Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N

Size: px
Start display at page:

Download "Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N"

Transcription

1 Supporting information for: Crystallographic characterization of the geometry changes upon electron loss from 2-tertbutyl-3-aryl-2,3-diazabicyclo[2.2.2]octanes Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei Discussion: R 4 N 2 (0,+1) geometry changes characterized by x-ray crystallography Although R 4 N + 2 persist for hours in solution, S1 they cannot be isolated as salts unless special alkyl groups are present that limit the rate of proton transfer between the tiny amount of the disproportionation products, R 4 N 0 2 and R 4 N 2+ 2, formed upon intermolecular transfer between R 4 N + 2, a process which is about 20 kcal/mol endoenergetic for many examples. This was first achieved using Bredt s rule kinetic protection, placing the nitrogens in N,N-bicyclic systems so the α-hydrogens in the dications were at bridgehead carbons for which proton loss is kinetically inhibited. S2 The large α-branched alkyl groups in these compounds destabilize the electronically preferred θ ~ 90 neutral conformation so much that they exist in anti θ = 180 conformations in both their 0 and +1 oxidation levels. S3 Although Bredt s rule protection led to radical cation crystals that diffracted, undetected disorder led to incorrect assignment of the nitrogens as being planar, which misled us about the nature of these species for a few years. We finally realized our error when the dimeric diazabicyclooctane salt 1 + PF - 6 was disordered in the same way as the 2 + originally studied, and were able to characterize N N N N N N S1 (32N) 2 S2 (33N) 2 S3 (AdN) 2 the geometry change upon electron removal in three N,N -bis-bicyclic systems (See Table 1). The most interesting thing conformationally about 1 is that it crystallizes in the diaxial conformation (each NR 2 axial to the adjacent six-membered ring) shown, despite Table S1. N,N -bis(bicyclic) hydrazines (θ 0 ~ 180 ) (321N) a 1 + NO - 3 H 2 O a Difference d(nn), Å 1.469(2) 1.323(4) (9.9%) α av, 12.1(1) 4.4(2) -7.7 (73%) θ (331N) b 2 + OTs - c d(nn), Å 1.505(3) 1.357(4) (9.8%) α av, 12.0(1) 3.7(3) -8.3 (79%) θ (AdN) d 3 + TsO - d d(nn), Å 1.512(2) 1.353(5) A (10.5%) 1.360(6) B (10.1%) α av, 11.65(12) 3.4(3) A (79%) 3.3(4) B (80%) θ a. Ref. S4. b. Ref. S3. c. previously unpublished. d. Ref. S5.

2 the fact that this is the least stable of the three θ = 180 o conformations in solution. S4 It is the most compact conformation according to calculations. The bis(azaadamantane) 3, S5 which has not been discussed previously shows rather similar geometrical changes to 2. Discovery of the proton-driven Diels-Alder reaction S6 allowed preparation of bis(n,n - bicyclic) (sequibicyclic) hydrazines, which have close to 0 θ values in their neutral forms, and x-ray characterization of both 0 and +1 oxidation levels of 4-6. S7,S8 N N S4 22/u22 N N S6 21/22 N N S5 22/22 N N S6 + 21/22 N N S7 22/31 N N S7 + 22/31 The dication 5 2+ is uniquely stable, S9 and not only could an x-ray structure be obtained, S7 but its deprotonation and hydride reduction of the resulting aminoaziridinium cation allowed preparation of 7 and structural characterization of both of its oxidation levels (see Table 2). S and 7 + are examples of several sesquibicyclic hydrazines for which Table S2. N,N -bis(bicyclic) hydrazines (θ 0 ~ 0 ) 22/u a a NO 3 d(nn), Å 1.497(4) 1.349(1) (9.9%) α av, 7.8(3),8.0(3) 2.5(1), 2.2(1) -5.6 (53%) θ NN, 0.2(4) 0.6(1) / a 5 + TsO - a d(nn), Å 1.492(2) (14)[A] 1.325(13)[B] (10.7%) α av, 6.5(1) 0.7(10),1.4(10)[A] (52%) 1.5(9),2.0(9)[B] θ N, 15.0(2) 1.9(1.4) [A] 5.5(1.2) [B] 21/ b c NO (45%) d(nn), Å 1.514(2) 1.341(3) [A] (11.4%)[A] 1.335(4) [B] (11.8%)[B] α av, 9.7(1) 1.7(2),2.1(3)[A] (76%)[A] 10.0(1) 1.7(3),1.4(3)[B] 8.3(79%[B] θ N, 1.0(2) 2.0(3) [A],-1.2(4)[B] (-1, -0.2) 22/13 7 d 7 + TsO - d d(nn), Å 1.500(3) 1.328(3) (11.5%) α av, 9.3 (2) (N 1 ) 9.7 (2) (N 2 ) 0.9 (2) (both) -8.6 (82%) θ NN, 4.3 (2) 0.7 (3) -3.6

3 a. Ref. S7. b. Ref. S8. c. Ref. S5. d. Ref. S10. the neutral form and radical cation exist in different double nitrogen inversion forms. The flatter nitrogens of the radical cation decrease 1,3 interactions and increase 1,2 interactions (bridgehead hydrogen NR 2 interaction is the important interaction) enough that which ring reversal form is most stable changes upon electron removal. Because the two ring reversal forms of the radical cation have different nitrogen pyramidalities, properties like the optical absorption spectra, which are especially sensitive to α av are rather different for the two double nitrogen inversion forms. Chen s discovery S11 that Bredt s rule protection is not necessary to allow radical cation isolation because tetra-α-branching suffices allows obtaining crystal structures for which the θ values of 0 and +1 oxidation levels are substantially different. S12 Compounds S8-S10 have been studied. These systems have significant flattening at the nitrogens ipr N N ipr N N N N S8 33NNiPr 2 S9 ipr 2 NNiPr 2 S10 chx 2 NNcHx 2 of the neutral oxidation level, leading to considerably smaller changes in both d(nn) and in α av than for the θ 0 ~ 0 or ~180 systems (see Table 3). The unlinked α-branched alkyl Table S3. Neutral θ 0 ~ 90 systems (33N)NiPr 2 S8(0) a - a S8(+) NO 3 difference d(nn), Å 1.420(2) 1.346(3) (-5.2%) α av, 4.7 (33N) 3.1 (33N) -1.6 (15%) 2.3 (NiPr 2 ) 1.2 (NiPr 2 ) -1.1 (10%) φ NN, ipr 2 NNiPr 2 S9(0) b S9(+) TsO - CH 3 CN d(nn), Å 1.394(4) [major] 1.399(5) [minor] 1.333(4) (-4.4% α av, 4.2 (3) [major] 4.2 (5) [minor] 0.1; (38%) φ NN, 88.5 (5) [major] [major] (8) [minor] 78.6 [minor] chx 2 NNcHx 2 S10(0) b S10(+) c - B[C 6 H 3 (CF 3 ) 2 ] 4 d(nn), Å 1.389(7) 1.333(9) (4.0%) α av, 3.3(5) [N 1 ] 0.0(3) 3.3 (31%) 3.4(5) [N 2 ] 3.4 (32%) φ NN, 89.4(7) 0.1(6) a. Ref. S11. b. Ref. S12. c. Ref. S5. groups adopt conformations been studied. Despite θ values near 90, that put one HCNN twist angle near 0 and the other at the same nitrogen near 180, to minimize non-bonded steric interactions. For S9 + each C α H bond is tucked between the substitutents of the adjacent alkyl groups, as indicated diagramatically below, which makes S9 + nearly isostructural with tetraisopropylethylene. S13 Although the nearly colorless tetrakis-

4 H H N N H S9 + (m,m -bis(trifluoromethyl)phenyl)borate salt of S10 + is in the same conformation, its dark red TsO -, and NO 3 - and SbF 6 - salts are in a twisted conformation because the alkyl groups are in a different conformation than S9 +. S5 Crystallographic Experimental Section HyDU + NO - 3 (97264) H

5 Table 1. Crystal data and structure refinement for Identification code Empirical formula C20 H32 N3 O3 Formula weight Temperature 133(2) K Wavelength Å Crystal system Monoclinic Space group P2 1 /c Unit cell dimensions a = (4) Å α= 90. b = (2) Å β= (2). c = (5) Å γ = 90. Volume (9) Å 3 Z 4 Density (calculated) Mg/m 3 Absorption coefficient mm -1 F(000) 788 Crystal size 0.48 x 0.41 x 0.29 mm 3 Theta range for data collection 2.45 to Index ranges -20<=h<=21, -6<=k<=10, -12<=l<=21 Reflections collected 8955 Independent reflections 4393 [R(int) = ] Completeness to theta = % Absorption correction Multi-scan with SADABS Max. and min. transmission and Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 4393 / 0 / 235 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Largest diff. peak and hole and e.å -3 Table 2. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq)

6 N(1) 7609(1) 6453(1) 5598(1) 15(1) N(2) 8315(1) 6936(1) 5407(1) 15(1) C(1) 9220(1) 6105(1) 5989(1) 18(1) C(2) 9484(1) 6482(2) 6977(1) 24(1) C(3) 8673(1) 5910(2) 7177(1) 25(1) C(4) 7896(1) 5176(1) 6320(1) 19(1) C(5) 9090(1) 4219(1) 5833(1) 20(1) C(6) 8263(1) 3649(1) 6019(1) 21(1) C(7) 6618(1) 6552(1) 4978(1) 16(1) C(8) 6263(1) 5843(1) 4119(1) 18(1) C(9) 5286(1) 5951(1) 3575(1) 21(1) C(10) 4716(1) 6693(1) 3910(1) 23(1) C(11) 5072(1) 7329(1) 4777(1) 20(1) C(12) 6045(1) 7292(1) 5324(1) 17(1) C(13) 6860(1) 4952(2) 3760(1) 23(1) C(14) 4846(1) 5253(2) 2636(1) 31(1) C(15) 4401(1) 8041(2) 5108(1) 28(1) C(16) 6458(1) 8047(2) 6253(1) 24(1) C(17) 8337(1) 8544(1) 4938(1) 18(1) C(18) 8704(1) 8108(2) 4257(1) 37(1) C(19) 7389(1) 9410(2) 4477(1) 34(1) C(20) 9024(1) 9738(1) 5641(1) 27(1) N(3) 1787(1) 8127(2) 1950(1) 29(1) O(1) 1246(1) 7504(1) 1209(1) 38(1) O(2) 2516(1) 7368(2) 2445(1) 67(1) O(3) 1585(1) 9487(2) 2177(1) 58(1) Table 3. Bond lengths [Å] and angles [ ] for N(1)-N(2) (12) N(1)-C(7) (13) N(1)-C(4) (13) N(2)-C(1) (13) N(2)-C(17) (13) C(1)-C(5) (15) C(1)-C(2) (15) C(1)-H(1) C(2)-C(3) (17) C(2)-H(2A) C(2)-H(2B) C(3)-C(4) (16) C(3)-H(3A) C(3)-H(3B) C(4)-C(6) (15) C(4)-H(4) C(5)-C(6) (15) C(5)-H(5A) C(5)-H(5B) C(6)-H(6A) C(6)-H(6B) C(7)-C(8) (15) C(7)-C(12) (14) C(8)-C(9) (15) C(8)-C(13) (15) C(9)-C(10) (17) C(9)-C(14) (16) C(10)-C(11) (17) C(10)-H(10) C(11)-C(12) (15) C(11)-C(15) (16) C(12)-C(16) (15) C(13)-H(13A) C(13)-H(13B) C(13)-H(13C) C(14)-H(14A) C(14)-H(14B) C(14)-H(14C) C(15)-H(15A) C(15)-H(15B) C(15)-H(15C) C(16)-H(16A) C(16)-H(16B) C(16)-H(16C) C(17)-C(19) (16) C(17)-C(18) (16) C(17)-C(20) (15) C(18)-H(18A) C(18)-H(18B) C(18)-H(18C) C(19)-H(19A) C(19)-H(19B) C(19)-H(19C) C(20)-H(20A)

7 C(20)-H(20B) C(20)-H(20C) N(3)-O(2) (15) N(2)-N(1)-C(7) (8) N(2)-N(1)-C(4) (8) C(7)-N(1)-C(4) (8) N(1)-N(2)-C(1) (8) N(1)-N(2)-C(17) (8) C(1)-N(2)-C(17) (8) N(2)-C(1)-C(5) (8) N(2)-C(1)-C(2) (9) C(5)-C(1)-C(2) (9) N(2)-C(1)-H(1) C(5)-C(1)-H(1) C(2)-C(1)-H(1) C(3)-C(2)-C(1) (9) C(3)-C(2)-H(2A) C(1)-C(2)-H(2A) C(3)-C(2)-H(2B) C(1)-C(2)-H(2B) H(2A)-C(2)-H(2B) C(4)-C(3)-C(2) (9) C(4)-C(3)-H(3A) C(2)-C(3)-H(3A) C(4)-C(3)-H(3B) C(2)-C(3)-H(3B) H(3A)-C(3)-H(3B) N(1)-C(4)-C(3) (9) N(1)-C(4)-C(6) (9) C(3)-C(4)-C(6) (9) N(1)-C(4)-H(4) C(3)-C(4)-H(4) C(6)-C(4)-H(4) C(1)-C(5)-C(6) (9) C(1)-C(5)-H(5A) C(6)-C(5)-H(5A) C(1)-C(5)-H(5B) C(6)-C(5)-H(5B) H(5A)-C(5)-H(5B) C(4)-C(6)-C(5) (9) C(4)-C(6)-H(6A) C(5)-C(6)-H(6A) C(4)-C(6)-H(6B) C(5)-C(6)-H(6B) H(6A)-C(6)-H(6B) C(8)-C(7)-C(12) (10) C(8)-C(7)-N(1) (9) C(12)-C(7)-N(1) (9) C(7)-C(8)-C(9) (10) C(7)-C(8)-C(13) (10) C(9)-C(8)-C(13) (10) C(10)-C(9)-C(8) (10) C(10)-C(9)-C(14) (10) C(8)-C(9)-C(14) (11) C(11)-C(10)-C(9) (10) N(3)-O(3) (17) N(3)-O(1) (15) C(11)-C(10)-H(10) C(9)-C(10)-H(10) C(10)-C(11)-C(12) (10) C(10)-C(11)-C(15) (10) C(12)-C(11)-C(15) (11) C(11)-C(12)-C(7) (10) C(11)-C(12)-C(16) (10) C(7)-C(12)-C(16) (10) C(8)-C(13)-H(13A) C(8)-C(13)-H(13B) H(13A)-C(13)-H(13B) C(8)-C(13)-H(13C) H(13A)-C(13)-H(13C) H(13B)-C(13)-H(13C) C(9)-C(14)-H(14A) C(9)-C(14)-H(14B) H(14A)-C(14)-H(14B) C(9)-C(14)-H(14C) H(14A)-C(14)-H(14C) H(14B)-C(14)-H(14C) C(11)-C(15)-H(15A) C(11)-C(15)-H(15B) H(15A)-C(15)-H(15B) C(11)-C(15)-H(15C) H(15A)-C(15)-H(15C) H(15B)-C(15)-H(15C) C(12)-C(16)-H(16A) C(12)-C(16)-H(16B) H(16A)-C(16)-H(16B) C(12)-C(16)-H(16C) H(16A)-C(16)-H(16C) H(16B)-C(16)-H(16C) N(2)-C(17)-C(19) (9) N(2)-C(17)-C(18) (9) C(19)-C(17)-C(18) (11) N(2)-C(17)-C(20) (9) C(19)-C(17)-C(20) (10) C(18)-C(17)-C(20) (10) C(17)-C(18)-H(18A) C(17)-C(18)-H(18B) H(18A)-C(18)-H(18B) C(17)-C(18)-H(18C) H(18A)-C(18)-H(18C) H(18B)-C(18)-H(18C) C(17)-C(19)-H(19A) C(17)-C(19)-H(19B) H(19A)-C(19)-H(19B) C(17)-C(19)-H(19C) H(19A)-C(19)-H(19C) H(19B)-C(19)-H(19C) C(17)-C(20)-H(20A) C(17)-C(20)-H(20B) 109.5

8 H(20A)-C(20)-H(20B) C(17)-C(20)-H(20C) H(20A)-C(20)-H(20C) H(20B)-C(20)-H(20C) O(2)-N(3)-O(3) (14) O(2)-N(3)-O(1) (14) O(3)-N(3)-O(1) (12)

9 Symmetry transformations used to generate equivalent atoms: Table 4. Anisotropic displacement parameters (Å 2 x 10 3 ) for The anisotropic displacement factor exponent takes the form: -2π 2 [ h 2 a* 2 U h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 N(1) 14(1) 17(1) 14(1) 1(1) 7(1) 1(1) N(2) 13(1) 16(1) 15(1) 0(1) 6(1) 0(1) C(1) 13(1) 20(1) 19(1) 1(1) 5(1) 2(1) C(2) 22(1) 25(1) 17(1) -1(1) 1(1) 1(1) C(3) 28(1) 30(1) 13(1) 2(1) 7(1) 6(1) C(4) 20(1) 21(1) 18(1) 6(1) 10(1) 4(1) C(5) 19(1) 18(1) 22(1) 0(1) 9(1) 4(1) C(6) 23(1) 18(1) 24(1) 3(1) 11(1) 1(1) C(7) 13(1) 15(1) 17(1) 1(1) 6(1) 0(1) C(8) 19(1) 16(1) 18(1) 0(1) 8(1) -1(1) C(9) 20(1) 18(1) 20(1) 1(1) 4(1) -3(1) C(10) 14(1) 20(1) 29(1) 4(1) 4(1) -1(1) C(11) 17(1) 16(1) 30(1) 4(1) 12(1) 2(1) C(12) 18(1) 15(1) 21(1) 1(1) 10(1) 1(1) C(13) 23(1) 26(1) 19(1) -6(1) 9(1) -1(1) C(14) 27(1) 34(1) 22(1) -3(1) 1(1) -4(1) C(15) 21(1) 24(1) 45(1) 3(1) 20(1) 3(1) C(16) 25(1) 26(1) 23(1) -3(1) 13(1) 4(1) C(17) 20(1) 18(1) 18(1) 2(1) 9(1) -3(1) C(18) 65(1) 29(1) 36(1) -3(1) 39(1) -9(1) C(19) 22(1) 26(1) 43(1) 19(1) 5(1) 0(1) C(20) 26(1) 18(1) 29(1) -1(1) 5(1) -4(1) N(3) 19(1) 42(1) 27(1) 12(1) 11(1) -4(1) O(1) 28(1) 50(1) 34(1) -3(1) 11(1) 1(1) O(2) 22(1) 105(1) 59(1) 57(1) 6(1) 6(1) O(3) 53(1) 57(1) 76(1) -26(1) 39(1) -20(1) Table 5. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (Å 2 x 10 3 ) for x y z U(eq) H(1) H(2A) H(2B) H(3A) H(3B) H(4) H(5A) H(5B) H(6A) H(6B) H(10) H(13A) H(13B) H(13C) H(14A)

10 H(14B) H(14C) H(15A) H(15B) H(15C) H(16A) H(16B) H(16C) H(18A) H(18B) H(18C) H(19A) H(19B) H(19C) H(20A) H(20B) H(20C) Table 6. Torsion angles [ ] for C(7)-N(1)-N(2)-C(1) (9) C(4)-N(1)-N(2)-C(1) -1.79(11) C(7)-N(1)-N(2)-C(17) 45.14(14) C(4)-N(1)-N(2)-C(17) (9) N(1)-N(2)-C(1)-C(5) 60.96(11) C(17)-N(2)-C(1)-C(5) (9) N(1)-N(2)-C(1)-C(2) (11) C(17)-N(2)-C(1)-C(2) (10) N(2)-C(1)-C(2)-C(3) 56.59(12) C(5)-C(1)-C(2)-C(3) (11) C(1)-C(2)-C(3)-C(4) -0.10(13) N(2)-N(1)-C(4)-C(3) 60.56(11) C(7)-N(1)-C(4)-C(3) (9) N(2)-N(1)-C(4)-C(6) (11) C(7)-N(1)-C(4)-C(6) 98.14(10) C(2)-C(3)-C(4)-N(1) (12) C(2)-C(3)-C(4)-C(6) 61.72(12) N(2)-C(1)-C(5)-C(6) (11) C(2)-C(1)-C(5)-C(6) 62.64(11) N(1)-C(4)-C(6)-C(5) 57.96(11) C(3)-C(4)-C(6)-C(5) (12) C(1)-C(5)-C(6)-C(4) -1.77(12) N(2)-N(1)-C(7)-C(8) 53.23(14) C(4)-N(1)-C(7)-C(8) (11) N(2)-N(1)-C(7)-C(12) (10) C(4)-N(1)-C(7)-C(12) 74.45(12) C(12)-C(7)-C(8)-C(9) 2.52(16) N(1)-C(7)-C(8)-C(9) (9) C(12)-C(7)-C(8)-C(13) (10) N(1)-C(7)-C(8)-C(13) -0.76(16) C(7)-C(8)-C(9)-C(10) -1.93(16) C(13)-C(8)-C(9)-C(10) (10) C(7)-C(8)-C(9)-C(14) (10) C(13)-C(8)-C(9)-C(14) -2.55(16) C(8)-C(9)-C(10)-C(11) -0.69(17) C(14)-C(9)-C(10)-C(11) (11)

11 C(9)-C(10)-C(11)-C(12) 2.84(17) C(9)-C(10)-C(11)-C(15) (10) C(10)-C(11)-C(12)-C(7) -2.23(15) C(15)-C(11)-C(12)-C(7) (10) C(10)-C(11)-C(12)-C(16) (10) C(15)-C(11)-C(12)-C(16) -3.01(16) C(8)-C(7)-C(12)-C(11) -0.44(16) N(1)-C(7)-C(12)-C(11) (9) C(8)-C(7)-C(12)-C(16) (10) N(1)-C(7)-C(12)-C(16) 4.69(14) N(1)-N(2)-C(17)-C(19) (15) C(1)-N(2)-C(17)-C(19) (10) N(1)-N(2)-C(17)-C(18) (11) C(1)-N(2)-C(17)-C(18) 66.35(12) N(1)-N(2)-C(17)-C(20) (11) C(1)-N(2)-C(17)-C(20) (12) Symmetry transformations used to generate equivalent atoms: Hy 1 NA + SbF 6 - (98001)

12 Table 1. Crystal data and structure refinement for Identification code Empirical formula C20 H26 F6 N2 Sb Formula weight Temperature 133(2) K Wavelength Å Crystal system Orthorhombic Space group Pbca Unit cell dimensions a = (18) Å α= 90. b = (16) Å β= 90. c = (17) Å γ = 90. Volume (8) Å 3 Z 8 Density (calculated) Mg/m 3 Absorption coefficient mm -1 F(000) 2120 Crystal size 0.42 x 0.14 x 0.01 mm 3 Theta range for data collection 2.78 to Index ranges -15<=h<=18, -19<=k<=11, -19<=l<=13 Reflections collected Independent reflections 3763 [R(int) = ] Completeness to theta = % Absorption correction Multi-scan with SADABS Max. and min. transmission and Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 3763 / 0 / 262 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Largest diff. peak and hole and e.å -3

13 Table 2. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) Sb(1) 6854(1) 3277(1) 5962(1) 35(1) F(1) 7854(3) 3500(3) 6520(3) 54(2) F(2) 5845(4) 3083(4) 5409(4) 93(3) F(3) 6529(5) 4368(4) 6137(5) 92(2) F(4) 7144(4) 2179(4) 5884(4) 76(2) F(5) 6313(4) 3001(4) 6933(3) 72(2) F(6) 7330(4) 3554(5) 4981(3) 96(3) C(1) 4156(4) 4810(5) 7491(5) 31(2) N(2) 4857(4) 5405(3) 7539(3) 21(1) N(3) 4810(4) 5992(4) 6966(3) 23(1) C(4) 4068(5) 5895(5) 6433(4) 28(2) C(5) 4103(5) 5050(5) 6018(5) 37(2) C(6) 4187(5) 4403(5) 6663(5) 32(2) C(7) 3318(5) 5263(5) 7598(5) 31(2) C(8) 3270(4) 5941(5) 6964(4) 30(2) C(9) 5181(5) 5601(5) 8346(4) 24(2) C(10) 4879(5) 6270(5) 8734(5) 32(2) C(11) 5188(5) 6430(6) 9532(5) 41(2) C(12) 5756(6) 5929(6) 9886(5) 46(2) C(13) 6670(5) 4694(7) 9828(5) 51(3) C(14) 6967(6) 4037(7) 9419(6) 56(3) C(15) 6668(5) 3840(5) 8619(6) 41(2) C(16) 6087(5) 4358(5) 8274(5) 33(2) C(17) 5768(4) 5040(5) 8686(4) 26(2) C(18) 6068(5) 5222(6) 9487(4) 34(2) C(19) 5544(4) 6530(4) 6712(4) 21(2) C(20) 5774(5) 6311(5) 5838(4) 32(2) C(21) 5243(5) 7415(5) 6767(5) 37(2) C(22) 6322(5) 6395(5) 7234(5) 35(2)

14 Table 3. Bond lengths [Å] and angles [ ] for Sb(1)-F(6) 1.841(5) C(10)-C(11) 1.428(11) Sb(1)-F(4) 1.859(6) C(10)-H(10) Sb(1)-F(1) 1.866(5) C(11)-C(12) 1.349(12) Sb(1)-F(2) 1.866(5) C(11)-H(11) Sb(1)-F(5) 1.872(5) C(12)-C(18) 1.420(13) Sb(1)-F(3) 1.881(6) C(12)-H(12) C(1)-N(2) 1.479(9) C(13)-C(14) 1.354(14) C(1)-C(6) 1.522(11) C(13)-C(18) 1.403(12) C(1)-C(7) 1.529(10) C(13)-H(13) C(1)-H(1) C(14)-C(15) 1.437(14) N(2)-N(3) 1.349(8) C(14)-H(14) N(2)-C(9) 1.462(8) C(15)-C(16) 1.374(10) N(3)-C(4) 1.474(9) C(15)-H(15) N(3)-C(19) 1.517(9) C(16)-C(17) 1.401(11) C(4)-C(8) 1.538(10) C(16)-H(16) C(4)-C(5) 1.544(11) C(17)-C(18) 1.436(10) C(4)-H(4) C(19)-C(22) 1.517(10) C(5)-C(6) 1.507(11) C(19)-C(21) 1.528(10) C(5)-H(5A) C(19)-C(20) 1.529(10) C(5)-H(5B) C(20)-H(20A) C(6)-H(6A) C(20)-H(20B) C(6)-H(6B) C(20)-H(20C) C(7)-C(8) 1.527(10) C(21)-H(21A) C(7)-H(7A) C(21)-H(21B) C(7)-H(7B) C(21)-H(21C) C(8)-H(8A) C(22)-H(22A) C(8)-H(8B) C(22)-H(22B) C(9)-C(10) 1.356(11) C(22)-H(22C) C(9)-C(17) 1.421(10) F(6)-Sb(1)-F(4) 94.4(3) F(6)-Sb(1)-F(1) 92.2(3) F(4)-Sb(1)-F(1) 90.8(2) F(6)-Sb(1)-F(2) 87.8(3) F(4)-Sb(1)-F(2) 90.7(3) F(1)-Sb(1)-F(2) 178.4(3) F(6)-Sb(1)-F(5) 176.9(3) F(4)-Sb(1)-F(5) 86.5(3) F(1)-Sb(1)-F(5) 90.7(3) F(2)-Sb(1)-F(5) 89.2(3) F(6)-Sb(1)-F(3) 90.7(4) F(4)-Sb(1)-F(3) 174.8(3) F(1)-Sb(1)-F(3) 88.3(3) F(2)-Sb(1)-F(3) 90.2(3) F(5)-Sb(1)-F(3) 88.5(3) N(2)-C(1)-C(6) 108.2(6) N(2)-C(1)-C(7) 108.9(6) C(6)-C(1)-C(7) 110.1(6) N(2)-C(1)-H(1) C(6)-C(1)-H(1) C(7)-C(1)-H(1) N(3)-N(2)-C(9) 120.1(6) N(3)-N(2)-C(1) 113.0(6) C(9)-N(2)-C(1) 117.1(6) N(2)-N(3)-C(4) 112.7(6) N(2)-N(3)-C(19) 124.3(5) C(4)-N(3)-C(19) 120.5(5) N(3)-C(4)-C(8) 107.9(5) N(3)-C(4)-C(5) 109.5(6) C(8)-C(4)-C(5) 109.0(6) N(3)-C(4)-H(4) C(8)-C(4)-H(4) C(5)-C(4)-H(4) C(6)-C(5)-C(4) 108.7(6) C(6)-C(5)-H(5A) C(4)-C(5)-H(5A) C(6)-C(5)-H(5B) C(4)-C(5)-H(5B) H(5A)-C(5)-H(5B) C(5)-C(6)-C(1) 108.8(6) C(5)-C(6)-H(6A) C(1)-C(6)-H(6A) C(5)-C(6)-H(6B) C(1)-C(6)-H(6B) H(6A)-C(6)-H(6B) C(8)-C(7)-C(1) 108.4(6) C(8)-C(7)-H(7A) C(1)-C(7)-H(7A) 110.0

15 C(8)-C(7)-H(7B) C(1)-C(7)-H(7B) H(7A)-C(7)-H(7B) C(7)-C(8)-C(4) 108.3(6) C(7)-C(8)-H(8A) C(4)-C(8)-H(8A) C(7)-C(8)-H(8B) C(4)-C(8)-H(8B) H(8A)-C(8)-H(8B) C(10)-C(9)-C(17) 124.5(7) C(10)-C(9)-N(2) 118.9(7) C(17)-C(9)-N(2) 116.5(6) C(9)-C(10)-C(11) 117.6(8) C(9)-C(10)-H(10) C(11)-C(10)-H(10) C(12)-C(11)-C(10) 121.0(8) C(12)-C(11)-H(11) C(10)-C(11)-H(11) C(11)-C(12)-C(18) 121.8(7) C(11)-C(12)-H(12) C(18)-C(12)-H(12) C(14)-C(13)-C(18) 121.6(8) C(14)-C(13)-H(13) C(18)-C(13)-H(13) C(13)-C(14)-C(15) 121.5(8) C(13)-C(14)-H(14) C(15)-C(14)-H(14) C(16)-C(15)-C(14) 117.4(9) C(16)-C(15)-H(15) C(14)-C(15)-H(15) C(15)-C(16)-C(17) 122.2(8) C(15)-C(16)-H(16) C(17)-C(16)-H(16) C(16)-C(17)-C(9) 124.0(7) C(16)-C(17)-C(18) 119.5(7) C(9)-C(17)-C(18) 116.4(7) C(13)-C(18)-C(12) 123.6(8) C(13)-C(18)-C(17) 117.7(9) C(12)-C(18)-C(17) 118.7(7) C(22)-C(19)-N(3) 112.3(5) C(22)-C(19)-C(21) 111.0(6) N(3)-C(19)-C(21) 107.2(6) C(22)-C(19)-C(20) 108.0(6) N(3)-C(19)-C(20) 107.8(6) C(21)-C(19)-C(20) 110.6(6) C(19)-C(20)-H(20A) C(19)-C(20)-H(20B) H(20A)-C(20)-H(20B) C(19)-C(20)-H(20C) H(20A)-C(20)-H(20C) H(20B)-C(20)-H(20C) C(19)-C(21)-H(21A) C(19)-C(21)-H(21B) H(21A)-C(21)-H(21B) C(19)-C(21)-H(21C) H(21A)-C(21)-H(21C) H(21B)-C(21)-H(21C) C(19)-C(22)-H(22A) C(19)-C(22)-H(22B) H(22A)-C(22)-H(22B) C(19)-C(22)-H(22C) H(22A)-C(22)-H(22C) H(22B)-C(22)-H(22C) 109.5

16 Symmetry transformations used to generate equivalent atoms:

17 Table 4. Anisotropic displacement parameters (Å 2 x 10 3 ) for The anisotropic displacement factor exponent takes the form: -2π 2 [ h 2 a* 2 U h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 Sb(1) 27(1) 40(1) 39(1) 8(1) -6(1) 5(1) F(1) 47(3) 64(4) 50(3) -10(3) -19(3) -3(3) F(2) 47(4) 120(6) 112(5) 64(5) -46(4) -26(4) F(3) 93(5) 47(4) 136(6) 19(4) -3(5) 25(3) F(4) 83(4) 59(4) 87(4) -38(3) -36(4) 26(3) F(5) 86(5) 69(4) 60(4) 2(3) 29(3) -13(3) F(6) 68(4) 181(8) 39(3) 19(4) 5(3) -44(5) C(1) 22(4) 36(4) 33(4) 10(4) -1(4) -4(4) N(2) 17(3) 20(3) 26(3) -2(3) -4(3) 3(2) N(3) 18(3) 33(4) 19(3) 8(3) -2(3) 1(3) C(4) 22(4) 44(5) 16(4) 15(4) -3(3) -3(4) C(5) 30(4) 54(5) 27(4) -18(4) 5(4) -5(4) C(6) 23(4) 29(4) 43(5) -4(4) -10(4) -9(4) C(7) 24(5) 41(5) 29(4) 7(4) -2(3) -10(4) C(8) 15(4) 42(5) 31(4) 5(4) 0(3) 3(4) C(9) 23(4) 39(5) 10(3) 1(3) -1(3) -12(4) C(10) 32(5) 33(5) 32(4) -2(4) 3(4) -3(4) C(11) 33(5) 58(6) 32(5) -20(4) 3(4) -11(4) C(12) 43(6) 76(7) 18(4) -4(5) -5(4) -16(5) C(13) 34(6) 93(8) 27(5) 28(5) -10(4) -15(5) C(14) 31(5) 69(7) 68(6) 57(6) -14(5) -14(5) C(15) 28(5) 33(5) 63(6) 17(4) -13(4) 3(4) C(16) 26(5) 23(4) 51(5) 18(4) -8(4) -8(4) C(17) 19(4) 34(5) 25(4) 20(3) 0(3) -8(3) C(18) 18(4) 65(6) 20(4) 17(4) -7(3) -18(4) C(19) 20(4) 20(4) 24(4) 7(3) 3(3) -2(3) C(20) 20(4) 43(5) 34(5) 2(4) 5(3) -3(4) C(21) 44(5) 29(5) 38(5) 9(4) 11(4) 0(4) C(22) 17(4) 55(5) 34(4) 18(4) -2(3) -8(4)

18 Table 5. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (Å 2 x 10 3 ) for x y z U(eq) H(1) H(4) H(5A) H(5B) H(6A) H(6B) H(7A) H(7B) H(8A) H(8B) H(10) H(11) H(12) H(13) H(14) H(15) H(16) H(20A) H(20B) H(20C) H(21A) H(21B) H(21C) H(22A) H(22B) H(22C)

19 Table 6. Torsion angles [ ] for C(6)-C(1)-N(2)-N(3) 60.0(8) C(7)-C(1)-N(2)-N(3) -59.7(8) C(6)-C(1)-N(2)-C(9) (6) C(7)-C(1)-N(2)-C(9) 86.2(7) C(9)-N(2)-N(3)-C(4) (6) C(1)-N(2)-N(3)-C(4) 0.0(8) C(9)-N(2)-N(3)-C(19) 53.4(9) C(1)-N(2)-N(3)-C(19) (6) N(2)-N(3)-C(4)-C(8) 60.2(8) C(19)-N(3)-C(4)-C(8) (6) N(2)-N(3)-C(4)-C(5) -58.3(7) C(19)-N(3)-C(4)-C(5) 104.4(7) N(3)-C(4)-C(5)-C(6) 54.3(8) C(8)-C(4)-C(5)-C(6) -63.6(8) C(4)-C(5)-C(6)-C(1) 3.3(8) N(2)-C(1)-C(6)-C(5) -59.2(8) C(7)-C(1)-C(6)-C(5) 59.8(8) N(2)-C(1)-C(7)-C(8) 55.4(8) C(6)-C(1)-C(7)-C(8) -63.0(8) C(1)-C(7)-C(8)-C(4) 2.1(8) N(3)-C(4)-C(8)-C(7) -59.0(8) C(5)-C(4)-C(8)-C(7) 59.8(8) N(3)-N(2)-C(9)-C(10) 48.0(9) C(1)-N(2)-C(9)-C(10) -95.4(8) N(3)-N(2)-C(9)-C(17) (6) C(1)-N(2)-C(9)-C(17) 81.5(8) C(17)-C(9)-C(10)-C(11) 1.5(11) N(2)-C(9)-C(10)-C(11) 178.1(6) C(9)-C(10)-C(11)-C(12) -0.4(12) C(10)-C(11)-C(12)-C(18) -0.3(13) C(18)-C(13)-C(14)-C(15) -1.1(13) C(13)-C(14)-C(15)-C(16) 1.9(12) C(14)-C(15)-C(16)-C(17) -2.1(11) C(15)-C(16)-C(17)-C(9) 178.6(7) C(15)-C(16)-C(17)-C(18) 1.6(11) C(10)-C(9)-C(17)-C(16) (7) N(2)-C(9)-C(17)-C(16) 4.5(10) C(10)-C(9)-C(17)-C(18) -1.8(10) N(2)-C(9)-C(17)-C(18) (6) C(14)-C(13)-C(18)-C(12) (8) C(14)-C(13)-C(18)-C(17) 0.5(12) C(11)-C(12)-C(18)-C(13) 178.8(8) C(11)-C(12)-C(18)-C(17) 0.0(12) C(16)-C(17)-C(18)-C(13) -0.7(10) C(9)-C(17)-C(18)-C(13) (7) C(16)-C(17)-C(18)-C(12) 178.2(7) C(9)-C(17)-C(18)-C(12) 1.0(10) N(2)-N(3)-C(19)-C(22) -5.8(9) C(4)-N(3)-C(19)-C(22) (6) N(2)-N(3)-C(19)-C(21) (7) C(4)-N(3)-C(19)-C(21) 71.6(8) N(2)-N(3)-C(19)-C(20) 113.0(7) C(4)-N(3)-C(19)-C(20) -47.5(8)

20

21 Hy 2 NA + SbF - 6 (Nel011) Data Collection A black crystal with approximate dimensions 0.41 x 0.38 x 0.35 mm 3 was selected under oil under ambient conditions and attached to the tip of a nylon loop. The crystal was mounted in a stream of cold nitrogen at 100(2) K and centered in the X-ray beam by using a video camera. The crystal evaluation and data collection were performed on a Bruker CCD-1000 diffractometer with Mo K α (λ = Å) radiation and the diffractometer to crystal distance of 4.9 cm. The initial cell constants were obtained from three series of ω scans at different starting angles. Each series consisted of 20 frames collected at intervals of 0.3º in a 6º range about ω with the exposure time of 10 seconds per frame. A total of 54 reflections was obtained. The reflections were successfully indexed by an automated indexing routine built in the SMART program. The final cell constants were calculated from a set of 6454 strong reflections from the actual data collection. The data were collected by using the hemisphere data collection routine. The reciprocal space was surveyed to the extent of a full sphere to a resolution of 0.80 Å. A total of data were harvested by collecting three sets of frames with 0.3º scans in ω with an exposure time eight seconds per frame. These highly redundant datasets were corrected for Lorentz and polarization effects. The absorption correction was based on fitting a function to the empirical transmission surface as sampled by multiple equivalent measurements. 14 Structure Solution and Refinement The systematic absences in the diffraction data were consistent for the space groups Cc and C2/c. The E-statistics strongly suggested the centrosymmetric space group C2/c that yielded chemically reasonable and computationally stable results of refinement [1]. A successful solution by the direct methods provided most non-hydrogen atoms from the E-map. The remaining non-hydrogen atoms were located in an alternating series of least-squares cycles and difference Fourier maps. All non-hydrogen atoms were refined with anisotropic displacement coefficients. All hydrogen atoms were included in the structure factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement

22 coefficients. There are two half-ions of SbF - 6 in the asymmetric unit. The Sb(1) anion occupies a crystallographic 2-fold axis while the Sb(2) anion resides on a crystallographic inversion center. Atoms F(2), F(3), and F(4) are equally disordered over two positions each; the Sb(1) moiety was refined with soft restraints. The final least-squares refinement of 572 parameters against 6071 data resulted in residuals R (based on F 2 for I 2σ) and wr (based on F 2 for all data) of and , respectively. The final difference Fourier map was featureless. Table 1. Crystal data and structure refinement for nel11. Identification code nel11 Empirical formula C 20 H 26 F 6 N 2 Sb Formula weight Temperature 100(2) K Wavelength Å Crystal system Monoclinic Space group C2/c Unit cell dimensions a = (3) Å α= 90. b = (18) Å β= (2). c = (2) Å γ = 90. Volume (10) Å 3 Z 8 Density (calculated) Mg/m 3 Absorption coefficient mm -1 F(000) 2120 Crystal size 0.41 x 0.38 x 0.35 mm 3 Theta range for data collection 2.20 to Index ranges -28<=h<=27, -17<=k<=17, -20<=l<=20 Reflections collected Independent reflections 4386 [R(int) = ] Completeness to theta = % Absorption correction Multiscan with SADABS Max. and min. transmission and Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 4386 / 6 / 291 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Largest diff. peak and hole and e.å -3 Table 2. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for nel11. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) Sb(1) (1) (1) Sb(2) (1) F(1) 1008(1) 1636(2) 3204(2) 38(1) F(2) -43(9) 2923(2) 2256(9) 65(3) F(3) -73(6) 1916(6) 1329(5) 54(2)

23 F(3A) -76(5) 1386(7) 1327(4) 67(3) F(4) -93(6) 391(2) 2184(6) 73(4) F(5) 2793(1) 1245(2) 333(2) 30(1) F(6) 2429(2) 2581(2) 1095(2) 31(1) F(7) 3458(1) 2898(2) 815(2) 34(1) N(1) 2824(1) 4270(2) 3464(2) 14(1) N(2) 2684(2) 4687(2) 2624(2) 16(1) C(1) 2347(2) 3512(2) 3457(3) 16(1) C(2) 2771(2) 2586(2) 3764(3) 23(1) C(3) 2186(2) 3795(3) 4221(3) 24(1) C(4) 1654(2) 3377(2) 2412(3) 23(1) C(5) 3586(2) 4363(2) 4329(3) 18(1) C(6) 3735(2) 5417(3) 4503(3) 23(1) C(7) 3628(2) 5855(2) 3555(3) 25(1) C(8) 3336(2) 5086(3) 2741(3) 21(1) C(9) 3876(2) 4292(3) 3055(3) 26(1) C(10) 4084(2) 3915(3) 4077(3) 22(1) C(11) 2011(2) 5162(2) 1958(2) 16(1) C(12) 1693(2) 5655(2) 2332(3) 16(1) C(13) 1023(2) 6105(2) 1662(3) 17(1) C(14) 661(2) 6611(2) 2006(3) 21(1) C(15) 14(2) 7033(3) 1339(3) 23(1) C(16) -306(2) 6972(3) 300(3) 25(1) C(17) 31(2) 6500(2) -57(3) 22(1) C(18) 701(2) 6050(2) 609(3) 18(1) C(19) 1065(2) 5549(2) 263(3) 20(1) C(20) 1703(2) 5110(2) 912(3) 20(1)

24 Table 3. Bond lengths [Å] and angles [ ] for nel11. Sb(1)-F(2)# (3) N(2)-C(11) 1.437(4) Sb(1)-F(2) 1.847(3) N(2)-C(8) 1.486(4) Sb(1)-F(3)# (3) C(1)-C(4) 1.527(5) Sb(1)-F(3) 1.847(3) C(1)-C(3) 1.529(5) Sb(1)-F(3A) 1.847(3) C(1)-C(2) 1.537(5) Sb(1)-F(3A)# (3) C(5)-C(6) 1.531(5) Sb(1)-F(4) 1.847(3) C(5)-C(10) 1.538(5) Sb(1)-F(4)# (3) C(6)-C(7) 1.544(5) Sb(1)-F(1) 1.877(2) C(7)-C(8) 1.544(5) Sb(1)-F(1)# (2) C(8)-C(9) 1.523(5) Sb(2)-F(7)# (2) C(9)-C(10) 1.537(5) Sb(2)-F(7) 1.868(2) C(11)-C(12) 1.368(5) Sb(2)-F(6) 1.875(2) C(11)-C(20) 1.421(5) Sb(2)-F(6)# (2) C(12)-C(13) 1.417(5) Sb(2)-F(5)# (2) C(13)-C(14) 1.419(5) Sb(2)-F(5) 1.878(2) C(13)-C(18) 1.425(5) F(2)-F(2)# (17) C(14)-C(15) 1.366(5) F(3)-F(3A) 0.757(12) C(15)-C(16) 1.406(5) F(4)-F(4)# (18) C(16)-C(17) 1.365(6) N(1)-N(2) 1.347(4) C(17)-C(18) 1.416(5) N(1)-C(5) 1.482(4) C(18)-C(19) 1.424(5) N(1)-C(1) 1.521(4) C(19)-C(20) 1.360(5)

25 F(2)#1-Sb(1)-F(2) 21.8(5) F(2)#1-Sb(1)-F(3)#1 67.4(4) F(2)-Sb(1)-F(3)#1 89.0(4) F(2)#1-Sb(1)-F(3) 89.0(4) F(2)-Sb(1)-F(3) 67.4(4) F(3)#1-Sb(1)-F(3) 156.4(5) F(2)#1-Sb(1)-F(3A) 112.6(4) F(2)-Sb(1)-F(3A) 91.1(4) F(3)#1-Sb(1)-F(3A) 179.8(6) F(3)-Sb(1)-F(3A) 23.6(4) F(2)#1-Sb(1)-F(3A)#1 91.1(4) F(2)-Sb(1)-F(3A)# (4) F(3)#1-Sb(1)-F(3A)#1 23.6(4) F(3)-Sb(1)-F(3A)# (6) F(3A)-Sb(1)-F(3A)# (6) F(2)#1-Sb(1)-F(4) 176.7(5) F(2)-Sb(1)-F(4) 155.8(4) F(3)#1-Sb(1)-F(4) 114.4(5) F(3)-Sb(1)-F(4) 89.1(5) F(3A)-Sb(1)-F(4) 65.5(5) F(3A)#1-Sb(1)-F(4) 90.9(5) F(2)#1-Sb(1)-F(4)# (4) F(2)-Sb(1)-F(4)# (5) F(3)#1-Sb(1)-F(4)#1 89.1(5) F(3)-Sb(1)-F(4)# (5) F(3A)-Sb(1)-F(4)#1 90.9(5) F(3A)#1-Sb(1)-F(4)#1 65.5(5) F(4)-Sb(1)-F(4)#1 26.9(6) F(2)#1-Sb(1)-F(1) 89.0(6) F(2)-Sb(1)-F(1) 92.2(6) F(3)#1-Sb(1)-F(1) 90.6(4) F(3)-Sb(1)-F(1) 89.6(4) F(3A)-Sb(1)-F(1) 89.6(3) F(3A)#1-Sb(1)-F(1) 90.1(3) F(4)-Sb(1)-F(1) 93.7(4) F(4)#1-Sb(1)-F(1) 85.1(4) F(2)#1-Sb(1)-F(1)#1 92.2(6) F(2)-Sb(1)-F(1)#1 89.0(6) F(3)#1-Sb(1)-F(1)#1 89.6(4) F(3)-Sb(1)-F(1)#1 90.6(4) F(3A)-Sb(1)-F(1)#1 90.1(3) F(3A)#1-Sb(1)-F(1)#1 89.6(3) F(4)-Sb(1)-F(1)#1 85.1(4) F(4)#1-Sb(1)-F(1)#1 93.7(4) F(1)-Sb(1)-F(1)# (16) F(7)#2-Sb(2)-F(7) (11) F(7)#2-Sb(2)-F(6) 89.86(11) F(7)-Sb(2)-F(6) 90.14(11) F(7)#2-Sb(2)-F(6)# (11) F(7)-Sb(2)-F(6)# (11) F(6)-Sb(2)-F(6)# (2) F(7)#2-Sb(2)-F(5)# (11) F(7)-Sb(2)-F(5)# (11) F(6)-Sb(2)-F(5)# (9) F(6)#2-Sb(2)-F(5)# (9) F(7)#2-Sb(2)-F(5) 89.42(11)

26 F(7)-Sb(2)-F(5) 90.58(11) F(6)-Sb(2)-F(5) 89.58(9) F(6)#2-Sb(2)-F(5) 90.42(9) F(5)#2-Sb(2)-F(5) F(2)#1-F(2)-Sb(1) 79.1(3) F(3A)-F(3)-Sb(1) 78.2(2) F(3)-F(3A)-Sb(1) 78.2(2) F(4)#1-F(4)-Sb(1) 76.6(3) N(2)-N(1)-C(5) 113.1(3) N(2)-N(1)-C(1) 123.3(3) C(5)-N(1)-C(1) 120.4(3) N(1)-N(2)-C(11) 120.3(3) N(1)-N(2)-C(8) 113.4(3) C(11)-N(2)-C(8) 117.5(3) N(1)-C(1)-C(4) 111.8(3) N(1)-C(1)-C(3) 107.5(3) C(4)-C(1)-C(3) 111.4(3) N(1)-C(1)-C(2) 107.5(3) C(4)-C(1)-C(2) 107.8(3) C(3)-C(1)-C(2) 110.9(3) N(1)-C(5)-C(6) 106.1(3) N(1)-C(5)-C(10) 110.0(3) C(6)-C(5)-C(10) 109.9(3) C(5)-C(6)-C(7) 108.7(3) C(6)-C(7)-C(8) 108.2(3) N(2)-C(8)-C(9) 107.7(3) N(2)-C(8)-C(7) 106.9(3) C(9)-C(8)-C(7) 111.8(3) C(8)-C(9)-C(10) 108.4(3) C(5)-C(10)-C(9) 108.6(3) C(12)-C(11)-C(20) 122.1(3) C(12)-C(11)-N(2) 120.5(3) C(20)-C(11)-N(2) 117.4(3) C(11)-C(12)-C(13) 119.7(3) C(14)-C(13)-C(12) 122.1(3) C(14)-C(13)-C(18) 118.9(3) C(12)-C(13)-C(18) 119.0(3) C(15)-C(14)-C(13) 120.6(3) C(14)-C(15)-C(16) 120.5(4) C(17)-C(16)-C(15) 120.5(3) C(16)-C(17)-C(18) 120.7(3) C(17)-C(18)-C(19) 122.2(3) C(17)-C(18)-C(13) 118.8(3) C(19)-C(18)-C(13) 119.0(3) C(20)-C(19)-C(18) 121.5(3) C(19)-C(20)-C(11) 118.7(3) Symmetry transformations used to generate equivalent atoms: #1 -x,y,-z+1/2 #2 -x+1/2,-y+1/2,-z

27 Table 4. Anisotropic displacement parameters (Å 2 x 10 3 ) for nel11. The anisotropic displacement factor exponent takes the form: -2π 2 [ h 2 a* 2 U h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 Sb(1) 20(1) 19(1) 20(1) 0 13(1) 0 Sb(2) 21(1) 12(1) 18(1) 2(1) 13(1) 3(1) F(1) 18(1) 56(2) 36(1) 7(1) 13(1) -3(1) F(2) 59(5) 36(3) 111(12) 43(4) 55(10) 14(5) F(3) 57(5) 89(6) 29(3) 10(4) 32(3) -10(5) F(3A) 25(3) 147(9) 27(3) -28(4) 14(3) 7(6) F(4) 33(6) 25(2) 139(11) -12(3) 37(8) 1(3) F(5) 47(2) 16(1) 35(1) 8(1) 28(1) 10(1) F(6) 50(2) 27(1) 30(1) 5(1) 31(1) 7(1) F(7) 22(1) 36(1) 34(1) 7(1) 9(1) -5(1) N(1) 15(1) 10(1) 16(1) 1(1) 9(1) -1(1) N(2) 19(2) 12(1) 19(2) 0(1) 12(1) -1(1) C(1) 19(2) 10(2) 21(2) 0(1) 12(2) -4(1) C(2) 28(2) 10(2) 30(2) 4(1) 16(2) 2(1) C(3) 30(2) 23(2) 25(2) -1(2) 20(2) -3(2) C(4) 23(2) 15(2) 26(2) 0(2) 12(2) -7(1) C(5) 16(2) 17(2) 20(2) 1(1) 9(2) 1(1) C(6) 21(2) 18(2) 27(2) -7(2) 11(2) -4(2) C(7) 23(2) 17(2) 32(2) -1(2) 14(2) -7(2) C(8) 20(2) 21(2) 26(2) 4(2) 15(2) -1(2) C(9) 24(2) 30(2) 32(2) 1(2) 19(2) 4(2) C(10) 18(2) 19(2) 32(2) 3(2) 15(2) 4(1) C(11) 18(2) 10(2) 19(2) 1(1) 10(1) -2(1) C(12) 20(2) 11(2) 17(2) -1(1) 10(1) -3(1) C(13) 19(2) 11(2) 18(2) -1(1) 9(2) -3(1) C(14) 22(2) 20(2) 20(2) 0(1) 11(2) 0(1) C(15) 22(2) 21(2) 30(2) 2(2) 16(2) 1(2) C(16) 17(2) 19(2) 32(2) 7(2) 10(2) -1(2) C(17) 20(2) 20(2) 18(2) 4(2) 5(2) -2(1) C(18) 17(2) 11(2) 22(2) 0(1) 8(2) -6(1) C(19) 24(2) 15(2) 15(2) -1(1) 8(2) -4(1) C(20) 25(2) 16(2) 24(2) -3(1) 17(2) -4(2) Table 5. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (Å 2 x 10 3 ) for nel11. x y z U(eq) H(2A) H(2B) H(2C) H(3A) H(3B) H(3C) H(4A) H(4B) H(4C) H(5) H(6A) H(6B)

28 H(7A) H(7B) H(8) H(9A) H(9B) H(10A) H(10B) H(12) H(14) H(15) H(16) H(17) H(19) H(20) Table 6. Torsion angles [ ] for nel11.

29 F(3)#1-Sb(1)-F(2)-F(2)#1 9(3) F(3)-Sb(1)-F(2)-F(2)#1-170(3) F(3A)-Sb(1)-F(2)-F(2)#1-171(3) F(3A)#1-Sb(1)-F(2)-F(2)#1 9(3) F(4)-Sb(1)-F(2)-F(2)# (19) F(4)#1-Sb(1)-F(2)-F(2)#1-46(12) F(1)-Sb(1)-F(2)-F(2)#1-82(3) F(1)#1-Sb(1)-F(2)-F(2)#1 99(3) F(2)#1-Sb(1)-F(3)-F(3A) 178.8(16) F(2)-Sb(1)-F(3)-F(3A) (17) F(3)#1-Sb(1)-F(3)-F(3A) (15) F(3A)#1-Sb(1)-F(3)-F(3A) 87(100) F(4)-Sb(1)-F(3)-F(3A) -3.9(15) F(4)#1-Sb(1)-F(3)-F(3A) 5.4(17) F(1)-Sb(1)-F(3)-F(3A) 89.8(15) F(1)#1-Sb(1)-F(3)-F(3A) -89.0(15) F(2)#1-Sb(1)-F(3A)-F(3) -1.3(17) F(2)-Sb(1)-F(3A)-F(3) 2.2(16) F(3)#1-Sb(1)-F(3A)-F(3) 94(100) F(3A)#1-Sb(1)-F(3A)-F(3) (15) F(4)-Sb(1)-F(3A)-F(3) 175.7(16) F(4)#1-Sb(1)-F(3A)-F(3) (15) F(1)-Sb(1)-F(3A)-F(3) -90.1(15) F(1)#1-Sb(1)-F(3A)-F(3) 91.2(15) F(2)#1-Sb(1)-F(4)-F(4)#1-144(9) F(2)-Sb(1)-F(4)-F(4)# (16) F(3)#1-Sb(1)-F(4)-F(4)#1-21(2) F(3)-Sb(1)-F(4)-F(4)# (19) F(3A)-Sb(1)-F(4)-F(4)#1 159(2) F(3A)#1-Sb(1)-F(4)-F(4)#1-18.7(19) F(1)-Sb(1)-F(4)-F(4)#1 71.5(19) F(1)#1-Sb(1)-F(4)-F(4)# (19) C(5)-N(1)-N(2)-C(11) (3) C(1)-N(1)-N(2)-C(11) 57.4(4) C(5)-N(1)-N(2)-C(8) 3.9(4) C(1)-N(1)-N(2)-C(8) (3) N(2)-N(1)-C(1)-C(4) -7.2(4) C(5)-N(1)-C(1)-C(4) (3) N(2)-N(1)-C(1)-C(3) (3) C(5)-N(1)-C(1)-C(3) 71.7(4) N(2)-N(1)-C(1)-C(2) 110.9(3) C(5)-N(1)-C(1)-C(2) -47.7(4) N(2)-N(1)-C(5)-C(6) 58.9(3) C(1)-N(1)-C(5)-C(6) (3) N(2)-N(1)-C(5)-C(10) -59.8(3) C(1)-N(1)-C(5)-C(10) 100.8(3) N(1)-C(5)-C(6)-C(7) -61.7(4) C(10)-C(5)-C(6)-C(7) 57.2(4) C(5)-C(6)-C(7)-C(8) 5.6(4) N(1)-N(2)-C(8)-C(9) 57.7(4) C(11)-N(2)-C(8)-C(9) (3) N(1)-N(2)-C(8)-C(7) -62.6(3) C(11)-N(2)-C(8)-C(7) 85.1(4) C(6)-C(7)-C(8)-N(2) 53.8(4) C(6)-C(7)-C(8)-C(9) -63.8(4) N(2)-C(8)-C(9)-C(10) -62.3(4)

30 C(7)-C(8)-C(9)-C(10) 54.7(4) N(1)-C(5)-C(10)-C(9) 49.8(4) C(6)-C(5)-C(10)-C(9) -66.6(4) C(8)-C(9)-C(10)-C(5) 9.0(4) N(1)-N(2)-C(11)-C(12) 36.6(4) C(8)-N(2)-C(11)-C(12) (4) N(1)-N(2)-C(11)-C(20) (3) C(8)-N(2)-C(11)-C(20) 70.3(4) C(20)-C(11)-C(12)-C(13) 2.1(5) N(2)-C(11)-C(12)-C(13) (3) C(11)-C(12)-C(13)-C(14) 178.8(3) C(11)-C(12)-C(13)-C(18) -1.3(5) C(12)-C(13)-C(14)-C(15) (3) C(18)-C(13)-C(14)-C(15) 0.4(5) C(13)-C(14)-C(15)-C(16) 0.1(5) C(14)-C(15)-C(16)-C(17) -0.8(6) C(15)-C(16)-C(17)-C(18) 1.0(5) C(16)-C(17)-C(18)-C(19) 179.7(3) C(16)-C(17)-C(18)-C(13) -0.6(5) C(14)-C(13)-C(18)-C(17) -0.1(5) C(12)-C(13)-C(18)-C(17) 179.9(3) C(14)-C(13)-C(18)-C(19) 179.6(3) C(12)-C(13)-C(18)-C(19) -0.4(5) C(17)-C(18)-C(19)-C(20) (3) C(13)-C(18)-C(19)-C(20) 1.2(5) C(18)-C(19)-C(20)-C(11) -0.4(5) C(12)-C(11)-C(20)-C(19) -1.3(5) N(2)-C(11)-C(20)-C(19) 179.6(3) Symmetry transformations used to generate equivalent atoms: #1 -x,y,-z+1/2 #2 -x+1/2,-y+1/2,-z

31 Hy 15 2 NA 2+ (BF - 4 ) 2 (nel06) Data Collection A crystal with approximate dimensions 0.21 x 0.14 x 0.10 mm 3 was selected under oil under ambient conditions and attached to the tip of a glass capillary. The crystal was mounted in a stream of cold nitrogen at 100(2) K and centered in the X-ray beam by using a video camera. The crystal evaluation and data collection were performed on a Bruker CCD-1000 diffractometer with Mo K α (λ = Å) radiation and the diffractometer to crystal distance of 4.9 cm. The initial cell constants were obtained from three series of ω scans at different starting angles. Each series consisted of 20 frames collected at intervals of 0.3º in a 6º range about ω with the exposure time of 10 seconds per frame. A total of 44 reflections was obtained. The reflections were successfully indexed by an automated indexing routine built in the SMART program. The final cell constants were calculated from a set of strong reflections from the actual data collection. The data were collected by using the hemisphere data collection routine. The reciprocal space was surveyed to the extent of a full sphere to a resolution of 0.80 Å. A total of data were harvested by collecting three sets of frames with 0.3º scans in ω with an exposure time 70 sec per frame. These highly redundant datasets were corrected for Lorentz and polarization effects. The absorption correction was based on fitting a function to the empirical transmission surface as sampled by multiple equivalent measurements. 15 Structure Solution and Refinement The systematic absences in the diffraction data were uniquely consistent for the space group P2 1 /c that yielded chemically reasonable and computationally stable results of refinement. 16 A successful solution by the direct methods provided most non-hydrogen atoms from the E-map. The remaining non-hydrogen atoms were located in an alternating series of least-squares cycles and difference Fourier maps. All non-hydrogen atoms were refined with anisotropic displacement coefficients. All hydrogen atoms were included in the structure factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients. The cation occupies a crystallographic inversion center.

32 The final least-squares refinement of 382 parameters against 4700 data resulted in residuals R (based on F 2 for I 2σ) and wr (based on F 2 for all data) of and , respectively. The final difference Fourier map was featureless. Table 1. Crystal data and structure refinement for nel06. Identification code nel06 Empirical formula C 78 H 84 B 2 N 4 Formula weight Temperature 100(2) K Wavelength Å Crystal system Monoclinic Space group P2 1 /c Unit cell dimensions a = (16) Å α= 90. b = (18) Å β= (2). c = (3) Å γ = 90. Volume (7) Å 3 Z 2 Density (calculated) Mg/m 3 Absorption coefficient mm -1 F(000) 1180 Crystal size 0.21 x 0.14 x 0.10 mm 3 Theta range for data collection 2.14 to Index ranges -13<=h<=13, -15<=k<=15, -22<=l<=22 Reflections collected Independent reflections 4700 [R(int) = ] Completeness to theta = % Absorption correction Empirical with SADABS Max. and min. transmission and Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 4700 / 0 / 382 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Largest diff. peak and hole and e.å -3 Table 2. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for nel06. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. (nel06) x y z U(eq) N(1) 1911(2) 6568(2) 524(1) 25(1) N(2) 2040(2) 7511(2) 772(1) 20(1) B(1) 7594(3) 7247(2) 2565(2) 16(1) C(1) 456(2) 5335(2) -31(2) 17(1) C(2) 889(3) 5990(2) 548(2) 20(1) C(3) 428(3) 6011(2) 1134(2) 20(1) C(4) -477(2) 5348(2) 1177(2) 18(1) C(5) -893(2) 4683(2) 649(2) 18(1) C(6) 1162(3) 8339(2) 491(2) 27(1) C(7) 1791(3) 9154(3) 165(2) 33(1) C(8) 755(3) 8748(2) 1119(2) 27(1) C(9) 163(3) 7953(3) -70(2) 35(1)

33 C(10) 3230(3) 7760(2) 1153(2) 25(1) C(11) 3545(3) 6999(2) 1756(2) 28(1) C(12) 3527(3) 5938(3) 1438(2) 29(1) C(13) 3048(3) 6013(2) 651(2) 25(1) C(14) 3829(3) 6631(2) 287(2) 26(1) C(15) 4079(3) 7648(2) 666(2) 27(1) C(16) 7155(2) 8200(2) 2035(2) 17(1) C(17) 7576(3) 8370(2) 1428(2) 20(1) C(18) 7141(3) 9099(2) 935(2) 24(1) C(19) 6263(3) 9732(2) 1034(2) 28(1) C(20) 5841(3) 9621(2) 1640(2) 26(1) C(21) 6283(3) 8872(2) 2124(2) 21(1) C(22) 7155(2) 7418(2) 3302(2) 17(1) C(23) 6103(2) 7043(2) 3409(2) 17(1) C(24) 5726(3) 7197(2) 4022(2) 21(1) C(25) 6389(3) 7762(2) 4564(2) 21(1) C(26) 7413(3) 8172(2) 4475(2) 22(1) C(27) 7784(3) 8008(2) 3856(2) 20(1) C(28) 9022(3) 7163(2) 2752(1) 18(1) C(29) 9746(3) 8007(2) 2785(2) 21(1) C(30) 10949(3) 7945(2) 2971(2) 26(1) C(31) 11488(3) 7025(3) 3137(2) 29(1) C(32) 10813(3) 6166(3) 3110(2) 27(1) C(33) 9615(3) 6248(2) 2922(2) 22(1) C(34) 7053(2) 6191(2) 2169(2) 16(1) C(35) 6862(2) 5327(2) 2540(2) 19(1) C(36) 6435(3) 4434(2) 2209(2) 21(1) C(37) 6198(3) 4353(2) 1486(2) 20(1) C(38) 6395(2) 5180(2) 1100(2) 18(1) C(39) 6802(2) 6071(2) 1437(2) 16(1) Table 3. Bond lengths [Å] and angles [ ] for nel06.

34 N(1)-N(2) 1.342(3) N(1)-C(2) 1.444(4) N(1)-C(13) 1.507(4) N(2)-C(10) 1.476(4) N(2)-C(6) 1.530(4) B(1)-C(16) 1.645(4) B(1)-C(22) 1.650(4) B(1)-C(28) 1.653(4) B(1)-C(34) 1.662(4) C(1)-C(5)# (4) C(1)-C(2) 1.426(4) C(1)-C(1)# (6) C(2)-C(3) 1.374(4) C(3)-C(4) 1.406(4) C(4)-C(5) 1.363(4) C(5)-C(1)# (4) C(6)-C(9) 1.510(5) C(6)-C(8) 1.516(4) C(6)-C(7) 1.533(5) C(10)-C(11) 1.533(4) C(10)-C(15) 1.539(4) C(11)-C(12) 1.540(5) C(12)-C(13) 1.516(4) C(13)-C(14) 1.529(4) C(14)-C(15) 1.539(4) C(16)-C(17) 1.405(4) C(16)-C(21) 1.407(4) C(17)-C(18) 1.381(4) C(18)-C(19) 1.385(5) C(19)-C(20) 1.391(5) C(20)-C(21) 1.392(4) C(22)-C(23) 1.402(4) C(22)-C(27) 1.406(4) C(23)-C(24) 1.384(4) C(24)-C(25) 1.387(4) C(25)-C(26) 1.378(4) C(26)-C(27) 1.394(4) C(28)-C(29) 1.406(4) C(28)-C(33) 1.407(4) C(29)-C(30) 1.392(4) C(30)-C(31) 1.386(5) C(31)-C(32) 1.390(5) C(32)-C(33) 1.389(4) C(34)-C(39) 1.401(4) C(34)-C(35) 1.403(4) C(35)-C(36) 1.392(4) C(36)-C(37) 1.378(4) C(37)-C(38) 1.384(4) C(38)-C(39) 1.388(4) N(2)-N(1)-C(2) 120.9(2) N(2)-N(1)-C(13) 112.0(2) C(2)-N(1)-C(13) 117.4(2) N(1)-N(2)-C(10) 114.2(2) N(1)-N(2)-C(6) 122.2(2) C(10)-N(2)-C(6) 120.9(2)

35 C(16)-B(1)-C(22) 108.9(2) C(16)-B(1)-C(28) 110.7(2) C(22)-B(1)-C(28) 109.1(2) C(16)-B(1)-C(34) 109.0(2) C(22)-B(1)-C(34) 111.0(2) C(28)-B(1)-C(34) 108.2(2) C(5)#1-C(1)-C(2) 123.3(3) C(5)#1-C(1)-C(1)# (3) C(2)-C(1)-C(1)# (3) C(3)-C(2)-C(1) 122.1(3) C(3)-C(2)-N(1) 120.7(3) C(1)-C(2)-N(1) 117.0(3) C(2)-C(3)-C(4) 119.3(3) C(5)-C(4)-C(3) 120.9(3) C(4)-C(5)-C(1)# (3) C(9)-C(6)-C(8) 111.6(3) C(9)-C(6)-N(2) 111.9(3) C(8)-C(6)-N(2) 106.5(2) C(9)-C(6)-C(7) 108.4(3) C(8)-C(6)-C(7) 110.8(3) N(2)-C(6)-C(7) 107.6(3) N(2)-C(10)-C(11) 106.1(2) N(2)-C(10)-C(15) 110.6(2) C(11)-C(10)-C(15) 109.2(3) C(10)-C(11)-C(12) 108.6(3) C(13)-C(12)-C(11) 108.4(3) N(1)-C(13)-C(12) 108.4(2) N(1)-C(13)-C(14) 105.8(2) C(12)-C(13)-C(14) 112.2(3) C(13)-C(14)-C(15) 108.7(3) C(14)-C(15)-C(10) 107.5(3) C(17)-C(16)-C(21) 114.4(3) C(17)-C(16)-B(1) 122.2(3) C(21)-C(16)-B(1) 123.3(3) C(18)-C(17)-C(16) 123.5(3) C(17)-C(18)-C(19) 120.3(3) C(18)-C(19)-C(20) 118.6(3) C(19)-C(20)-C(21) 120.0(3) C(20)-C(21)-C(16) 123.1(3) C(23)-C(22)-C(27) 114.7(3) C(23)-C(22)-B(1) 123.2(3) C(27)-C(22)-B(1) 122.0(3) C(24)-C(23)-C(22) 123.3(3) C(23)-C(24)-C(25) 120.0(3) C(26)-C(25)-C(24) 118.9(3) C(25)-C(26)-C(27) 120.4(3) C(26)-C(27)-C(22) 122.5(3) C(29)-C(28)-C(33) 114.4(3) C(29)-C(28)-B(1) 122.7(3) C(33)-C(28)-B(1) 122.8(3) C(30)-C(29)-C(28) 122.9(3) C(31)-C(30)-C(29) 120.3(3) C(30)-C(31)-C(32) 119.1(3) C(33)-C(32)-C(31) 119.4(3) C(32)-C(33)-C(28) 123.9(3) C(39)-C(34)-C(35) 114.3(3)

36 C(39)-C(34)-B(1) 122.8(2) C(35)-C(34)-B(1) 122.9(2) C(36)-C(35)-C(34) 123.0(3) C(37)-C(36)-C(35) 120.7(3) C(36)-C(37)-C(38) 118.3(3) C(37)-C(38)-C(39) 120.3(3) C(38)-C(39)-C(34) 123.5(3) Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z Table 4. Anisotropic displacement parameters (Å 2 x 10 3 ) for nel06. The anisotropic displacement factor exponent takes the form: -2π 2 [ h 2 a* 2 U h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 N(1) 33(2) 22(1) 22(1) -4(1) 11(1) -8(1) N(2) 20(1) 20(1) 20(1) -8(1) 6(1) -3(1) B(1) 20(2) 16(2) 12(2) 0(1) 3(1) -2(1) C(1) 21(2) 17(2) 15(2) 2(1) 7(1) 5(1) C(2) 24(2) 16(2) 21(2) -1(1) 7(1) -5(1) C(3) 26(2) 18(2) 17(2) -3(1) 6(1) -1(1) C(4) 21(2) 22(2) 12(2) -1(1) 7(1) 1(1) C(5) 16(2) 19(2) 18(2) 3(1) 5(1) -2(1) C(6) 30(2) 23(2) 27(2) 2(1) 5(1) 2(1) C(7) 40(2) 27(2) 33(2) 8(2) 8(2) 1(2) C(8) 26(2) 22(2) 30(2) -1(1) 2(1) 5(1) C(9) 43(2) 26(2) 31(2) 6(2) 0(2) -3(2) C(10) 25(2) 26(2) 21(2) -3(1) 2(1) -4(1) C(11) 30(2) 30(2) 24(2) 1(1) 4(1) 2(2) C(12) 26(2) 33(2) 31(2) 4(2) 9(2) 1(2) C(13) 20(2) 23(2) 33(2) -7(1) 7(1) 3(1) C(14) 23(2) 31(2) 24(2) -3(1) 5(1) 1(1) C(15) 24(2) 29(2) 29(2) -1(1) 6(1) -4(1) C(16) 21(2) 14(2) 16(2) -4(1) 2(1) -6(1) C(17) 23(2) 13(2) 23(2) -3(1) 3(1) -4(1) C(18) 33(2) 19(2) 20(2) 1(1) 7(1) -8(1) C(19) 41(2) 18(2) 23(2) 6(1) -1(2) -1(2) C(20) 32(2) 17(2) 25(2) -1(1) 1(1) 6(1) C(21) 26(2) 19(2) 19(2) -4(1) 3(1) -2(1) C(22) 19(2) 15(2) 16(2) 2(1) 2(1) 4(1) C(23) 20(2) 16(2) 14(2) 0(1) -1(1) 3(1) C(24) 20(2) 20(2) 23(2) 4(1) 7(1) 4(1) C(25) 25(2) 25(2) 15(2) 1(1) 6(1) 7(1) C(26) 27(2) 20(2) 16(2) -6(1) 1(1) 3(1) C(27) 18(2) 21(2) 20(2) -1(1) 4(1) 1(1) C(28) 24(2) 22(2) 8(1) -1(1) 7(1) 1(1) C(29) 25(2) 21(2) 19(2) -3(1) 7(1) -2(1) C(30) 24(2) 31(2) 25(2) -4(1) 10(1) -8(1) C(31) 16(2) 44(2) 27(2) -2(2) 6(1) 2(2) C(32) 23(2) 29(2) 28(2) 1(1) 5(1) 8(1) C(33) 25(2) 21(2) 20(2) 1(1) 6(1) -1(1) C(34) 14(1) 17(2) 17(2) 0(1) 4(1) 4(1) C(35) 22(2) 18(2) 17(2) 2(1) 4(1) 3(1) C(36) 25(2) 16(2) 24(2) 3(1) 7(1) 0(1) C(37) 19(2) 14(2) 26(2) -5(1) 5(1) 1(1)

Supporting Information. for

Supporting Information. for Supporting Information for "Inverse-Electron-Demand" Ligand Substitution in Palladium(0) Olefin Complexes Shannon S. Stahl,* Joseph L. Thorman, Namal de Silva, Ilia A. Guzei, and Robert W. Clark Department

More information

Structure Report for J. Reibenspies

Structure Report for J. Reibenspies X-ray Diffraction Laboratory Center for Chemical Characterization and Analysis Department of Chemistry Texas A & M University Structure Report for J. Reibenspies Project Name: Sucrose Date: January 29,

More information

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin Page S16 Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin Tarek Sammakia,* Deidre M. Johns, Ganghyeok Kim, and Martin

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-furan-enzymatic alcohol Lab ID: 12042 User:

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-cinnamyl-chiral alcohol Lab ID: 12040 User:

More information

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene Gaurav Bhalla, Xiang Yang Liu, Jonas Oxgaard, William A. Goddard, III, Roy A. Periana* Loker Hydrocarbon

More information

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence APPENDIX E Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence Temperature Designation CCDC Page 100 K MLC18 761599 E2 200 K MLC17 762705 E17 300 K MLC19 763335 E31 E2 CALIFORNIA INSTITUTE

More information

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK1360707 Vassil I. Elitzin, Kimberly A. Harvey, Hyunjung Kim, Matthew Salmons, Matthew J. Sharp*, Elie

More information

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Kang Yuan, Goonay Yousefalizadeh, Felix Saraci, Tai Peng, Igor Kozin, Kevin G. Stamplecoskie, Suning Wang*

More information

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE 139 CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE 6.1 INTRODUCTION This chapter describes the crystal and molecular structure of a dehydroacetic acid substituted

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Single-Crystal-to-Single-Crystal Transformation of an Anion Exchangeable

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY APPENDIX F Crystallographic Data for TBA Tb(DO2A)(F-DPA) CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY Date 11 January 2010 Crystal Structure Analysis of: MLC23

More information

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes Ruth Castro-Rodrigo, Sumit Chakraborty, Lloyd Munjanja, William W. Brennessel, and William D. Jones* Department

More information

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center Supporting Information Connie C. Lu and Jonas C. Peters* Division of Chemistry and

More information

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Electronic supplementary information Strategy to Enhance Solid-State Fluorescence and

More information

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J.

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J. Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically Crowded (C 5 Me 5 ) 3 M Complexes Thomas J. Mueller, Joseph W. Ziller, and William J. Evans * Department of Chemistry, University

More information

Seth B. Harkins and Jonas C. Peters

Seth B. Harkins and Jonas C. Peters Amido-bridged Cu 2 N 2 diamond cores that minimize structural reorganization and facilitate reversible redox behavior between a Cu 1 Cu 1 and a Class III delocalized Cu 1.5 Cu 1.5 species. Seth B. Harkins

More information

Supporting information

Supporting information Supporting information Sensitizing Tb(III) and Eu(III) Emission with Triarylboron Functionalized 1,3-diketonato Ligands Larissa F. Smith, Barry A. Blight, Hee-Jun Park, and Suning Wang* Department of Chemistry,

More information

Supporting Information

Supporting Information Submitted to Cryst. Growth Des. Version 1 of August 22, 2007 Supporting Information Engineering Hydrogen-Bonded Molecular Crystals Built from 1,3,5-Substituted Derivatives of Benzene: 6,6',6''-(1,3,5-Phenylene)tris-1,3,5-triazine-2,4-diamines

More information

Supporting Information

Supporting Information Supporting Information Characterization of Peroxo and Hydroperoxo Intermediates in the Aerobic Oxidation of N-Heterocyclic-Carbene-Coordinated Palladium(0) Michael M. Konnick, Ilia A. Guzei, and Shannon

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supporting Information Over or under: Hydride attack at the metal versus the coordinated

More information

Understanding the relationship between crystal structure, plasticity and compaction behavior of theophylline, methyl gallate and their 1:1 cocrystal

Understanding the relationship between crystal structure, plasticity and compaction behavior of theophylline, methyl gallate and their 1:1 cocrystal Understanding the relationship between crystal structure, plasticity and compaction behavior of theophylline, methyl gallate and their 1:1 cocrystal Sayantan Chattoraj, Limin Shi and Changquan Calvin Sun

More information

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke *

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke * Development of a New Building Block for the Synthesis of Silicon-Based Drugs and Odorants: Alternative Synthesis of the Retinoid Agonist Disila-bexarotene Matthias W. Büttner, Jennifer B. Nätscher, Christian

More information

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic Supporting information (+)- and ( )-Ecarlottones, Uncommon Chalconoids from Fissistigma latifolium with Proapoptotic Activity Charlotte Gény, Alma Abou Samra, Pascal Retailleau, Bogdan I. Iorga, Hristo

More information

Supplementary Information. Single Crystal X-Ray Diffraction

Supplementary Information. Single Crystal X-Ray Diffraction Supplementary Information Single Crystal X-Ray Diffraction Single crystal diffraction data were collected on an Oxford Diffraction Gemini R Ultra diffractometer equipped with a Ruby CCD-detector with Mo-K

More information

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage Kapil S. Lokare,* a Robert J. Nielsen, *b Muhammed Yousufuddin, c William A. Goddard III, b and Roy A. Periana*,a a Scripps

More information

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes Ashley Carter, Alexander Mason, Michael A. Baker, Donald G. Bettler, Angelo Changas, Colin D. McMillen,

More information

4.1 1-acryloyl-3-methyl-2,6-bis(3,4,5-trimethoxy phenyl)piperidine-4-one (1)

4.1 1-acryloyl-3-methyl-2,6-bis(3,4,5-trimethoxy phenyl)piperidine-4-one (1) 4 Piperidine derivatives 4.1 1-acryloyl-3-methyl-2,6-bis(3,4,5-trimethoxy phenyl)piperidine-4-one (1) 4.1.1 Synthesis To a well stirred solution of 3-methyl-2,6-bis(3,4,5-trimethoxyphenyl)piperi dine-4-one

More information

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage SUPPORTING INFORMATION Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage Chi Yang, a Ushasree Kaipa, a Qian Zhang Mather,

More information

Direct observation of key intermediates by negative-ion electrospray ionization mass spectrometry in palladium-catalyzed cross-coupling

Direct observation of key intermediates by negative-ion electrospray ionization mass spectrometry in palladium-catalyzed cross-coupling Direct observation of key intermediates by negative-ion electrospray ionization mass spectrometry in palladium-catalyzed cross-coupling Krista L. Vikse, a Matthew A. Henderson, a Allen G. Oliver b and

More information

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Supplementary Information Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Galyna Dubinina, Hideki Furutachi, and David A. Vicic * Department of Chemistry, University of Hawaii,

More information

Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O 2

Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O 2 Electronic Supplementary Information for: Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O - and H O Includes Conversion of a Peroxomanganese(III) Adduct to a Bis(µ- O)dimanganese(III,IV)

More information

Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II)

Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II) Asian Journal of Chemistry Vol. 20, No. 8 (2008), 5834-5838 Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II) HAMID GLCHUBIAN Department of Chemistry, Mazandaran University, P..

More information

Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies. Supporting Information

Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies. Supporting Information Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies Satheesh Ellipilli, Sandeep Palvai and Krishna N Ganesh* Chemical Biology Unit,

More information

Supporting Information. Table of Contents

Supporting Information. Table of Contents Supporting Information Selective Anion Exchange and Tunable Luminescent Behaviors of Metal-Organic Framework Based Supramolecular Isomers Biplab Manna, Shweta Singh, Avishek Karmakar, Aamod V.Desai and

More information

Supporting Information

Supporting Information Supporting Information A Trinitrosyl Iron Complex (a {Fe(NO) 3 } 10 TNIC) Stabilized by an N- Heterocyclic Carbene and the Cationic and Neutral {Fe(NO) 2 } 9/10 Products of Its NO Release Chung-Hung Hsieh

More information

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or Ethylene Trimerization Catalysts Based on Chromium Complexes with a Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or ortho-thiomethoxy Substituents: Well Defined Catalyst Precursors and

More information

Decomposition of Ruthenium Olefin Metathesis. Catalysts

Decomposition of Ruthenium Olefin Metathesis. Catalysts Supporting Information for: Decomposition of Ruthenium Olefin Metathesis Catalysts Soon Hyeok Hong, Anna G. Wenzel, Tina T. Salguero, Michael W. Day and Robert H. Grubbs* The Arnold and Mabel Beckman Laboratory

More information

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Emmanuelle Despagnet-Ayoub, Michael K. Takase, Jay A. Labinger and John E. Bercaw Contents 1. Experimental

More information

Molybdenum(0) Fischer ethoxycarbene complexes: Synthesis, X-ray crystal structures and DFT study

Molybdenum(0) Fischer ethoxycarbene complexes: Synthesis, X-ray crystal structures and DFT study Molybdenum(0) Fischer ethoxycarbene complexes: Synthesis, X-ray crystal structures and DFT study Armand Jansen van Rensburg, a Marilé Landman, a * Petrus H. van Rooyen, a Marrigje M. Conradie b and Jeanet

More information

Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine

Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine Supporting Information for: Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine Sílvia Alujas-Burgos, Cristina Oliveras-González, Ángel Álvarez-Larena, Pau

More information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases Jingming Zhang, a Haohan Wu, a Thomas J. Emge, a and Jing Li* a a Department of Chemistry and Chemical Biology,

More information

Supplementary Information

Supplementary Information Supplementary Information Eco-Friendly Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones Catalyzed by FeCl 3 /Al 2 O 3 and Analysis of Large 1 H NMR Diastereotopic Effect Isabel Monreal, a Mariano Sánchez-Castellanos,

More information

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole James T. Brewster II, a Hadiqa Zafar, a Matthew McVeigh, a Christopher D. Wight, a Gonzalo

More information

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol Ailing Zhang, Sakthi Raje, Jianguo Liu, Xiaoyan Li, Raja Angamuthu, Chen-Ho Tung, and Wenguang Wang* School of Chemistry and Chemical

More information

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex Mechanistic insights on the controlled switch from oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex Emmanuelle Despagnet-Ayoub, *,a,b Michael K. Takase, c Lawrence M.

More information

Supporting Infromation

Supporting Infromation Supporting Infromation Aromatic Triazole Foldamers Induced by C H X (X = F, Cl) Intramolecular Hydrogen Bonding Jie Shang,, Nolan M. Gallagher, Fusheng Bie,, Qiaolian Li,, Yanke Che, Ying Wang,*,, and

More information

Changing and challenging times for service crystallography. Electronic Supplementary Information

Changing and challenging times for service crystallography. Electronic Supplementary Information Changing and challenging times for service crystallography Simon J Coles,* a and Philip A Gale* a Electronic Supplementary Information Instrument descriptions and experimental protocols The following firstly

More information

Supporting Information Strong Luminescent Copper(I)-halide Coordination Polymers and Dinuclear Complexes with Thioacetamide and N,N-donor ligands

Supporting Information Strong Luminescent Copper(I)-halide Coordination Polymers and Dinuclear Complexes with Thioacetamide and N,N-donor ligands Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2016 Supporting Information Strong Luminescent Copper(I)-halide Coordination Polymers and Dinuclear

More information

OH) 3. Institute of Experimental Physics, Wrocław University, M. Born Sq. 9, Wrocław, Poland

OH) 3. Institute of Experimental Physics, Wrocław University, M. Born Sq. 9, Wrocław, Poland Structure and Phase Transition of [(CH 2 OH) 3 CNH 3 ] 2 SiF B. Kosturek, Z. Czapla, and A. Waśkowska a Institute of Experimental Physics, Wrocław University, M. Born Sq. 9, 50-204 Wrocław, Poland a Institute

More information

Supporting Information. Table of Contents

Supporting Information. Table of Contents Supporting Information Cyclo-P 3 Complexes of Vanadium. Redox Properties and Origin of the 31 P NMR Chemical Shift. Balazs Pinter,, Kyle T. Smith, Masahiro Kamitani, Eva M. Zolnhofer,ǁ Ba L. Tran, Skye

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information (ESI) A Large Spin, Magnetically Anisotropic, Octanuclear

More information

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information Cyanide-bridged tetradecanuclear Ru II 3M II 11 clusters (M II = Zn II and Cu II ) based on the high connectivity building block [Ru 3 (HAT)(CN) 12 ] 6+ : structural and photophysical properties Juan Manuel

More information

Supporting Information

Supporting Information Supporting Information Methanetrisamidines in Coordination Chemistry - Syntheses, Structures and CH-NH Tautomerism Benjamin Gutschank, Stephan Schulz,* Dieter Bläser and Christoph Wölper Crystallographic

More information

CHAPTER 2 CRYSTALLOGRAPHIC ANALYSIS

CHAPTER 2 CRYSTALLOGRAPHIC ANALYSIS CHAPTER 2 CRYSTALLOGRAPHIC ANALYSIS 2.1 INTRODUCTION The only benzoic acid derivative complexes which yielded diffraction quality crystals suitable for single crystal studies were the 2-fluoro, 3-fluoro,

More information

Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide. Ka-Cheong Lau, Richard F. Jordan*

Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide. Ka-Cheong Lau, Richard F. Jordan* Supporting Information for: Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide Ka-Cheong Lau, Richard F. Jordan* Department of Chemistry, The University of Chicago, 5735 South Ellis

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/5/e1603193/dc1 Supplementary Materials for Molecular surgery on a 23-gold-atom nanoparticle Qi Li, Tian-Yi Luo, Michael G. Taylor, Shuxin Wang, Xiaofan Zhu, Yongbo

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL 10.1071/CH16716_AC CSIRO 2017 Australian Journal of Chemistry 2017, 70(5), 601-607 SUPPLEMENTARY MATERIAL New Heterodinuclear Zn/Ln (Ln = Gd, Tb, Er, Yb) Complexes of Hexadentate N,N -Bis(3-alkoxy-2-hydroxybenzyl)cyclohexane-

More information

Crystal structure analysis of N,2-diphenylacetamide

Crystal structure analysis of N,2-diphenylacetamide International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.9, No.04 pp 301-305, 2016 Crystal structure analysis of N,2-diphenylacetamide K. Elumalai 1, Subramaniyan Sathiyaraj 2,

More information

Supporting Information

Supporting Information Supporting Information Peramivir Phosphonate Derivatives as Influenza Neuraminidase Inhibitors Peng-Cheng Wang a, Jim-Min Fang a,b, *, Keng-Chang Tsai c, Shi-Yun Wang b, Wen-I Huang b, Yin-Chen Tseng b,

More information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information Experimental Supporting Information for Experimental and DFT Studies Explain Solvent Control of C-H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of eutral and Cationic Heterocycles

More information

Crystal growth and characterization of solvated organic charge-transfer complexes built on TTF and 9-dicyanomethylenefluorene derivatives

Crystal growth and characterization of solvated organic charge-transfer complexes built on TTF and 9-dicyanomethylenefluorene derivatives Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 Crystal growth and characterization of solvated organic charge-transfer complexes built on

More information

Supplementary File. Modification of Boc-protected CAN508 via acylation and Suzuki-Miyaura Coupling

Supplementary File. Modification of Boc-protected CAN508 via acylation and Suzuki-Miyaura Coupling Supplementary File Modification of Boc-protected CA508 via acylation and Suzuki-Miyaura Coupling Martin Pisár, Eva Schütznerová 2, Filip Hančík, Igor Popa 3, Zdeněk Trávníček 3 and Petr Cankař, * Department

More information

Spain c Departament de Química Orgànica, Universitat de Barcelona, c/ Martí I Franqués 1-11, 08080, Barcelona, Spain.

Spain c Departament de Química Orgànica, Universitat de Barcelona, c/ Martí I Franqués 1-11, 08080, Barcelona, Spain. a Institute of Chemical Research of Catalonia, Av. Països Catalans, 16, 43007 Tarragona, Spain. b Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193 Barcelona, Spain

More information

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization) ISSN(Online) 2319-8753 ISSN (Print) 2347-6710 (An ISO 3297 2007 Certified Organization) Website www.ijirset.com X-Ray Crystallographic Investigation and Crystal Structure of 6-(2-Hydroxy-4,6- dimethyl-phenyl)-4-(2-methoxy-phenyl)5-

More information

ANNEXE 1 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DES PROTONS ET DES CARBONES-13

ANNEXE 1 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DES PROTONS ET DES CARBONES-13 AEXE 1 : SPECTRES DE RÉSACE MAGÉTIQUE UCLÉAIRE DES PRTS ET DES CARBES-13 122 3,4-Bis(méthoxycarbonyl)-2-méthyl-5-(pent-4 -ényl)-1-phényl-1h-pyrrole (82). Ph 2 C C 2 123 Acide 2-(-benzoyl--méthylamino)oct-7-énoïque

More information

Copper Mediated Fluorination of Aryl Iodides

Copper Mediated Fluorination of Aryl Iodides Copper Mediated Fluorination of Aryl Iodides Patrick S. Fier and John F. Hartwig* Department of Chemistry, University of California, Berkeley, California 94720, United States. Supporting Information Table

More information

Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement

Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 N 0 -(3,4-Dimethylbenzylidene)furan-2- carbohydrazide Yu-Feng Li a and Fang-Fang Jian b * a Microscale Science

More information

Supplementary Information

Supplementary Information Supplementary Information J. Braz. Chem. Soc., Vol. 24, No. 10, S1-S17, 2013. Printed in Brazil - 2013 Sociedade Brasileira de Química 0103-5053 $6.00+0.00 SI Structural Analysis and Antitumor Activity

More information

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013 ISSN SUPPORTING INFORMATION

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013 ISSN SUPPORTING INFORMATION Eur. J. Inorg. Chem. 2013 WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2013 ISSN 1099 0682 SUPPORTING INFORMATION DOI: 10.1002/ejic.201300309 Title: Hydrogen Evolution Catalyzed by Aluminum-Bridged

More information

Supporting Information. Justin M. Salvant, Anne V. Edwards, Daniel Z. Kurek and Ryan E. Looper*

Supporting Information. Justin M. Salvant, Anne V. Edwards, Daniel Z. Kurek and Ryan E. Looper* Supporting Information Regioselective base-mediated cyclizations of mono-n-acylpropargylguanadines. Justin M. Salvant, Anne V. Edwards, Daniel Z. Kurek and Ryan E. Looper* * Department of Chemistry, University

More information

Supporting information for Eddaoudi et al. (2002) Proc. Natl. Acad. Sci. USA 99 (8), ( /pnas ) Supporting Information

Supporting information for Eddaoudi et al. (2002) Proc. Natl. Acad. Sci. USA 99 (8), ( /pnas ) Supporting Information Supporting information for Eddaoudi et al. (2002) Proc. Natl. Acad. Sci. USA 99 (8), 4900 4904. (10.1073/pnas.082051899) Supporting Information Table 1. Syntheses of MOF-102 112 MOFn MOF- 102 Link and

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.7, pp 36-41, 2015

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.7, pp 36-41, 2015 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.8, No.7, pp 36-41, 2015 Crystal structure of 2,3-Bis(2-nitrophenyl)oxirane T. Sankar 1, Potharaju Raju 2, Arasambattu

More information

Pyridyl vs bipyridyl anchoring groups of. porphyrin sensitizers for dye sensitized solar. cells

Pyridyl vs bipyridyl anchoring groups of. porphyrin sensitizers for dye sensitized solar. cells Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting Information for Pyridyl vs bipyridyl anchoring groups of porphyrin sensitizers for

More information

Supporting Information. Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii)

Supporting Information. Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii) Supporting Information Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii) complexes: application to the kinetic resolution of allylic alcohols. Mariano A. Fernández-Zúmel, Beatriz

More information

metal-organic compounds

metal-organic compounds metal-organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 2-Oxo-1,2-dihydropyrimidin-3-ium di-l- chlorido-bis{dichloridobis[pyrimidin- 2(1H)-one-jN 3 ]cuprate(ii)}

More information

Copyright WILEY-VCH Verlag GmbH, D Weinheim, 2000 Angew. Chem Supporting Information For Binding Cesium Ion with Nucleoside Pentamers.

Copyright WILEY-VCH Verlag GmbH, D Weinheim, 2000 Angew. Chem Supporting Information For Binding Cesium Ion with Nucleoside Pentamers. Copyright WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000 Angew. Chem. 2000 Supporting Information For Binding Cesium Ion with Nucleoside Pentamers. Templated Self-Assembly of an Isoguanosine Decamer.**

More information

Supporting Information

Supporting Information Supporting Information One-Pot Access to Benzo[a]carbazoles via Palladium(II)-Catalyzed Hetero- and Carboannulations Moumita Jash, Bimolendu Das, and Chinmay Chowdhury* Organic & dicinal Chemistry Division,

More information

ANNEXE 1 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DES PROTONS

ANNEXE 1 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DES PROTONS ANNEXE 1 : SPECTRES DE RÉSNANCE MAGNÉTIQUE NUCLÉAIRE DES PRTNS 126 [N-(But-3-ényl)méthylamino]acétate d éthyle (1) N C 2 Et 127 Chlorure de N-but-3-ényl-N-(carboxyméthyl)méthylammonium (2) Cl - H N + H

More information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 Supporting Information for Silicon Analogues of

More information

The CB[n] Family: Prime Components for Self-Sorting Systems Supporting Information

The CB[n] Family: Prime Components for Self-Sorting Systems Supporting Information The CB[n] Family: Prime Components for Self-Sorting Systems Supporting Information by Simin Liu, Christian Ruspic, Pritam Mukhopadhyay,Sriparna Chakrabarti, Peter Y. Zavalij, and Lyle Isaacs* Department

More information

Manganese-Calcium Clusters Supported by Calixarenes

Manganese-Calcium Clusters Supported by Calixarenes Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Manganese-Calcium Clusters Supported by Calixarenes Rebecca O. Fuller, George A. Koutsantonis*,

More information

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion Supporting Information for Cu(I)-MOF: naked-eye colorimetric sensor for humidity and formaldehyde in single-crystal-to-single-crystal fashion Yang Yu, Xiao-Meng Zhang, Jian-Ping Ma, Qi-Kui Liu, Peng Wang,

More information

Crystal and molecular structure of cis-dichlorobis(triphenylphosphite)

Crystal and molecular structure of cis-dichlorobis(triphenylphosphite) Molecules 2001, 6, 777-783 molecules ISSN 1420-3049 http://www.mdpi.org Crystal and molecular structure of cis-dichlorobis(triphenylphosphite) Platinum(II) Seyyed Javad Sabounchei * and Ali Naghipour Chemistry.

More information

The Crystal and Molecular Structures of Hydrazine Adducts with Isomeric Pyrazine Dicarboxylic Acids

The Crystal and Molecular Structures of Hydrazine Adducts with Isomeric Pyrazine Dicarboxylic Acids The Open Crystallography Journal, 2008, 1, 31-36 31 Open Access The Crystal and Molecular Structures of Hydrazine Adducts with Isomeric Pyrazine Dicarboxylic Acids Wojciech Starosta and Janusz Leciejewicz*

More information

Microporous Manganese Formate: A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties

Microporous Manganese Formate: A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties Supporting Information Microporous Manganese Formate: A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties Danil N. Dybtsev, Hyungphil Chun,

More information

Scandium and Yttrium Metallocene Borohydride Complexes: Comparisons of (BH 4 ) 1 vs (BPh 4 ) 1 Coordination and Reactivity

Scandium and Yttrium Metallocene Borohydride Complexes: Comparisons of (BH 4 ) 1 vs (BPh 4 ) 1 Coordination and Reactivity Scandium and Yttrium Metallocene Borohydride Complexes: Comparisons of (BH 4 ) 1 vs (BPh 4 ) 1 Coordination and Reactivity Selvan Demir, Nathan A. Siladke, Joseph W. Ziller, and William J. Evans * Department

More information

Stereoselective Synthesis of (-) Acanthoic Acid

Stereoselective Synthesis of (-) Acanthoic Acid 1 Stereoselective Synthesis of (-) Acanthoic Acid Taotao Ling, Bryan A. Kramer, Michael A. Palladino, and Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of California, San

More information

addenda and errata [N,N 0 -Bis(4-bromobenzylidene)-2,2-dimethylpropane-j Corrigendum Reza Kia, a Hoong-Kun Fun a * and Hadi Kargar b

addenda and errata [N,N 0 -Bis(4-bromobenzylidene)-2,2-dimethylpropane-j Corrigendum Reza Kia, a Hoong-Kun Fun a * and Hadi Kargar b addenda and errata Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 [N,N 0 -Bis(4-bromobenzylidene)-2,2-dimethylpropane-j 2 N,N 0 ]iodidocopper(i). Corrigendum Reza Kia, a Hoong-Kun

More information

Red-light activated photocorms of Mn(I) species bearing electron deficient 2,2'-azopyridines.

Red-light activated photocorms of Mn(I) species bearing electron deficient 2,2'-azopyridines. Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supporting information for Red-light activated photocorms of Mn(I) species bearing electron

More information

David Samuel, Kirsten Norrell, David G. Hilmey* Department of Chemistry, St. Bonaventure University, St. Bonaventure, NY #$ %& $&% '$&% ($) *+!

David Samuel, Kirsten Norrell, David G. Hilmey* Department of Chemistry, St. Bonaventure University, St. Bonaventure, NY #$ %& $&% '$&% ($) *+! Novel ring chemistry of Vitamin B 6 with singlet oxygen and an activated ene: Isolated products and identified intermediates suggesting an operable [3+2] cycloaddition David Samuel, Kirsten Norrell, David

More information

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Supporting Information Ferrocenyl BODIPYs: Synthesis, Structure and Properties Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Department of Chemistry, Indian Institute of Technology

More information

Synthesis of Tetra-ortho-Substituted, Phosphorus- Containing and Carbonyl-Containing Biaryls Utilizing a Diels-Alder Approach

Synthesis of Tetra-ortho-Substituted, Phosphorus- Containing and Carbonyl-Containing Biaryls Utilizing a Diels-Alder Approach Synthesis of Tetra-ortho-Substituted, Phosphorus- Containing and Carbonyl-Containing Biaryls Utilizing a Diels-Alder Approach Bradley O. Ashburn and Rich G. Carter* and Lev N. Zakharov Department of Chemistry,

More information

Photoactive and physical properties of an azobenzene-containing coordination framework

Photoactive and physical properties of an azobenzene-containing coordination framework 10.1071/CH17215_AC CSIRO 2017 Australian Journal of Chemistry 2017, 70(11), 1171-1179 SUPPLEMENTARY MATERIAL Photoactive and physical properties of an azobenzene-containing coordination framework James

More information

High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene

High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene Electronic Supplementary Information High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene Experimental details Synthesis of pyreno[4,5-a]coronene: In 1960 E. Clar et.al 1 and

More information

X-ray Diffraction. Diffraction. X-ray Generation. X-ray Generation. X-ray Generation. X-ray Spectrum from Tube

X-ray Diffraction. Diffraction. X-ray Generation. X-ray Generation. X-ray Generation. X-ray Spectrum from Tube X-ray Diffraction Mineral identification Mode analysis Structure Studies X-ray Generation X-ray tube (sealed) Pure metal target (Cu) Electrons remover inner-shell electrons from target. Other electrons

More information

metal-organic compounds

metal-organic compounds metal-organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 b = 8.2387 (7) Å c = 14.7510 (13) Å = 106.1050 (10) V = 1987.5 (3) Å 3 Z =4 Mo K radiation = 2.78 mm 1 T

More information

Supporting Information. for. Advanced Functional Materials, adfm Wiley-VCH 2007

Supporting Information. for. Advanced Functional Materials, adfm Wiley-VCH 2007 Supporting Information for Advanced Functional Materials, adfm.200601202 Wiley-VCH 2007 69451 Weinheim, Germany [Supporting Information] Optical Sensor Based on Nanomaterial for the Selective Detection

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018 Electronic Supplementary Information

More information

metal-organic compounds

metal-organic compounds metal-organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Dichloridotris(trimethylphosphine)- nickel(ii) Ruixia Cao, Qibao Wang and Hongjian Sun* School of Chemistry

More information