallate and their 1:1 cocrystal Understanding the relationship between crystal structure, plasticity and compaction behavior of theophylline, methyl gallate and their 1:1 cocrystal Sayantan Chattoraj, Limin Shi and Changquan Calvin Sun

More information

Supplementary Figure S1 a, wireframe view of the crystal structure of compound 11. b, view of the pyridinium sites. c, crystal packing of compound

Supplementary Figure S1 a, wireframe view of the crystal structure of compound 11. b, view of the pyridinium sites. c, crystal packing of compound a b c Supplementary Figure S1 a, wireframe view of the crystal structure of compound 11. b, view of the pyridinium sites. c, crystal packing of compound 11. 1 a b c Supplementary Figure S2 a, wireframe

More information

Copper(I) β-boroalkyls from Alkene Insertion: Isolation and Rearrangement

Copper(I) β-boroalkyls from Alkene Insertion: Isolation and Rearrangement Supporting Information for Copper(I) β-boroalkyls from Alkene Insertion: Isolation and Rearrangement David S. Laitar, Emily Y. Tsui, Joseph P. Sadighi* Department of Chemistry, Massachusetts Institute

More information

Table S2a. Crystal data and structure refinement for 2 Table S2b. Selected bond lengths and angles for 2 Figure S3.

Table S2a. Crystal data and structure refinement for 2 Table S2b. Selected bond lengths and angles for 2 Figure S3. Four-Coordinate, Trigonal Pyramidal Pt(II) and Pd(II) Complexes Charlene Tsay, Neal P. Mankad, Jonas C. Peters* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts

More information

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic Supporting information (+)- and ( )-Ecarlottones, Uncommon Chalconoids from Fissistigma latifolium with Proapoptotic Activity Charlotte Gény, Alma Abou Samra, Pascal Retailleau, Bogdan I. Iorga, Hristo

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Reductive Elimination of Ether from T-Shaped, Monomeric Arylpalladium Alkoxides James P. Stambuli, Zhiqiang Weng, Christopher D. Incarvito

More information

Supporting Information

Supporting Information Supporting Information New Hexaphosphane Ligands 1,3,5-C 6 H 3 {p-c 6 H 4 N(PX 2 ) 2 } 3 [X = Cl, F, C 6 H 3 OMe(C 3 H 5 )]: Synthesis, Derivatization and, Palladium(II) and Platinum(II) Complexes Sowmya

More information

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol Ailing Zhang, Sakthi Raje, Jianguo Liu, Xiaoyan Li, Raja Angamuthu, Chen-Ho Tung, and Wenguang Wang* School of Chemistry and Chemical

More information

Supplementary Information

Supplementary Information Site-Selective Cyclometalation of a Metal-Organic Framework Phuong V. Dau, Min Kim, and Seth M. Cohen* Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information [7]-Helicene: A Chiral Molecular Tweezer for Silver(I) Salts. Matthew J. Fuchter, a* Julia Schaefer, b Dilraj K. Judge, a Benjamin Wardzinski, a Marko Weimar, a Ingo

More information

Electronic Supporting Information For. Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization. Content

Electronic Supporting Information For. Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization. Content Electronic Supporting Information For Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization Ananya Banik, Rupankar Paira*,, Bikash Kumar Shaw, Gonela Vijaykumar and Swadhin K. Mandal*,

More information

Phosphirenium-Borate Zwitterion: Formation in the 1,1-Carboboration Reaction of Phosphinylalkynes. Supporting Information

Phosphirenium-Borate Zwitterion: Formation in the 1,1-Carboboration Reaction of Phosphinylalkynes. Supporting Information Phosphirenium-Borate Zwitterion: Formation in the 1,1-Carboboration Reaction of Phosphinylalkynes Olga Ekkert, Gerald Kehr, Roland Fröhlich and Gerhard Erker Supporting Information Experimental Section

More information

Supporting information for Eddaoudi et al. (2002) Proc. Natl. Acad. Sci. USA 99 (8), ( /pnas ) Supporting Information

Supporting information for Eddaoudi et al. (2002) Proc. Natl. Acad. Sci. USA 99 (8), ( /pnas ) Supporting Information Supporting information for Eddaoudi et al. (2002) Proc. Natl. Acad. Sci. USA 99 (8), 4900 4904. (10.1073/pnas.082051899) Supporting Information Table 1. Syntheses of MOF-102 112 MOFn MOF- 102 Link and

More information

Supporting Information

Supporting Information Supporting Information One-Pot Access to Benzo[a]carbazoles via Palladium(II)-Catalyzed Hetero- and Carboannulations Moumita Jash, Bimolendu Das, and Chinmay Chowdhury* Organic & dicinal Chemistry Division,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information for uminum complexes containing salicylbenzoxazole

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany Sandwich Complexes Containing Bent Palladium ains Yasuki Tatsumi, Katsunori Shirato, Tetsuro Murahashi,* Sensuke Ogoshi and Hideo Kurosawa*

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 A rare case of a dye co-crystal showing better dyeing performance Hui-Fen Qian, Yin-Ge Wang,

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany A New Melt Approach to the Synthesis of catena- Phosphorus Dications to Access the First Derivatives of 2+ ** [P 6 Ph 4 R 4 ] Jan J. Weigand*,

More information

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE 139 CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE 6.1 INTRODUCTION This chapter describes the crystal and molecular structure of a dehydroacetic acid substituted

More information

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones Daisuke Uraguchi, Takaki Ito, Shinji Nakamura, and Takashi oi* Department of Applied Chemistry, Graduate School

More information

Supporting Information

Supporting Information Supporting Information Synthesis of H-Indazoles from Imidates and Nitrosobenzenes via Synergistic Rhodium/Copper Catalysis Qiang Wang and Xingwei Li* Dalian Institute of Chemical Physics, Chinese Academy

More information

Manganese-Calcium Clusters Supported by Calixarenes

Manganese-Calcium Clusters Supported by Calixarenes Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Manganese-Calcium Clusters Supported by Calixarenes Rebecca O. Fuller, George A. Koutsantonis*,

More information

Reversible dioxygen binding on asymmetric dinuclear rhodium centres

Reversible dioxygen binding on asymmetric dinuclear rhodium centres Electronic Supporting Information for Reversible dioxygen binding on asymmetric dinuclear rhodium centres Takayuki Nakajima,* Miyuki Sakamoto, Sachi Kurai, Bunsho Kure, Tomoaki Tanase* Department of Chemistry,

More information

Supporting Information

Supporting Information Remarkably Variable Reaction Modes of Frustrated Lewis Pairs with Non-Conjugated Terminal Diacetylenes Chao Chen, Roland Fröhlich, Gerald Kehr, Gerhard Erker Organisch-Chemisches Institut, Westfälische

More information

Disubstituted Imidazolium-2-Carboxylates as Efficient Precursors to N-Heterocylic Carbene Complexes of Rh, Ir and Pd

Disubstituted Imidazolium-2-Carboxylates as Efficient Precursors to N-Heterocylic Carbene Complexes of Rh, Ir and Pd J. Am. Chem. Soc. Supporting Information Page S1 Disubstituted Imidazolium-2-Carboxylates as Efficient Precursors to N-Heterocylic Carbene Complexes of Rh, Ir and Pd Adelina Voutchkova, Leah N. Appelhans,

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY APPENDIX F Crystallographic Data for TBA Tb(DO2A)(F-DPA) CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY Date 11 January 2010 Crystal Structure Analysis of: MLC23

More information

Supporting Information

Supporting Information -S1- of 18 Functional Group Chemistry at the Group 4 Bent Metallocene Frameworks: Formation and Metal-free Catalytic Hydrogenation of Bis(imino-Cp)zirconium Complexes Kirill V. Axenov, Gerald Kehr, Roland

More information

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions Wing-Leung Wong, Kam-Piu Ho, Lawrence Yoon Suk Lee, Kin-Ming Lam, Zhong-Yuan Zhou, Tak

More information

metal-organic compounds

metal-organic compounds metal-organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Dichloridotris(trimethylphosphine)- nickel(ii) Ruixia Cao, Qibao Wang and Hongjian Sun* School of Chemistry

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information (ESI) A Large Spin, Magnetically Anisotropic, Octanuclear

More information

Supporting Information

Supporting Information Supporting Information Tris(2-dimethylaminoethyl)amine: A simple new tripodal polyamine ligand for Group 1 metals David M. Cousins, Matthew G. Davidson,* Catherine J. Frankis, Daniel García-Vivó and Mary

More information

Decomposition of Ruthenium Olefin Metathesis. Catalysts

Decomposition of Ruthenium Olefin Metathesis. Catalysts Supporting Information for: Decomposition of Ruthenium Olefin Metathesis Catalysts Soon Hyeok Hong, Anna G. Wenzel, Tina T. Salguero, Michael W. Day and Robert H. Grubbs* The Arnold and Mabel Beckman Laboratory

More information

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence APPENDIX E Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence Temperature Designation CCDC Page 100 K MLC18 761599 E2 200 K MLC17 762705 E17 300 K MLC19 763335 E31 E2 CALIFORNIA INSTITUTE

More information

Hydrophobic Ionic Liquids with Strongly Coordinating Anions

Hydrophobic Ionic Liquids with Strongly Coordinating Anions Supporting material Hydrophobic Ionic Liquids with Strongly Coordinating Anions Hasan Mehdi, Koen Binnemans*, Kristof Van Hecke, Luc Van Meervelt, Peter Nockemann* Experimental details: General techniques.

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Supporting Information Unmasking Representative Structures of TMP-Active Hauser and Turbo Hauser Bases Pablo García-Álvarez, David V. Graham,

More information

Electronic Supplementary Information. Pd(diimine)Cl 2 Embedded Heterometallic Compounds with Porous Structures as Efficient Heterogeneous Catalysts

Electronic Supplementary Information. Pd(diimine)Cl 2 Embedded Heterometallic Compounds with Porous Structures as Efficient Heterogeneous Catalysts Electronic Supplementary Information Pd(diimine)Cl 2 Embedded Heterometallic Compounds with Porous Structures as Efficient Heterogeneous Catalysts Sheng-Li Huang, Ai-Quan Jia and Guo-Xin Jin* Experimental

More information

Reversible uptake of HgCl 2 in a porous coordination polymer based on the dual functions of carboxylate and thioether

Reversible uptake of HgCl 2 in a porous coordination polymer based on the dual functions of carboxylate and thioether Supplementary Information Reversible uptake of HgCl 2 in a porous coordination polymer based on the dual functions of carboxylate and thioether Xiao-Ping Zhou, a Zhengtao Xu,*,a Matthias Zeller, b Allen

More information

High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene

High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene Electronic Supplementary Information High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene Experimental details Synthesis of pyreno[4,5-a]coronene: In 1960 E. Clar et.al 1 and

More information

Supporting Information. Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii)

Supporting Information. Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii) Supporting Information Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii) complexes: application to the kinetic resolution of allylic alcohols. Mariano A. Fernández-Zúmel, Beatriz

More information

Controllable Growth of Bulk Cubic-Phase CH 3 NH 3 PbI 3 Single Crystal with Exciting Room-Temperature Stability

Controllable Growth of Bulk Cubic-Phase CH 3 NH 3 PbI 3 Single Crystal with Exciting Room-Temperature Stability Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Controllable Growth of Bulk Cubic-Phase CH 3 NH 3 PbI

More information

Supporting Information for. Controlled Hydrosilylation of Carbonyls and Imines Catalyzed by a Cationic Aluminum Alkyl Complex

Supporting Information for. Controlled Hydrosilylation of Carbonyls and Imines Catalyzed by a Cationic Aluminum Alkyl Complex Supporting Information for Controlled Hydrosilylation of Carbonyls and Imines Catalyzed by a Cationic Aluminum Alkyl Complex Jürgen Koller and Robert G. Bergman* Department of Chemistry, University of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2840 Cooperative carbon-atom abstraction from alkenes in the core of a pentanuclear nickel cluster Contents:

More information

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke *

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke * Development of a New Building Block for the Synthesis of Silicon-Based Drugs and Odorants: Alternative Synthesis of the Retinoid Agonist Disila-bexarotene Matthias W. Büttner, Jennifer B. Nätscher, Christian

More information

Heterolytic H 2 Activation Mediated by Low Coordinate L 3 Fe-(µ-N)-FeL 3 Complexes to Generate Fe(µ-NH)(µ-H)Fe Species

Heterolytic H 2 Activation Mediated by Low Coordinate L 3 Fe-(µ-N)-FeL 3 Complexes to Generate Fe(µ-NH)(µ-H)Fe Species Heterolytic H 2 Activation Mediated by Low Coordinate L 3 Fe-(µ-N)-FeL 3 Complexes to Generate Fe(µ-NH)(µ-H)Fe Species Steven D. Brown and Jonas C. Peters Division of Chemistry and Chemical Engineering,

More information