Analogies of Ocean/Atmosphere Rotating Fluid Dynamics with Gyroscopes: Teaching Opportunities

Size: px
Start display at page:

Download "Analogies of Ocean/Atmosphere Rotating Fluid Dynamics with Gyroscopes: Teaching Opportunities"

Transcription

1 Analogies of Ocean/Atmosphere Rotating Fluid Dynamics with Gyroscopes: Teaching Opportunities The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Haine, Thomas W. N., and Deepak A. Cherian. Analogies of Ocean/Atmosphere Rotating Fluid Dynamics with Gyroscopes: Teaching Opportunities. Bulletin of the American Meteorological Society 94, no. 5 (May 2013): American Meteorological Society American Meteorological Society Version Final published version Accessed Wed May 09 19:10:55 EDT 2018 Citable Link Terms of Use Detailed Terms Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

2 ANALOGIES OF OCEAN/ ATMOSPHERE ROTATING FLUID DYNAMICS WITH GYROSCOPES Teaching Opportunities by Thomas W. N. Haine and Deepak A. Cherian Aspects of geostrophic flow and inertial oscillation in the ocean and atmosphere are analogous to the motion of a rapidly spinning gyroscope. The dynamics of the rotating shallow-water (RSW) system are fascinating and counterintuitive. Small-amplitude motion consists of a mixture of two dynamical modes. One is called geostrophic flow, which has the lowest frequency. The other is called the inertia gravity wave, which can take any frequency above a certain threshold. Inertia gravity waves at the threshold frequency are called inertial oscillations and are controlled by rotation. Geostrophic flow and inertial oscillations are ubiquitous in more complex fluids, such as Earth s ocean and atmosphere. Thinking about these dynamical modes can be a challenge because the influence of rotation is unfamiliar to many people. Building intuition about geostrophic flow and inertia gravity waves in the RSW system is important, however, because it provides a solid foundation for understanding more complex motions in real environmental fluids. This article concerns a simple tangible device that has analogous dynamics to the RSW system: the gyroscope, or spinning top. Rotating rapidly, the gyroscope seems to defy gravity by not falling over, as long as it possesses sufficient spin. The dynamical analogy between a rotating fluid and a gyroscope is an interesting and novel finding that we explain here. 1 The gyroscope may be valuable in the classroom 1 Gyroscopic pumping is sometimes discussed in the atmospheric dynamics and astrophysics literature, but that refers to meridional overturning driven by azimuthal stresses (e.g., Haynes et al. 1991). The National Aeronautics and Space Administration (NASA) Terra satellite image 1250 UTC 21 June 2004, courtesy of Jacques Descloitres, MODIS Rapid Response Team, NASA/GSFC. Cloud (at various altitudes), land ice, and sea ice are visible in white. The swirling green streaks in the ocean are blooms of high phytoplankton concentration, most likely coccolithophores. The swirls reveal the geostrophic turbulence in the surface ocean currents.

3 Table 1. Similarities and differences between ocean/atmosphere rotating fluid dynamics and the gyroscope. The specific mathematical link is given by Eq. (7) and concerns the linear, longwave limit of rotating shallow-water flow (see the supplement for mathematical details). Ocean/atmosphere fluid dynamics are more complicated than gyroscope dynamics. Cross references to the main text and the online resources are indicated. Similarities ( rotating fluids are analogous to gyroscopes ) Ocean/atmosphere rotating fluid dynamics ( geostrophic flow and inertial oscillation in rotating fluids ) Gyroscope ( gyroscope nutation and precession ) Phenomenology Supports permanent pressure gradients and currents Does not topple over when spinning Low-frequency forced motion High-frequency free motion Response to impulse Response to steady force Geostrophic flow (Figs. 1, 3, geostrophic_movie.mov) Inertial oscillation (Figs. 2, 4, inertial_osc_movie.m4v) Transient inertial oscillations with frequency proportional to rotation rate and amplitude (inertial circle radius) inversely proportional to rotation rate Geostrophic flow at 90 to force with speed proportional to force and inversely proportional to rotation rate Precession (Figs. 6, 7, gyroscope_schematic_ movie.m4v, gyroscope_movie.m4v) Nutation (Figs. 6, 7, gyroscope_schematic_ movie.m4v, gyroscope_movie.m4v) Transient nutation with frequency proportional to spin and amplitude inversely proportional to spin Precession at 90 to force with speed proportional to force and inversely proportional to spin Nondimensional number measuring rotational effects Rossby number, Eq. (1) Gyroscope number, Eq. (4) Small-amplitude dynamics Eq. (5) Eq. (6) Minimum energy state Pure geostrophic flow Steady precession Differences ( discussion of the analogy and differences ) Form of Coriolis term Clockwise inertial circles in Northern Hemisphere, beta effect Counterclockwise nutation, no analog to beta effect Spatial variations Has spatial variations in flow and fluid properties No analog to spatial variations as it may be used in demonstrations to illustrate RSW concepts that underpin large-scale motions in the ocean and atmosphere. The gyroscope is less useful as a tool to explain the basic physics of RSW AFFILIATIONS: Haine Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland; Cherian Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts CORRESPONDING AUTHOR: Thomas W. N. Haine, 329 Olin Hall, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD thomas.haine@jhu.edu The abstract for this article can be found in this issue, following the table of contents. DOI: /BAMS-D Supplements to this article are available online ( /BAMS-D and /BAMS-D ) In final form 23 September American Meteorological Society flow. The physics of gyroscopic motion is analogous to particular aspects of RSW flow but has a distinct character of its own. Instructors seeking to explain the reasons for geostrophic flow and inertial oscillations in rotating fluids should focus on explaining the Coriolis effect. The Coriolis effect can be derived mathematically by a simple coordinate transformation into Earth s rotating frame of reference, and that is typically presented in the classroom. This approach is unsatisfying to many people, however (see, e.g., Stommel and Moore 1989). Simple physical arguments to explain the Coriolis effect consider motion in the nonrotating frame. In this vein, Persson (1998) provides an historical account and many useful references. Phillips s (2000) explanation proceeds from dynamical principles familiar from elementary mechanics and also addresses geostrophic flow and inertial motion. Durran (1993) analyzes inertial motion in detail and clarifies the origin of the RSW equations by considering a physical model of a frictionless particle moving in a parabolic 674 may 2013

4 dish (see also Durran and Domonkos 1996). Among textbook accounts, Marshall and Plumb (2008) is comprehensive and accessible because it builds intuition via demonstrations with rotating tables. The present analogy between RSW dynamics and gyroscopes is not intended to replace these explanations of the basic physics behind the Coriolis effect. We begin by reviewing geostrophic flow and inertial oscillations in the ocean and atmosphere. Examples of these modes are also presented in a rotating tank of water. Next the gyroscope is introduced and explained. Examples of gyroscopic motion are shown. We explain the analogies between the gyroscope and RSW dynamics in the following section. Finally, the limits to the analogy are discussed: it applies to specific aspects of geostrophic and inertial motion because important fundamental differences exist between each system. Table 1 summarizes this comparison and provides linkage to the dynamics of the oceans and atmosphere relevant to higher education. Four movies that demonstrate these principles and analogies are provided in the online auxiliary material ( BAMS-D ). Mathematical details in the main text are kept to a minimum, but they appear in an online supplement ( -D ) for clarity, as a resource template for educators, and for further study. Geostrophic flow and inertial oscillation in rotating fluids. The extratropical ocean and atmosphere almost always exhibit geostrophic flow and inertial oscillation at large scales. For example, Fig. 1 shows satellite images of geostrophic winds and currents, both near Iceland. In Fig. 1a, the air swirls cyclonically (counterclockwise) around a low pressure center in the middle of the frame. The force due to the pressure gradient is directed toward this low pressure center, but the wind circles Fig. 1. Geostrophic motion. (a) Atmospheric cyclone over the Irminger Sea and southwest Iceland at 1410 UTC 4 Sep 2003, as seen by the NASA Aqua satellite and visualized by clouds. The diameter of the system is around 750 km. (b) Surface ocean geostrophic turbulence as seen by streaks of green phytoplankton south of Iceland at 1250 UTC 21 Jun 2004 by the NASA Terra satellite. The diameter of the cyclone in the center of the frame is about 40 km. around it, nearly at right angles, and must complete several loops before reaching the center. In Fig. 1b, the surface ocean currents are seen through their action on green phytoplankton streaks. A counterclockwise vortex (an oceanic cyclone) is visible in the middle of the image as a spiral streak, similar to the atmospheric cyclone. Again, there is a low pressure center at the core of this vortex. The scales of motion are different in the two cases: the cyclone diameter is about 750 km in the atmosphere and about 40 km in the ocean. The time scales are different as well: a day or two for the atmosphere 2 and a week or two for the ocean. Nevertheless, the fundamental dynamics in each case are the same. The flow is mainly geostrophic and dominated by Coriolis forces due to Earth s rotation. Geostrophic flow occurs when the nondimensional Rossby number is small (and dissipative effects are negligible). The Rossby number is for flow speed V, length scale L, and Coriolis parameter f, equal to twice the rate of rotation about the vertical axis. In the periphery of the cyclones show in Fig. 1, Ro is small and the flow is geostrophic. Toward the centers of the cyclones the Rossby number is larger. There, some of the inward pointing pressure-gradient force provides the centripetal (1) 2 The atmospheric cyclone in Fig. 1a is a polar low, a small, short-lived depression [for another example and further details, see Fig in Rasmussen and Turner (2003)]. Many atmospheric cyclones have larger scales and a life cycle of several days to a few weeks, however. AMERICAN METEOROLOGICAL SOCIETY may

5 Fig. 2. Near-inertial motion of satellite-tracked surface drifters in the North Pacific Ocean (from van Meurs 1998). force required for the fluid to flow around the low pressure center. When centripetal and Coriolis forces are similar in magnitude, the Rossby number is near one (called gradient wind balance). Even closer to the cyclone center, the centripetal force dominates the Coriolis force and the Rossby number is large (called cyclostrophic balance). Figure 2 is a good example of (near-) inertial oscillation in the North Pacific Ocean. A storm excites inertial oscillations over an area 350 km on a side (van Meurs 1998). The surface water moves in clockwise circles for 3 weeks, as shown by the tracks of satellite-tracked surface drifters. The drifter tracks are coherent and in phase over most of the area shown (the phase varies only by about a quarter period in total). That is, the drifters all move north together, then all turn east, then all turn south, and so on. The period of the oscillation is about 19 h. The slow drift of the trajectories is due to geostrophic eddies like those in Fig. 1b. This low-frequency geostrophic motion is much more variable in space (nearby cycloids move in different directions). The in-phase circular movement is an inertial oscillation, however, which is distinctly different. In particular, the inertial oscillation is more predictable than the geostrophic eddies because it involves mainly linear dynamics. The motion of the geostrophic eddies involves nonlinear dynamics that can cause chaotic effects that make long-term predictions very hard. The coexistence of inertial oscillations and geostrophic eddies is an interesting property of ocean and atmosphere fluid dynamics. Inertial oscillations are also present in the atmosphere. For example, the nocturnal jet is a low-level diurnal flow that has been explained as an inertial oscillation (Blackadar 1957). During the day the atmospheric boundary layer is actively mixed by convection owing to solar heating at the ground. At dusk, the convection intensity falls and the related frictional forces disappear. The balance of forces changes and air parcels experience an unbalanced Coriolis force that causes the flow to veer anticyclonically in an inertial oscillation. Evidence of inertial oscillations of this kind is not widespread, however, and observed in- Fig. 3. Geostrophic motion in a rotating tank of water used for classroom demonstrations of atmosphere and ocean fluid dynamics (the Weather in a Tank equipment: see Illari et al. 2009). The image, taken from above, shows streaks of dye in a tank of water 10 cm deep, rotating at 20 rpm. The diagonal measures about 17 cm. The black dot is a floating piece of paper from a hole punch. Only part of the 40-cm square tank is shown. See geostrophic_movie.mov in the online auxiliary material. 676 may 2013

6 ertial oscillations appear to be more commonly associated with fronts rather than sunset (Lundquist 2003). Geostrophic flow and inertial oscillations are also easily shown using a rotating laboratory turntable. Figure 3 shows such an example of geostrophic flow using a portable apparatus that is designed for classroom demonstrations (the Weather in a Tank apparatus; Illari et al. 2009). 3 A dipole eddy is visible. Flow in the lower (upper) vortex is counterclockwise (clockwise). The current is associated with a depression in the water surface in the lower vortex (low pressure) and an elevation in the upper one (high pressure). In subsequent frames the black dot, a floating piece of paper, moves between the two eddies. Geostrophic flow is the dynamical balance between a pressuregradient force and a Coriolis force. In Fig. 3, the pressure-gradient force acts from the high pressure center to the low pressure center. The Coriolis force is a fictitious deflective force that arises because of the rotation of the reference frame. It is proportional to flow speed and directed at right angles to both the rotation axis and the current direction. In Fig. 3, it opposes the pressure-gradient force as shown. The Coriolis force is associated with the geostrophic current at right angles visualized by the black dot and the colored dye. In Fig. 3, the pressure gradient is due to changes in the water level η in the tank (similarly, the pressure gradient in Fig. 1b is also due to changes in sea level). The geostrophic current speed equals M/f, where M = g η/ s for distance s measured from the lower eddy to the upper one (g is gravitational acceleration). The change in water level between the eddies is only about 40 µm, visible with special optical altimetry equipment (Rhines et al. 2007) but not with the naked eye (in Fig. 1b the sea level differences are cm). The counterintuitive hallmark of geostrophic fluids is to support these pressure gradients over long periods of time. Fig. 4. Inertial oscillation in a rotating tank of water at 20 rpm. (top) Snapshot of four floating particles (A D) with particle locations tracked over time (small black dots). An impulsive wind stress is applied as indicated by blowing on the surface between approximately 8 and 9.5 s. Some gravity waves are also excited with crests traveling in the direction of the stress but they rapidly disappear. The particle locations are found every frame from a video of the experiment taken at 30 frames per second. The dimensions of the image are approximately 7 cm by 23 cm and the water depth is 10 cm. (bottom) Time series of the motion of the four particles. See inertial_osc_movie. m4v in the online auxiliary material. Figure 4 shows an example of inertial oscillation using the laboratory turntable. 4 Initially there is no flow. The experimenter blows over the water surface for a second or two, as indicated. The particles then execute inertial oscillations with a period of 1.5 s for the tank rotation rate of 20 rpm. Notice how the motion is spatially uniform and in phase, so that peaks in the y* position in the lower panel are synchronized, similar to Fig. 2. There is no horizontal variation in the current under inertial oscillation, unlike geostrophic flow. Inertial oscillation is a temporally oscillating flow of a rotating fluid in the absence of pressure-gradient forces. Particles in this motion trace horizontal circular paths. Inertial oscillation occurs from the continuous deflection of moving fluid by the associated Coriolis force, which is perpendicular to the 3 See also the online movie geostrophic_movie.mov. 4 See also the online movie inertial_osc_movie.m4v. AMERICAN METEOROLOGICAL SOCIETY may

7 velocity. The period of inertial oscillations equals 2π/f, or T/2 here for turntable rotation period T, consistent with the observed period of 1.5 s. Notice that the period of inertial oscillations decreases as the rotation period decreases. Likewise, the frequency of inertial oscillation is equal to the Coriolis parameter, which is proportional to the rotation rate. Fig. 5. Photos of gyroscopes. (top left) The Massachusetts Institute of Technology and the AC Spark Plug Division of General Motors (MITAC) mechanically driven, gimbal-mounted gyroscope, shown also in Fig. 7. (top right) Brass gimbal-mounted lecture gyroscope. (bottom) Selection of freestanding toy gyroscopes. Gyroscope nutation and precession. Geostrophic flow and inertial oscillation, the two fundamental modes of RSW dynamics, are analogous to the motion of a gyroscope. Before describing this connection in detail, the fundamental modes of a gyroscope are explained. The spinning gyroscope behaves differently to the resting gyroscope. A freestanding gyroscope with no spin simply topples over in a familiar way. A rapidly spinning gyroscope does not. There are two unexpected behaviors, which are called precession and nutation (as shown in Fig. 6). 5 Precession is the progressive movement of the gyroscope spindle under torque: the spindle traces out a cone (left panel of Fig. 6). Two common configurations provide the torque. The simplest option rests the gyroscope spindle on a flat surface (Fig. 5, bottom; Fig. 6). The gravitational force acting through the center of mass of the freestanding gyroscope and the normal reaction at the surface then furnish the torque. For a gimballed gyroscope, torque is applied by pushing on the spindle: for example, with a finger or a weight (Fig. 5, top; Fig. 7). Despite these differences in configuration, the gyroscope s response to a gravitational torque is essentially the same: the free tip of the gyroscope traces out a horizontal circle (Fig. 6). This means that the spindle traces out a vertical cone with apex at the fixed point. With no spin, the gyroscope topples over with the free tip moving in a vertical plane. This is the most unexpected property of a spinning gyroscope: it responds to a push by moving at right angles. 6 Fig. 6. Schematic diagrams of a freestanding gyroscope: (left) precession (motion under torque), (middle) nutation (torque-free precession), and (right) precession and nutation together. See gyroscope_schematic_ movie.m4v in the online auxiliary material. 5 See also the online movie gyroscope_schematic_movie.m4v. 6 Multiple physical explanations for precession exist. They include conservation of vector angular momentum (French 1971; Butikov 2006) and consideration of the forces on point masses comprising the gyroscope rotor (Edwards 1977; Eastman 1975; Barker 1960). 678 may 2013

8 Nutation from nodding in Latin is an oscillatory wobble of the gyroscope s spindle (middle panel of Fig. 6). Nutation is not caused by a torque: hence the alternative name torque-free precession. It arises when the total angular momentum of the gyroscope does not equal the angular momentum about the gyroscope s spindle. In other words, the gyroscope is simultaneously spinning about the spindle axis and also another axis. Both freestanding and gimballed gyroscopes nutate. Nutation is seen most easily in the gimballed gyroscope because then no gravitational torque applies. There is no precession and knocking the spindle causes pure nutation. The nutation shown in Fig. 6, as well as in the online movie, shows a pure nutation. An American football is a familiar object that is often seen nutating. When thrown correctly, the ball only spins about its axis of symmetry. Then no wobbling of the ball occurs (no nutation). Thrown incorrectly, the axis of symmetry traces out a cone with respect to the center of mass and the ball wobbles rapidly in the air. In this case, the total angular momentum vector contains a component that is not along the symmetry axis. 7 Usually, gyroscopes exhibit both precession and nutation together. In the case of a freestanding gyroscope, the spindle tip loops in a cycloid (right panel of Fig. 6). The case of a gimballed gyroscope under a gravitational torque from a weight is shown in Fig Both nutation and precession are observed. Nutation is the high-frequency circular motion of the gyroscope tip, and precession is the low-frequency sweep of the tip in the horizontal plane. Taken together, the tip motion is cycloidal. Friction in the gimbal bearings causes the nutation to slowly die away as seen in the bottom panel of Fig. 7. The precession lasts much longer, although friction eventually causes the gyroscope tip to point down as it would in the absence of spin. The force of the weight in Fig. 7 is directed Fig. 7. Motion of a gyroscope under torque. The mechanically driven gyroscope is a gimbal-mounted MITAC model rotating at 225 rpm. (top) A weight (visible behind the conical tip) is attached to one end to generate a gravitational force, hence a torque, and the motion is started by a firm push of the hand with the tip pointing left. The white line traces the motion of the tip of the gyroscope over 12 s (to track the tip, the gyroscope is lit by ultraviolet light that reveals only the tip itself; the background image is from an otherwise identical case, immediately before). Nutation is the circular counterclockwise motion of the tip; precession is the steady horizontal motion to the right in response to the force. The cycloidal tip motion is due to a sum of precession and nutation. The slow decay in nutation amplitude is caused by friction in the gimbal bearings. (bottom) Vertical position of the gyroscope tip over time. See gyroscope_movie.m4v in the online auxiliary material. to move the tip downward (the torque is horizontal), but the gyroscope responds by precessing at right angles in the horizontal direction (the precession vector is vertical). Before discussing the link to geostrophic flow and inertial oscillation, a few details are worth noting. First, both precession and nutation are oscillations that cause the gyroscope s spindle to trace out cones (Fig. 6), but their frequencies differ. For precession, increasing the flywheel spin causes the frequency (spindle-tip speed) to decrease, whereas for nutation it increases the frequency. The formulas are and (precession frequency) (2) 7 For physical explanations of nutation, see Butikov (2006), French (1971), and Lock (1989). For a discussion of American football dynamics, see Brancazio (1987). 8 See also the online movie gyroscope_movie.m4v. AMERICAN METEOROLOGICAL SOCIETY may

9 (nutation frequency), (3) where mg is the weight driving the precession, applied at a horizontal distance l from the gyroscope s fixed point (so mgl is the torque); I 3 is the moment of inertia about the spindle, I is the moment of inertia perpendicular to the spindle, and ω 3 is the angular velocity about the spindle. Second, Eq. (2) shows that the precession frequency (angular velocity) is proportional to the applied force mg. This fact is another surprising property of the precessing gyroscope. Simple Newtonian dynamics says that an applied force is proportional to acceleration of a body in the direction of the force. The toppling gyroscope with no spin behaves like this. The spinning gyroscope seems totally different because the force is proportional to the speed of the body, an Aristotelian idea. The naive intuition based on Newtonian dynamics (ignoring the flywheel spin) is therefore qualitatively wrong! Third, a related question is why a spinning gyroscope does not topple over. An energy analysis Gyroscopes and tops The gyroscope, or top, is a simple device that takes many forms. The key common elements are a heavy flywheel, which can turn rapidly on a spindle (axis of symmetry; Fig. 5). There is a mechanism to give the flywheel a large angular velocity. A toy top is spun by finger and thumb, for instance, or a thread is wrapped round the spindle and pulled away. Tops spin while the spindle is supported by a solid object like a table. Gyroscopes also have bearings and a cage to support the flywheel and spindle. The bottom panel of Fig. 5 shows examples of two freestanding gyroscopes and a top. More sophisticated gyroscopes have a mechanism called a gimbal that allows the spindle axis to move freely. The spindle can point in any direction, while the center of mass remains fixed. Industrial gyroscopes, used in inertial navigation instruments in aircraft and ships, for instance, operate this way. They also have a motor to keep the gyroscope spinning. The Massachusetts Institute of Technology and the AC Spark Plug Division of General Motors (MITAC) gyroscope in the top-left panel of Fig. 5 is an example. The brass lecture gyroscope in the topright panel of Fig. 5 uses a rubber wheel on an electric twist drill to spin it. The flywheel can reach speeds greater than 7000 rpm and will spin for more than 20 min. Gyroscopes and tops are engaging devices that have fascinated curious children for generations. Spinning gyroscopes behave in a counterintuitive way that is quite different from their behavior with no spin. illuminates this issue (see the supplement for details). The gravitational potential energy is a relatively small contribution to the total gyroscope energy when it spins fast. A much larger effective potential energy exists that depends on the spin. This potential energy is quadratic in the topple angle and forms a potential well (Fig. S2 in the supplement). As the gyroscope topples over it gains kinetic energy. This kinetic energy is traded with the effective potential energy. From this point of view, nutation can be viewed as oscillations inside the potential energy well. The nutating gyroscope is trapped inside the potential well and cannot topple. The well becomes narrower as the gyroscope spins faster so that the nutation amplitude decreases with increasing spin. Finally, note that all of these phenomena apply to rapidly rotating gyroscopes. More precisely, they apply to gyroscopes that possess large angular momentum about their spindles, compared to the angular momentum if the gyroscope was swinging like a simple pendulum without spin. (To imagine the simple pendulum, think of the nonrotating gimballed gyroscope in Fig. 7 with the weight making it swing.) A nondimensional number measures the sizes of these two angular momenta. It is (4) where the simple pendulum frequency is. This number is for the gyroscope in Fig. 7, indicating the dominance of spin angular momentum (see also Fig. S3 in the supplement). Rotating fluids are analogous to gyroscopes. Having explained the fundamental modes of gyroscope motion, the link to rotating fluids can be stated (see also Table 1). Geostrophy is analogous to precession. The analogy can be seen several ways. In both cases, the system responds to a steady force by moving at right angles and not in the direction of the force. The speed of motion, not the acceleration, is proportional to the force. This means that the motion stops when the force disappears. The speed is inversely proportional to the rotation rate [think of the geostrophic formula and the precession Eq. (2)]. The fluid analog of the nondimensional gyroscope number ε is the Rossby number, which is explained in the previous section on geostrophic flow and inertial oscillation in rotating fluids. Small ε and small Rossby number mean that rotation dominates the dynamics (the Rossby number is about 10 3 for the rotating tank in Figs. 3 and 4). 680 may 2013

10 Inertial oscillation is analogous to nutation. In both cases the frequency is proportional to the rotation rate [think of the inertial oscillation formula and the nutation Eq. (3)]. Similarly, when the amplitude of oscillation is measured by the radius of the trajectory, the amplitude is inversely proportional to the rotation rate. In other words, faster spin means faster smaller inertial circles and nutations. Moreover, the spectral gap between the high- and low-frequency modes grows with rotation rate. For the rotating fluid the ratio of inertial frequency to the inverse geostrophic advection time scale grows as Ro 1 (where V/L defines the inverse advection time scale; if L denotes the length of a periodic domain, V/L is the frequency at which a floating particle returns to the same spot). For the gyroscope, the ratio of nutation frequency to precession frequency grows as ε 2. More formally, the analogy connects gyroscope dynamics and RSW flow in the longwave limit (vanishing wavenumber). Small-amplitude (i.e., small Rossby number) RSW dynamics are commonly written on an f plane (f constant) as (5a),(5b) Here (u, υ) are the velocity components in the direction of the forcing ( M) and 90 to the right, respectively. 9 The small-amplitude gyroscope dynamics for fast spin are (6a),(6b) where (θ,ϕ) are angles measuring the position of the tip of the spindle on the sphere it circumscribes (θ is colatitude and ϕ is longitude on this sphere; think of Fig. 6 and see Fig. S1). With the spindle horizontal as in Fig. 7 (θ 0 = 90 ) the two systems are related under the exchange (7) Swapping the variables this way switches from one set of equations to the other. The difference of sign between f and ω n means that inertial oscillation and nutation have opposite senses. That is, inertial oscillation is clockwise in the Northern Hemisphere (Figs. 2, 4), whereas nutation is counterclockwise (Figs. 6, 7). When the spindle points up (θ 0 < 90 ) there are some minor geometric differences in the equations, but the physical analogy remains. In fact, the physical analogy remains under more general conditions too. Both the assumptions of fast spin and smallamplitude oscillations can be relaxed. Then, the gyroscope dynamics coincide with the longwave limit of RSW motion on the sphere. There is a slight difference in a geometrical prefactor in the RSW Coriolis term (see the supplement). This prefactor difference means that the gyroscope exhibits no analogy to the beta effect, which is due to variations in f with latitude. The analogy extends beyond geostrophy and inertial oscillation to related phenomena. Geostrophic adjustment can be illustrated with a gyroscope, for example. Geostrophic adjustment concerns the transient RSW response to an impulse or to an arbitrary initial condition. In general, geostrophic and inertial oscillations are excited, plus some inertia gravity waves. After several rotation periods the inertial oscillations decay because of weak dissipative processes (which are ignored in the equations above; the inertia gravity waves propagate into the far field and/or get damped). Geostrophic flow then persists on its own. This process can be seen in Fig. 4 and the inertial oscillation movie. Physically analogous adjustment occurs in the gyroscope. Arbitrary initial conditions excite both nutation and precession. After several rotation periods the nutation decays, however, because of friction (Fig. 7). Releasing the gyroscope from rest is the easiest way to show this behavior. There are further theoretical analogies too. For example, geostrophy is the minimum energy state in linear undamped RSW flow. Likewise, precession is the minimum energy state for the gyroscope. This means that pure precession is the equivalent to balanced flow in rotating fluids, which is an important theoretical concept. Moreover, gyroscope dynamics and the (longwave limit) RSW equations can be derived from closely related Lagrangian functions using a variational method (supplement). This illuminates the basis of RSW dynamics, as well as 9 Note that the longwave limit gives vanishing pressure-gradient force. For this reason, the forcing M of the longwave RSW equations is not a real pressure-gradient force but some other uniform body force. This nuance does not undermine the physical analogy between the two systems. The supplement gives a more precise and general statement of the relation. AMERICAN METEOROLOGICAL SOCIETY may

11 the Coriolis force, in a nontraditional way. Finally, conserved energy and angular momenta play leading roles in the theory governing the dynamics of each system. Discussion of the analogy and differences. The RSW/gyroscope analogy is not perfect. Clear and distinct differences exist between the gyroscope and the longwave limit of the RSW system because of the different geometrical prefactor in the Coriolis term mentioned above. Lack of a beta effect in the gyroscope means that there is no westward drift for nutation as there is for inertial oscillation. Also, the RSW system is more complicated than the gyroscope because gravity (and inertia gravity) waves also exist. They arise because of spatial variations in the fluid. There are no equivalent waves or spatial variations for the gyroscope. 10 There are other limits to the analogy and some misconceptions to be avoided. First, a useful mental picture of fluid motion is to think about infinitesimal moving fluid parcels. The vorticity of each parcel is analogous to the angular velocity vector of a small solid mass. As the parcels tilt and stretch, the vorticity also tilts and stretches as if the vorticity vector itself was attached to neighboring fluid parcels (Vallis 2006). Stretching of neighboring parcels (and hence the vortex line connecting them) amplifies the vorticity. This mental picture is unrelated to the RSW/gyroscope analogy: vortex lines in a fluid are not like little gyroscopes. The gyroscope analogy applies to RSW flow in which fluid parcels do not tilt or stretch. The fundamental physics of RSW flow and gyroscopes are not the same. Specifically, the role of rotation in each system is different. In RSW flow (and the real ocean and atmosphere) Coriolis forces arise because we measure distance in a coordinate system that moves with the rotating Earth. For the gyroscope, the coordinate system is fixed to nonrotating space (see Fig. S1). This basic difference means that an inertial oscillation, unlike nutation, need not have any angular momentum measured in a nonrotating frame. For example, an ideal parcel pushed southward from Earth s North Pole will undergo inertial oscillations as viewed from Earth s surface. However, from the perspective of an observer in a fixed frame in space, the parcel moves back and forth in a straight line near the pole. Nutation of a gyroscope does not depend on the choice of a rotating reference frame in the same way. Instead, nutation only exists when the gyroscope spins about its axis and possesses angular momentum. Also the (x,y) coordinates for the RSW Eq. (5) are different to the (θ,ϕ) gyroscope angles. In the f-plane RSW system, one is free to rotate the horizontal axes: there is no physical distinction between moving east or moving north. The (θ,ϕ) gyroscope angles cannot be exchanged in this manner. Finally, θ (colatitude) and ϕ (longitude) are restricted to certain ranges because they are angles: the (x,y) coordinates may or may not be restricted, depending on the geometry of the RSW domain. Geostrophy and inertial oscillation are analogs of gyroscopic precession and nutation in the following sense: there is a correspondence and partial similarity between the phenomena, although they are essentially different. Analogies of this type are common in oceanic and atmospheric science. For instance, the notion of potential vorticity substance (Haynes and McIntyre 1990) draws fruitful analogies between potential vorticity (PV) of a fluid and the concentration of a chemical species. Both quantities satisfy a tracer equation, although PV and chemical concentration are dissimilar in other ways. A second example concerns the Lorenz (1963) equations that were developed as a model for atmospheric convection. The Lorenz model applies to many disparate systems. It has been used as a simple model for El Niño Southern Oscillation (Vallis 1988), a thermohaline loop oscillator (Malkus 1972), and lasers (Haken 1975). Finally, the idea of a topographic beta effect draws analogies between changes in the local Coriolis parameter with latitude and changes in fluid depth. Again, there are important fundamental differences between the two ideas but the analogy is valuable and widely exploited. The correspondence between geostrophy and precession, as well as inertial oscillation and nutation, is of the same type as these examples. Conclusions. The RSW/gyroscope analogy is fascinating and thought provoking. It is also potentially useful in demonstrating the dynamics of rotating fluids in various educational settings. At the 10 Some gyroscopes have modified flywheels with variable moments of inertia and hence more complex behavior. The large gyroscope in the bottom panel of Fig. 5 has a hollow flywheel partially full of liquid, for example (a hydro gyro ). The liquid causes interesting new oscillations associated with surface waves on the liquid/air interface inside the flywheel. These oscillations are not analogous to spatial variations in RSW flow, however. 682 may 2013

12 most basic level, one can simply show that a gyroscope will not fall over when it spins. This strange behavior is similar in oceanic and atmospheric weather systems because the Earth spins. They are strange for similar reasons: in both cases, rotation is a controlling effect. Students at virtually any level can also carefully push on a spinning gyroscope. The spindle slips sideways according to the force and inversely with the spin. The push of the finger is analogous to the pressuregradient force in geostrophy and the opposing push of the gyroscope is analogous to the Coriolis force. This is a profound experience, even for a seasoned instructor, whether in an advanced dynamics course or when illustrating basic principles of motion for precollege-level students. The brass lecture gyroscope in Fig. 5 spinning 100 times per second is particularly memorable. To this end we have used gyroscope demonstrations in kindergartens and elementary schools and with high-school science teachers, undergraduate humanities students, graduate students in rotating fluid dynamics, and senior faculty in oceanic and atmospheric science. The anecdotal response has been positive, although we have no decisive evidence as to their pedagogical effectiveness. The mathematical analysis supports the demonstration but is often not needed. Acknowledgments. We are supported by NSF Award DUE to the Weather in a Tank team. Steve Wonnell, Bill Ruff, and Sathappan Ramesh of the Johns Hopkins Department of Physics and Astronomy kindly helped us film their MITAC gyroscope. Robert Nedbor-Gross helped make the movie of geostrophic flow. The Aqua and Terra satellite images in Fig. 1 are courtesy of NASA/GSFC MODIS Rapid Response. We thank Paul Croft for helpful comments. APPENDIX. Auxiliary Materials. Five items are included as auxiliary materials. They are as follows: 1) Supplement to Analogies of ocean/atmosphere rotating fluid dynamics with gyroscopes: Teaching opportunities, which contains a technical discussion of gyroscope dynamics and mathematical details of the links to the RSW system. 2) geostrophic_movie.mov, a movie showing geostrophic flow in a rotating tank of water, as in Fig. 3. The movie consists of a sequence of still images taken by a camera mounted above the tank and rotating with the tank. There is an image about every 3 s (see the time indicated in the bottom left of the frame). The tank contains water 10 cm deep, rotating at 20 rpm. The frame size is 18.5 by 12.5 cm; the tank itself is square with side 40 cm. The water is gently stirred (off frame) to produce a turbulent flow that is in geostrophic balance, similar to the ocean eddies shown in Fig. 1. The red and blue colors are food dyes that move with the flow. The black dot is a floating piece of paper from a hole punch. 3) inertial_osc_movie.m4v, a movie of inertial oscillation in a rotating tank of water, as in Fig. 4. See the description of the geostrophic movie for more details. 4) gyroscope_schematic_movie.m4v, a movie illustrating the fundamental gyroscopic modes: precession (under a torque), nutation (torque-free precession), and both precession and nutation. See also Fig. 6. 5) gyroscope_movie.m4v, a slow-motion clip of the MITAC gyroscope undergoing nutation and precession, similar to the top panel of Fig. 7. References Barker, E. F., 1960: Elementary analysis of the gyroscope. Amer. J. Phys., 28, Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, Brancazio, P. J., 1987: Rigid-body dynamics of a football. Amer. J. Phys., 55, Butikov, E., 2006: Precession and nutation of a gyroscope. Eur. J. Phys., 27, Durran, D. R., 1993: Is the Coriolis force really responsible for the inertial oscillation? Bull. Amer. Meteor. Soc., 74, , and S. K. Domonkos, 1996: An apparatus for demonstrating the inertial oscillation. Bull. Amer. Meteor. Soc., 77, Eastman, P. C., 1975: Painless precession. Amer. J. Phys., 43, Edwards, P. L., 1977: A physical explanation of the gyroscope effect. Amer. J. Phys., 45, French, A. P., 1971: Newtonian Mechanics. W. W. Norton & Company, 743 pp. Haken, H., 1975: Analogy between higher instabilities in fluids and lasers. Phys. Lett., 53A, Haynes, P. H., and M. E. McIntyre, 1990: On the conservation and impermeability theorems for potential vorticity. J. Atmos. Sci., 47, , C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the downward control of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, AMERICAN METEOROLOGICAL SOCIETY may

13 Illari, L., and Coauthors, 2009: Weather in a Tank Exploiting laboratory experiments in the teaching of meteorology, oceanography, and climate. Bull. Amer. Meteor. Soc., 90, Lock, J. A., 1989: An alternative approach to the teaching of rotational dynamics. Amer. J. Phys., 57, Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, Lundquist, J. K., 2003: Intermittent and elliptical inertial oscillations in the atmospheric boundary layer. J. Atmos. Sci., 60, Malkus, W. V. R., 1972: Non-periodic convection at high and low Prandtl number. Mem. Soc. Roy. Sci. Liege, 6, Marshall, J. C., and R. A. Plumb, 2008: Atmosphere, Ocean, and Climate Dynamics: An Introductory Text. Elsevier, 319 pp. Persson, A., 1998: How do we understand the Coriolis force? Bull. Amer. Meteor. Soc., 79, Phillips, N. A., 2000: An explication of the Coriolis effect. Bull. Amer. Meteor. Soc., 81, Rasmussen, E. A., and J. Turner, 2003: Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge University Press, 612 pp. Rhines, P. B., E. G. Lindahl, and A. J. Mendez, 2007: Optical altimetry: A new method for observing rotating fluids with applications to Rossby and inertial waves on a polar beta-plane. J. Fluid Mech., 572, Stommel, H. M., and D. W. Moore, 1989: An Introduction to the Coriolis Force. Columbia University Press, 297 pp. Vallis, G. K., 1988: Conceptual model of El Niño and the Southern Oscillation. J. Geophys. Res., 93, , 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 745 pp. van Meurs, P., 1998: Interactions between near-inertial mixed layer currents and the mesoscale: The importance of spatial variabilities in the vorticity field. J. Phys. Oceanogr., 28, may 2013

This PDF is made available in accordance with AMS copyright policy (reproduced

This PDF is made available in accordance with AMS copyright policy (reproduced This PDF is made available in accordance with AMS copyright policy (reproduced below) Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, brief excerpts from this work

More information

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017 Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

Lecture 1: Introduction and Review

Lecture 1: Introduction and Review Lecture 1: Introduction and Review Review of fundamental mathematical tools Fundamental and apparent forces Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study

More information

Lecture PowerPoints. Chapter 11. Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 11. Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 11 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions.

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions. Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top Physics 106a, Caltech 4 December, 2018 Lecture 18: Examples on Rigid Body Dynamics I go through a number of examples illustrating the methods of solving rigid body dynamics. In most cases, the problem

More information

The Planetary Circulation System

The Planetary Circulation System 12 The Planetary Circulation System Learning Goals After studying this chapter, students should be able to: 1. describe and account for the global patterns of pressure, wind patterns and ocean currents

More information

Understanding Precession

Understanding Precession University of Rochester PHY35 Term Paper Understanding Precession Author: Peter Heuer Professor: Dr. Douglas Cline December 1th 01 1 Introduction Figure 1: Bicycle wheel gyroscope demonstration used at

More information

THE GYROSCOPE REFERENCES

THE GYROSCOPE REFERENCES THE REFERENCES The Feynman Lectures on Physics, Chapter 20 (this has a very nice, intuitive description of the operation of the gyroscope) Copy available at the Resource Centre. Most Introductory Physics

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015)

SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015) SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015) Variation of Coriolis with latitude: β Vorticity Potential vorticity

More information

Fundamentals of Atmospheric Modelling

Fundamentals of Atmospheric Modelling M.Sc. in Computational Science Fundamentals of Atmospheric Modelling Peter Lynch, Met Éireann Mathematical Computation Laboratory (Opp. Room 30) Dept. of Maths. Physics, UCD, Belfield. January April, 2004.

More information

Chapter 11 Angular Momentum; General Rotation. Copyright 2009 Pearson Education, Inc.

Chapter 11 Angular Momentum; General Rotation. Copyright 2009 Pearson Education, Inc. Chapter 11 Angular Momentum; General Rotation ! L = I!! Units of Chapter 11 Angular Momentum Objects Rotating About a Fixed Axis Vector Cross Product; Torque as a Vector Angular Momentum of a Particle

More information

Problem 1. Mathematics of rotations

Problem 1. Mathematics of rotations Problem 1. Mathematics of rotations (a) Show by algebraic means (i.e. no pictures) that the relationship between ω and is: φ, ψ, θ Feel free to use computer algebra. ω X = φ sin θ sin ψ + θ cos ψ (1) ω

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 IT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical echanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. ASSACHUSETTS INSTITUTE

More information

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion

More information

The net force on a moving object is suddenly reduced to zero. As a consequence, the object

The net force on a moving object is suddenly reduced to zero. As a consequence, the object The net force on a moving object is suddenly reduced to zero. As a consequence, the object (A) stops abruptly (B) stops during a short time interval (C) changes direction (D) continues at a constant velocity

More information

Measurement of Rotation. Circulation. Example. Lecture 4: Circulation and Vorticity 1/31/2017

Measurement of Rotation. Circulation. Example. Lecture 4: Circulation and Vorticity 1/31/2017 Lecture 4: Circulation and Vorticity Measurement of Rotation Circulation Bjerknes Circulation Theorem Vorticity Potential Vorticity Conservation of Potential Vorticity Circulation and vorticity are the

More information

Overview of Experiments for Magnetic Torque

Overview of Experiments for Magnetic Torque Overview of Experiments for Magnetic Torque General Description of Apparatus The Magnetic Torque instrument consists of a pair of Helmholtz like coils with a brass air bearing mounted in the middle. (The

More information

Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport

Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport is which can also be written as (14.1) i.e., #Q x,y

More information

PHYSICS 220. Lecture 15. Textbook Sections Lecture 15 Purdue University, Physics 220 1

PHYSICS 220. Lecture 15. Textbook Sections Lecture 15 Purdue University, Physics 220 1 PHYSICS 220 Lecture 15 Angular Momentum Textbook Sections 9.3 9.6 Lecture 15 Purdue University, Physics 220 1 Last Lecture Overview Torque = Force that causes rotation τ = F r sin θ Work done by torque

More information

Ocean Mixing and Climate Change

Ocean Mixing and Climate Change Ocean Mixing and Climate Change Factors inducing seawater mixing Different densities Wind stirring Internal waves breaking Tidal Bottom topography Biogenic Mixing (??) In general, any motion favoring turbulent

More information

Dynamics of the Earth

Dynamics of the Earth Time Dynamics of the Earth Historically, a day is a time interval between successive upper transits of a given celestial reference point. upper transit the passage of a body across the celestial meridian

More information

Mechanics 5 Dynamics of a rigid body. Basic phenomena

Mechanics 5 Dynamics of a rigid body. Basic phenomena Mechanics 5 Dynamics of a rigid body Torque Moment of Inertia Newton s laws for a rigid body Angular momentum Conservation law Basic phenomena In an empty space with no external forces acting on the body,

More information

a reference frame that accelerates in a straight line a reference frame that moves along a circular path Straight Line Accelerated Motion

a reference frame that accelerates in a straight line a reference frame that moves along a circular path Straight Line Accelerated Motion 1.12.1 Introduction Go back to lesson 9 and provide bullet #3 In today s lesson we will consider two examples of non-inertial reference frames: a reference frame that accelerates in a straight line a reference

More information

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only

More information

2013 Annual Report for Project on Isopycnal Transport and Mixing of Tracers by Submesoscale Flows Formed at Wind-Driven Ocean Fronts

2013 Annual Report for Project on Isopycnal Transport and Mixing of Tracers by Submesoscale Flows Formed at Wind-Driven Ocean Fronts DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 2013 Annual Report for Project on Isopycnal Transport and Mixing of Tracers by Submesoscale Flows Formed at Wind-Driven

More information

1. The diagram below represents a Foucault pendulum that is swinging back and forth.

1. The diagram below represents a Foucault pendulum that is swinging back and forth. 1. The diagram below represents a Foucault pendulum that is swinging back and forth. Which diagram best represents the change in the motion of a Foucault pendulum that provides evidence of Earth's rotation?

More information

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9 The atmosphere in motion: forces and wind AT350 Ahrens Chapter 9 Recall that Pressure is force per unit area Air pressure is determined by the weight of air above A change in pressure over some distance

More information

What's Up, Earth? Header Insert Image 1 here, right justified to wrap. Grade Level. 3rd. Time Required: 60 minutes

What's Up, Earth? Header Insert Image 1 here, right justified to wrap. Grade Level. 3rd. Time Required: 60 minutes What's Up, Earth? Header Insert Image 1 here, right justified to wrap Image 1 ADA Description:? Caption:? Image file path:? Source/Rights: Copyright? Grade Level 3rd Time Required: 60 minutes Group Size:

More information

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere Need to introduce a new measure of the buoyancy Potential temperature θ In a compressible fluid, the relevant measure

More information

Phys 270 Final Exam. Figure 1: Question 1

Phys 270 Final Exam. Figure 1: Question 1 Phys 270 Final Exam Time limit: 120 minutes Each question worths 10 points. Constants: g = 9.8m/s 2, G = 6.67 10 11 Nm 2 kg 2. 1. (a) Figure 1 shows an object with moment of inertia I and mass m oscillating

More information

Lecture 5: Atmospheric General Circulation and Climate

Lecture 5: Atmospheric General Circulation and Climate Lecture 5: Atmospheric General Circulation and Climate Geostrophic balance Zonal-mean circulation Transients and eddies Meridional energy transport Moist static energy Angular momentum balance Atmosphere

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART164: PLANETARY ATMOSPHERES Francis Nimmo Last Week Radiative Transfer Black body radiation, Planck function, Wien s law Absorption, emission, opacity, optical depth Intensity, flux Radiative diffusion,

More information

Lecture 2. Lecture 1. Forces on a rotating planet. We will describe the atmosphere and ocean in terms of their:

Lecture 2. Lecture 1. Forces on a rotating planet. We will describe the atmosphere and ocean in terms of their: Lecture 2 Lecture 1 Forces on a rotating planet We will describe the atmosphere and ocean in terms of their: velocity u = (u,v,w) pressure P density ρ temperature T salinity S up For convenience, we will

More information

Note that Rossby waves are tranverse waves, that is the particles move perpendicular to the direction of propagation. f up, down (clockwise)

Note that Rossby waves are tranverse waves, that is the particles move perpendicular to the direction of propagation. f up, down (clockwise) Ocean 423 Rossby waves 1 Rossby waves: Restoring force is the north-south gradient of background potential vorticity (f/h). That gradient can be due to either the variation in f with latitude, or to a

More information

Physics. Chapter 8 Rotational Motion

Physics. Chapter 8 Rotational Motion Physics Chapter 8 Rotational Motion Circular Motion Tangential Speed The linear speed of something moving along a circular path. Symbol is the usual v and units are m/s Rotational Speed Number of revolutions

More information

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion

More information

Advanced Higher Physics. Rotational motion

Advanced Higher Physics. Rotational motion Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration

More information

SIO 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes

SIO 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes NAME: SIO 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes Closed book; one sheet of your own notes is allowed. A calculator is allowed. (100 total points.)

More information

General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be

General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be a bonus) is well written (take your time to edit) shows

More information

Goals of this Chapter

Goals of this Chapter Waves in the Atmosphere and Oceans Restoring Force Conservation of potential temperature in the presence of positive static stability internal gravity waves Conservation of potential vorticity in the presence

More information

Senior 2. Appendix 3: In Motion

Senior 2. Appendix 3: In Motion Senior 2 Appendix 3: In Motion Senior 2 Science Appendix 3.1 TSM Teacher Support Material A Visual Representation of Motion Teacher Background There are several ways to produce a visual representation

More information

Course Name: AP Physics. Team Names: Jon Collins. Velocity Acceleration Displacement

Course Name: AP Physics. Team Names: Jon Collins. Velocity Acceleration Displacement Course Name: AP Physics Team Names: Jon Collins 1 st 9 weeks Objectives Vocabulary 1. NEWTONIAN MECHANICS and lab skills: Kinematics (including vectors, vector algebra, components of vectors, coordinate

More information

1. tangential stresses at the ocean s surface due to the prevailing wind systems - the wind-driven circulation and

1. tangential stresses at the ocean s surface due to the prevailing wind systems - the wind-driven circulation and Chapter 9 The wind-driven circulation [Hartmann, Ch. 7 (7.4-7.5)] There are two causes of the circulation of the ocean: 1. tangential stresses at the ocean s surface due to the prevailing wind systems

More information

13. Rigid Body Dynamics II

13. Rigid Body Dynamics II University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 2015 13. Rigid Body Dynamics II Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

Concept Question: Normal Force

Concept Question: Normal Force Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical

More information

A-level Physics (7407/7408)

A-level Physics (7407/7408) A-level Physics (7407/7408) Further Mechanics Test Name: Class: Date: September 2016 Time: 55 Marks: 47 Page 1 Q1.The diagram shows a strobe photograph of a mark on a trolley X, moving from right to left,

More information

Physics 106b/196b Problem Set 9 Due Jan 19, 2007

Physics 106b/196b Problem Set 9 Due Jan 19, 2007 Physics 06b/96b Problem Set 9 Due Jan 9, 2007 Version 3: January 8, 2007 This problem set focuses on dynamics in rotating coordinate systems (Section 5.2), with some additional early material on dynamics

More information

TPFEL: Ch. 8: Torque and Angular Momentum (cont d)

TPFEL: Ch. 8: Torque and Angular Momentum (cont d) TPFEL: Ch. 8: Torque and Angular Momentum (cont d) 8.1: The spinning skater 1 To illustrate this complicated stuff consider, first, a spinning ice skater (Fig. 8.1). She begins her spin (by generating

More information

Winds and Global Circulation

Winds and Global Circulation Winds and Global Circulation Atmospheric Pressure Winds Global Wind and Pressure Patterns Oceans and Ocean Currents El Nino How is Energy Transported to its escape zones? Both atmospheric and ocean transport

More information

1/27/2010. With this method, all filed variables are separated into. from the basic state: Assumptions 1: : the basic state variables must

1/27/2010. With this method, all filed variables are separated into. from the basic state: Assumptions 1: : the basic state variables must Lecture 5: Waves in Atmosphere Perturbation Method With this method, all filed variables are separated into two parts: (a) a basic state part and (b) a deviation from the basic state: Perturbation Method

More information

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above.

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above. 1. The magnitude of the gravitational force between two objects is 20. Newtons. If the mass of each object were doubled, the magnitude of the gravitational force between the objects would be A) 5.0 N B)

More information

Circular Orbits. Slide Pearson Education, Inc.

Circular Orbits. Slide Pearson Education, Inc. Circular Orbits The figure shows a perfectly smooth, spherical, airless planet with one tower of height h. A projectile is launched parallel to the ground with speed v 0. If v 0 is very small, as in trajectory

More information

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed in an inertial system = rate of change of Ua following the motion in an inertial

More information

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information

3. Midlatitude Storm Tracks and the North Atlantic Oscillation

3. Midlatitude Storm Tracks and the North Atlantic Oscillation 3. Midlatitude Storm Tracks and the North Atlantic Oscillation Copyright 2006 Emily Shuckburgh, University of Cambridge. Not to be quoted or reproduced without permission. EFS 3/1 Review of key results

More information

Lecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

The dynamics of high and low pressure systems

The dynamics of high and low pressure systems The dynamics of high and low pressure systems Newton s second law for a parcel of air in an inertial coordinate system (a coordinate system in which the coordinate axes do not change direction and are

More information

Background: What is Weather?

Background: What is Weather? Weather Maps Background: What is Weather? Weather is the day-to-day state of the atmosphere. The interaction of three important factors result in weather systems: air temperature, air pressure, and the

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1. Introduction In this class, we will examine atmospheric phenomena that occurs at the mesoscale, including some boundary layer processes, convective storms, and hurricanes. We will emphasize

More information

DEAPS Activity 3 Weather systems and the general circulation of the atmosphere

DEAPS Activity 3 Weather systems and the general circulation of the atmosphere DEAPS Activity 3 Weather systems and the general circulation of the atmosphere Lodovica Illari 1 Introduction What is responsible for stormy weather? What causes relatively warm temperatures one day and

More information

Lab 5: Rotational Motion II

Lab 5: Rotational Motion II Lab 5: Rotational Motion II Written October-November 1986 by Nancy Bronder '86, Tom Budka '89, Bob Hamwey GS, D. Mook revised by Mook, K. Muenchinger '93 and E. Pleger '94 July-November 1991 and by Melissa

More information

Physics. Student Materials Advanced Higher. Tutorial Problems Mechanics HIGHER STILL. Spring 2000

Physics. Student Materials Advanced Higher. Tutorial Problems Mechanics HIGHER STILL. Spring 2000 Spring 2000 HIGHER STILL Physics Student Materials Advanced Higher Tutorial Problems Mechanics TUTORIAL 1 You will find tutorials on each topic. The fully worked out answers are available. The idea is

More information

Lecture 3. Rotational motion and Oscillation 06 September 2018

Lecture 3. Rotational motion and Oscillation 06 September 2018 Lecture 3. Rotational motion and Oscillation 06 September 2018 Wannapong Triampo, Ph.D. Angular Position, Velocity and Acceleration: Life Science applications Recall last t ime. Rigid Body - An object

More information

Lab #4 - Gyroscopic Motion of a Rigid Body

Lab #4 - Gyroscopic Motion of a Rigid Body Lab #4 - Gyroscopic Motion of a Rigid Body Last Updated: April 6, 2007 INTRODUCTION Gyroscope is a word used to describe a rigid body, usually with symmetry about an axis, that has a comparatively large

More information

Dynamics Rotating Tank

Dynamics Rotating Tank Institute for Atmospheric and Climate Science - IACETH Atmospheric Physics Lab Work Dynamics Rotating Tank Large scale flows on different latitudes of the rotating Earth Abstract The large scale atmospheric

More information

Physics 212 Question Bank III 2010

Physics 212 Question Bank III 2010 A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all.. A positive charge moves West through a magnetic

More information

16.07 Dynamics Final Exam

16.07 Dynamics Final Exam Name:... Massachusetts Institute of Technology 16.07 Dynamics Final Exam Tuesday, December 20, 2005 Problem 1 (8) Problem 2 (8) Problem 3 (10) Problem 4 (10) Problem 5 (10) Problem 6 (10) Problem 7 (10)

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

Internal boundary layers in the ocean circulation

Internal boundary layers in the ocean circulation Internal boundary layers in the ocean circulation Lecture 9 by Andrew Wells We have so far considered boundary layers adjacent to physical boundaries. However, it is also possible to find boundary layers

More information

Conservation of Mass Conservation of Energy Scaling Analysis. ESS227 Prof. Jin-Yi Yu

Conservation of Mass Conservation of Energy Scaling Analysis. ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed

More information

b. The boundary between two different air masses is called a.

b. The boundary between two different air masses is called a. NAME Earth Science Weather WebQuest Part 1. Air Masses 1. Find out what an air mass is. http://okfirst.mesonet.org/train/meteorology/airmasses.html a. What is an air mass? An air mass is b. The boundary

More information

Ocean Dynamics. The Great Wave off Kanagawa Hokusai

Ocean Dynamics. The Great Wave off Kanagawa Hokusai Ocean Dynamics The Great Wave off Kanagawa Hokusai LO: integrate relevant oceanographic processes with factors influencing survival and growth of fish larvae Physics Determining Ocean Dynamics 1. Conservation

More information

psio 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes Answer key

psio 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes Answer key NAME: psio 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes Answer key Closed book; one sheet of your own notes is allowed. A calculator is allowed. (100

More information

Fictitious Forces and Non-inertial Frames: The Coriolis Force *

Fictitious Forces and Non-inertial Frames: The Coriolis Force * OpenStax-CNX module: m42142 1 Fictitious Forces and Non-inertial Frames: The Coriolis Force * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License

More information

Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow

Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow The types of atmospheric flows describe here have the following characteristics: 1) Steady state (meaning that the flows do not change

More information

Mechanics Cycle 1 Chapter 12. Chapter 12. Forces Causing Curved Motion

Mechanics Cycle 1 Chapter 12. Chapter 12. Forces Causing Curved Motion Chapter 1 Forces Causing Curved Motion A Force Must be Applied to Change Direction Coordinates, Angles, Angular Velocity, and Angular Acceleration Centripetal Acceleration and Tangential Acceleration Along

More information

ASTRONAUT PUSHES SPACECRAFT

ASTRONAUT PUSHES SPACECRAFT ASTRONAUT PUSHES SPACECRAFT F = 40 N m a = 80 kg m s = 15000 kg a s = F/m s = 40N/15000 kg = 0.0027 m/s 2 a a = -F/m a = -40N/80kg = -0.5 m/s 2 If t push = 0.5 s, then v s = a s t push =.0014 m/s, and

More information

Gravity Waves. Lecture 5: Waves in Atmosphere. Waves in the Atmosphere and Oceans. Internal Gravity (Buoyancy) Waves 2/9/2017

Gravity Waves. Lecture 5: Waves in Atmosphere. Waves in the Atmosphere and Oceans. Internal Gravity (Buoyancy) Waves 2/9/2017 Lecture 5: Waves in Atmosphere Perturbation Method Properties of Wave Shallow Water Model Gravity Waves Rossby Waves Waves in the Atmosphere and Oceans Restoring Force Conservation of potential temperature

More information

Wind-driven Western Boundary Ocean Currents in Terran and Superterran Exoplanets

Wind-driven Western Boundary Ocean Currents in Terran and Superterran Exoplanets Wind-driven Western Boundary Ocean Currents in Terran and Superterran Exoplanets By Edwin Alfonso-Sosa, Ph.D. Ocean Physics Education, Inc. 10-Jul-2014 Introduction Simple models of oceanic general circulation

More information

Name Period 4 th Six Weeks Notes 2013 Weather

Name Period 4 th Six Weeks Notes 2013 Weather Name Period 4 th Six Weeks Notes 2013 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the

More information

Modeling the atmosphere of Jupiter

Modeling the atmosphere of Jupiter Modeling the atmosphere of Jupiter Bruce Turkington UMass Amherst Collaborators: Richard S. Ellis (UMass Professor) Andrew Majda (NYU Professor) Mark DiBattista (NYU Postdoc) Kyle Haven (UMass PhD Student)

More information

Global Weather Trade Winds etc.notebook February 17, 2017

Global Weather Trade Winds etc.notebook February 17, 2017 Global Weather 1 north pole northern hemisphere equator southern hemisphere south pole 2 We have seasons because of the Earth's tilt The seasons are opposite in the northern and southern hemispheres winter

More information

Rolling, Torque & Angular Momentum

Rolling, Torque & Angular Momentum PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the

More information

Equatorial Superrotation on Tidally Locked Exoplanets

Equatorial Superrotation on Tidally Locked Exoplanets Equatorial Superrotation on Tidally Locked Exoplanets Adam P. Showman University of Arizona Lorenzo M. Polvani Columbia University Synopsis Most 3D atmospheric circulation models of tidally locked exoplanets

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

Students' Alternate Conceptions in Introductory Physics

Students' Alternate Conceptions in Introductory Physics Students' Alternate Conceptions in Introductory Physics The following is a list of preconceptions and misconceptions that high school physics teachers and college professors have recognized in their students.

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds What is an atmosphere? Planetary Atmospheres Pressure Composition Greenhouse effect Atmospheric structure Color of the sky 1 Atmospheres

More information

warmest (coldest) temperatures at summer heat dispersed upward by vertical motion Prof. Jin-Yi Yu ESS200A heated by solar radiation at the base

warmest (coldest) temperatures at summer heat dispersed upward by vertical motion Prof. Jin-Yi Yu ESS200A heated by solar radiation at the base Pole Eq Lecture 3: ATMOSPHERE (Outline) JS JP Hadley Cell Ferrel Cell Polar Cell (driven by eddies) L H L H Basic Structures and Dynamics General Circulation in the Troposphere General Circulation in the

More information

Classical Mechanics III (8.09) Fall 2014 Assignment 3

Classical Mechanics III (8.09) Fall 2014 Assignment 3 Classical Mechanics III (8.09) Fall 2014 Assignment 3 Massachusetts Institute of Technology Physics Department Due September 29, 2014 September 22, 2014 6:00pm Announcements This week we continue our discussion

More information

Chapter 8 Lecture Notes

Chapter 8 Lecture Notes Chapter 8 Lecture Notes Physics 2414 - Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ

More information

F = ma. ATS 150 Global Climate Change Winds and Weather. Scott Denning CSU CMMAP 1. Please read Chapter 6 from Archer Textbook

F = ma. ATS 150 Global Climate Change Winds and Weather. Scott Denning CSU CMMAP 1. Please read Chapter 6 from Archer Textbook Winds and Weather Please read Chapter 6 from Archer Textbook Circulation of the atmosphere and oceans are driven by energy imbalances Energy Imbalances What Makes the Wind Blow? Three real forces (gravity,

More information

Gyroscopes and statics

Gyroscopes and statics Gyroscopes and statics Announcements: Welcome back from Spring Break! CAPA due Friday at 10pm We will finish Chapter 11 in H+R on angular momentum and start Chapter 12 on stability. Friday we will begin

More information

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction OCN/ATM/ESS 587 The wind-driven ocean circulation. Friction and stress The Ekman layer, top and bottom Ekman pumping, Ekman suction Westward intensification The wind-driven ocean. The major ocean gyres

More information

Physics 101. Hour Exam 2 Spring Last Name: First Name Network-ID Discussion Section: Discussion TA Name:

Physics 101. Hour Exam 2 Spring Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. This is a closed book exam. You have ninety (90) minutes to complete it.

More information

Homework 2: Solutions GFD I Winter 2007

Homework 2: Solutions GFD I Winter 2007 Homework : Solutions GFD I Winter 007 1.a. Part One The goal is to find the height that the free surface at the edge of a spinning beaker rises from its resting position. The first step of this process

More information

+ ω = 0, (1) (b) In geometric height coordinates in the rotating frame of the Earth, momentum balance for an inviscid fluid is given by

+ ω = 0, (1) (b) In geometric height coordinates in the rotating frame of the Earth, momentum balance for an inviscid fluid is given by Problem Sheet 1: Due Thurs 3rd Feb 1. Primitive equations in different coordinate systems (a) Using Lagrangian considerations and starting from an infinitesimal mass element in cartesian coordinates (x,y,z)

More information