Mechanics 5 Dynamics of a rigid body. Basic phenomena

Size: px
Start display at page:

Download "Mechanics 5 Dynamics of a rigid body. Basic phenomena"

Transcription

1 Mechanics 5 Dynamics of a rigid body Torque Moment of Inertia Newton s laws for a rigid body Angular momentum Conservation law Basic phenomena In an empty space with no external forces acting on the body, it is impossible to change the velocity of a particle. However it is possible to change the rotational frequency of a body using only internal forces. This is done by changing the mass distribution around the rotation axis. If no external forces exists, the centre of mass of the system of particles stays at rest of continues with a constant velocity. Centre of mass 1

2 Experiment 1 A B 1 kg 1 kg Two identical, massive wheels are fixed to the wall. The wheels consist of two disks with different radii. In the wheel A the rope has been wrapped around the larger disk and in B around the smaller disk. In both A and B there is a 1 kg mass hanging from the ropes. Question: Which of the masses falls with the greatest acceleration? Answer: Though the forces are equal, A falls faster, because the point of action is further away from the axis of rotation. The force has a greater torque on the wheel. Torque T The rotating effect of a force depends not only on the magnitude of the force F, but also on the distance of the action line of the force from the rotation axis. Definition: The torque of force F with respect to axis point A is defined by T = F r where r is the distance of the action line of the force from the point A The unit of Torque is 1 Nm (Newton meter) r F T = Fr 2

3 Experiment 2 A = a hollow cylinder, B) a solid cylinder C) a solid ball All have the same mass and radius A B C 1 kg 1 kg 1 kg Question: In what order the masses fall down? Answer: The mass C is first down B is second and A is third. Argumentation: Even though the masses are same, the distribution of mass around the axis varies. In the ball the mass is distributed closest to the axis. That s why the ball has the least inertia and it falls down fastest. In the empty cylinder A the all the mass is at the distance r from the axis and that is why it is the most difficult to get into a rotation. Rotational kinetic energy r C v c C B A rotating body has kinetic energy, which is the sum of the kinetic energies of its mass points. E rot = S½ m i v i 2 A r A Because all the mass points have different velocities, but same angular velocities, it is more convenient to write v i = wr i. Then E rot = ½(S m i r i2 )w 2 E rot = ½ I w 2 Quantity I =S m i r i2 or I =Ûr 2 dm is called the moment of inertia of the body. It describes the distribution of mass around the axis. 3

4 Moment of Inertia The moment of inertia of a rigid body is defined by I = Ú r 2 dm where integration goes through all the mass elements of the body and r is the distance of mass element dm from the axis. Table of moments of inertia of most common bodies: Hollow cylinder (mass m, radius r) I = mr 2 Solid cylinder I = ½ mr 2 Solid ball I = 2/5 mr 2 Stick (mass m, length l ) - axis = midpoint I = 1/12 ml 2 - axis = end of the stick I = 1/3 m l 2 Steiner s rule Let I 0 = the moment of inertia of a body with respect to an axis A, which goes through the centre of mass of the body. Then the moment of inertia with respect to any axis A parallel to A can be calculated from I = I m a a = the perpendicular distance of A and A 4

5 Analogy between linear motion and rotation The formulas of linear and rotational motion are analogous. You have only to know what quantities in the linear motion and in the rotational motion correspond each other. Below is a table of corresponding quantities distance s velocity v = Ds/ D t acceleration a = D v/ D t mass m force F linear momentum p = mv angle j angular velocity w = Dj/ D t angular acceleration a = D w / D t the moment of inertia I torque T angular momentum L = I w Analogous formulas linear kinematics: rotation: v = v 0 + at w = w 0 + w t s = v k t = v 0 t + ½ at 2 j = w k t = w 0 t + ½a t 2 dynamics: dynamics of rotation: Newton s II law: F = ma T = I a work: W = F s W = T j power: P = F v P = T w kinetic energy: E k = ½ mv 2 rotational energy: E rot = ½ I w 2 The conservation law of linear momentum -> The conservation law of angular momentum 5

6 Example1 A wheel (a solid cylinder) (m=5.0 kg, r = 30 cm, n = 900 RPM) is stopped by using a breaking force of 20 N. Calculate a) the angular retardation a b) in how many seconds does the wheel stop c) how many rounds does the wheel rotate before stopping Solution: From T = I Dw / Dt we get Dt = I Dw / T = ½ mr 2 Dw / Fr Now Df = 900 RPM = 900/60 RPS = 15 Hz => Dw = 2p f = 94.2 rad/s breaking time: D t = ½*5*0.3*94.2 / 20 = 3.5 s Number of rounds = average frequency * time = 15/2 round/s*3.5 s = 26.5 rounds Part C could be solved also using energy principle During the breaking the rotational energy transforms to the work done by the friction ½ I w 02 = T j => j = ½ I w 0 2 / T = ½ ( ½ mr 2 w 02 /Fr) = ¼ mr w 02 /F = ¼ 5*0.3* /20 rad = 166 rad In rounds: 166/2π = 26 rounds 6

7 Pure rolling = rolling without gliding r P w speed v road In pure rolling: The radial velocity of point P with respect to the center v = w r ( rolling condition ) v is also the linear speed of the wheel Example: A wheel has a radius of 50 cm and it rolls with 3 RPS. The its speed is r w = 0.5 m * 2p*3 1/s = 9.4 m/s Example 2 competition between shapes a b c h A hollow cylinder, a solid cylinder and a solid ball start from rest rolling down the hill, with height difference h = 3.0 m. a) In what order do they come down? b) Calculate their final velocities. Solution: a) The order is ball, solid cylinder, hollow cylinder. The ball is first (smallest moment of inertia), the solid cylinder is second because its moment of inertia is next to the ball. 7

8 cont b) We use the formulas from the table of moments of inertia: hollow cylinder I = mr 2, solid cylinder I = ½ mr 2, solid ball I = 2/5 mr 2. rolling condition when a round body (radius r, angular velocity w, speed v) rolls without gliding, the velocity of a point on the radius with respect to the centre is equal to the linear velocity of the body: v = w r Energy principle: The potential energy the body has on the top transforms partly to kinetic energy, partly to rotational energy mgh = ½ mv 2 + ½ I w 2 cont Replacing these conditions, we get for the hollow cylinder: mgh = ½ mv 2 + ½ Iw 2 = ½ mv 2 + ½ (mr 2 ) v 2 /r 2 = ½ mv 2 +½ mv 2 = mv 2 => v = (gh) = (9.81*3.0) m/s = 5.4 m/s and for the solid cylinder mgh= ½ mv 2 + ½ Iw 2 = ½ mv 2 + ½ (½ mr 2 ) v 2 /r 2 = ½ mv 2 + ¼ mv 2 = 3/4 mv 2 => v = (4/3gh) = (4/3*9.81*3.0) m/s = 6.3 m/s and for the ball mgh=½mv 2 + ½ I w 2 = ½ mv 2 + ½ (2/5 mr 2 ) v 2 /r 2 = ½ mv 2 + 2/5 mv 2 =7/10 mv 2 josta v = (10/7gh) = (10/7*9.81*3.0) m/s = 6.5 m/s 8

9 Angular Momentum (spin) L = Iw L The angular momentum is a vector in the direction of rotational axis and magnitude of L = I w Conservation law: The angular momentum of an isolated system is a constant * Angular momentum is proportional to the rotational frequency and the mass of the rotating body. Also the mass distribution around the axis influences it through the moment of inertia. T, w and L as vectors In picture on the right the right hand thumb shows the direction of the angular momentum vector w and spin vector L = I w Also the torque is defined as vector T = r x F r F T axis point Counterclockwise force has a Torque, that is directed to us (the red arrow) 9

10 The conservation of angular momentum The angular momentum of an isolated system is a constant means that - Rotating bodies tend to preserve the direction of the rotation axis, and the rotational frequency - If the moment of inertia of a body increases for some reason, it s rotational frequency must decrease Applications of the conservation law 1. Flywheels in motors: Many motors have a heavy flywheel which keep motors going steady 2. Riffling of a gun: The pipe of a gun has riffling in order to force the bullet into a rotational motion. According to the conservation law the bullet keeps its axis direction during the flight. 3. Tail rotors in helicopters prevent them from rotating horizontally. a wheel of Volkswagen tail rotor of Sikorsky helicopter 10

11 Spinning top A rotating body with a big moment of inertia is called a spinning top A spinning top tends to keep it s axis of rotation More applications In ships and tanks there are heavy stabilizing wheels The aero planes have rotating wheels showing the horizon A figure skater spins fast by decreasing her moment of inertia and in that way increasing her rotational frequency Gymnastic can also control his rotational frequency by changing his mass distribution around the axis figure skating artificial horizon of an aircraft 11

12 Gyroscopic stabilizers of USS Henderson, (battleship built 1917) A photographer has a camera with gyroscopic stabilizer, when he takes pictures from a helicopter Gyroscopes The gyroscope effect was discovered in 1817 by Johann Bohnenberger and invented and named in 1852 by Léon Foucault for an experiment involving the rotation of the Earth. A gyroscope is a device for measuring or maintaining orientation, based on the principle of conservation of angular momentum. In physics this is also known as gyroscopic inertia or rigidity in space. Gyroscopes are used in autopilots of aeroplanes. Gyroscope maintains its spatial directions despite the rotation of the Earth 12

13 Gyrocompass Gyrocompass consists of a rotating wheel, which is fixed from both ends of its axis to a plate, which can turn freely in a horizontal plane. The wheel axis of gyrocompass turns to the North. The phenomenon is not based on magnetism, and thus not effected by magnetic disturbances or presence of iron. Gyrocompass is used in ships and planes. A human gyrocompass Gyrocompass of an aircraft west Principle of the gyrocompass The Earth east The rotation of Earth would causes a torque to the wheel. The direction of the torque is to the North. According to the law T dt = DL also the spin turns to the North. When spin point to the North, the wheel doesn t experience torque anymore. 13

14 Impulse principle Newton s II law for rotation: T = I a T = I Dw/Dt T Dt = I DL This means that Torque vector is always in the direction of the change of angular momentum DL (and Dw). The spin chases the torque This leads to very non-intuitive phenomena. In the next section some of them are explained. Torque Precession of a spinning top P r Spin Question: What happens if a spinning top rotates in non-vertical position? Gravitation Answer: The torque vector due to gravitation points out from the paper (towards us). The spin vector chased the torque and starts slowly to rotate. This is called precession The Earth s axis rotates with a period of years. This was first observed by a Greek astronomer Hipparchus. From this follows that the Arctic Circle moves every year a few centimeters. 14

15 Precession of a wheel r F rope A spinning disk is hanging from a rope, which is fixed to the other end of the axis. What happens? L - vector Torque - vector Force F=mg Answer: The wheel axes starts to rotate slowly to the right maintaining its horizontal position. The spin L chases the torque T Coriolis force If a stone is dropped from a helicopter above Rovaniemi, is doesn t hit the ground at Rovaniemi, but to the South of Rovaniemi. This is seen the picture: Rovaniemi moves along the red line and the particle moves along the light blue line around the Earth This phenomenon is called the Coriolis force. (Of course there is no such force. The reason is the rotation of the Earth and the law of inertia: (Newton s I law). In the southern hemisphere the stone would hit the Earth to the North of the place where it is dropped. 15

16 Meteorological consequence In the Northern hemisphere the Coriolis force deflects the wind to the right and makes the air move counterclockwise around the centre of the low pressure system. In the Southern hemisphere it is just the opposite. Kepler s III law conservation of spin A2 planet A1 sun The law of equal areas says that the radius from the Sun to the planet sweep equal areas in equal times. Mathematically A = ½ r 2 Dj : => ½ r 12 Dj 1 = ½ r 12 Dj 1 m r 12 Dj 1 / Dt = m r 12 Dj 1 / Dt I 1 w 1 = I 2 w 2 L 1 = L 2 Kepler found the conservation law of spin already in 16 th century in this special case, just analyzing observation. When the planet is far from the Sun, its moment of inertia I decreases. That s why its angular velocity w increases so that the product I w remains the same. 16

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information

Gyroscopes and statics

Gyroscopes and statics Gyroscopes and statics Announcements: Welcome back from Spring Break! CAPA due Friday at 10pm We will finish Chapter 11 in H+R on angular momentum and start Chapter 12 on stability. Friday we will begin

More information

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque 7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

More information

Rotation. Rotational Variables

Rotation. Rotational Variables Rotation Rigid Bodies Rotation variables Constant angular acceleration Rotational KE Rotational Inertia Rotational Variables Rotation of a rigid body About a fixed rotation axis. Rigid Body an object that

More information

Advanced Higher Physics. Rotational motion

Advanced Higher Physics. Rotational motion Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration

More information

Test 7 wersja angielska

Test 7 wersja angielska Test 7 wersja angielska 7.1A One revolution is the same as: A) 1 rad B) 57 rad C) π/2 rad D) π rad E) 2π rad 7.2A. If a wheel turns with constant angular speed then: A) each point on its rim moves with

More information

Rolling, Torque & Angular Momentum

Rolling, Torque & Angular Momentum PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the

More information

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right.

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. Review questions Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. 30 kg 70 kg v (a) Is this collision elastic? (b) Find the

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

Webreview Torque and Rotation Practice Test

Webreview Torque and Rotation Practice Test Please do not write on test. ID A Webreview - 8.2 Torque and Rotation Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 0.30-m-radius automobile

More information

Physics 131: Lecture 22. Today s Agenda

Physics 131: Lecture 22. Today s Agenda Physics 131: Lecture 22 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 201: Lecture 10, Pg 1 An Unfair Race A frictionless block and a rolling (without slipping) disk are released

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

Physics 131: Lecture 22. Today s Agenda

Physics 131: Lecture 22. Today s Agenda Physics 131: Lecture Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 01: Lecture 10, Pg 1 An Unfair Race A frictionless block and a rolling (without slipping) disk are released at

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

A) 1 gm 2 /s. B) 3 gm 2 /s. C) 6 gm 2 /s. D) 9 gm 2 /s. E) 10 gm 2 /s. A) 0.1 kg. B) 1 kg. C) 2 kg. D) 5 kg. E) 10 kg A) 2:5 B) 4:5 C) 1:1 D) 5:4

A) 1 gm 2 /s. B) 3 gm 2 /s. C) 6 gm 2 /s. D) 9 gm 2 /s. E) 10 gm 2 /s. A) 0.1 kg. B) 1 kg. C) 2 kg. D) 5 kg. E) 10 kg A) 2:5 B) 4:5 C) 1:1 D) 5:4 1. A 4 kg object moves in a circle of radius 8 m at a constant speed of 2 m/s. What is the angular momentum of the object with respect to an axis perpendicular to the circle and through its center? A)

More information

AP Physics 1 Rotational Motion Practice Test

AP Physics 1 Rotational Motion Practice Test AP Physics 1 Rotational Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A spinning ice skater on extremely smooth ice is able

More information

Unit 8 Notetaking Guide Torque and Rotational Motion

Unit 8 Notetaking Guide Torque and Rotational Motion Unit 8 Notetaking Guide Torque and Rotational Motion Rotational Motion Until now, we have been concerned mainly with translational motion. We discussed the kinematics and dynamics of translational motion

More information

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a

More information

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only

More information

Lecture PowerPoints. Chapter 11. Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 11. Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 11 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart Rotational Motion & Angular Momentum Rotational Motion Every quantity that we have studied with translational motion has a rotational counterpart TRANSLATIONAL ROTATIONAL Displacement x Angular Displacement

More information

APC PHYSICS CHAPTER 11 Mr. Holl Rotation

APC PHYSICS CHAPTER 11 Mr. Holl Rotation APC PHYSICS CHAPTER 11 Mr. Holl Rotation Student Notes 11-1 Translation and Rotation All of the motion we have studied to this point was linear or translational. Rotational motion is the study of spinning

More information

1 The displacement, s in metres, of an object after a time, t in seconds, is given by s = 90t 4 t 2

1 The displacement, s in metres, of an object after a time, t in seconds, is given by s = 90t 4 t 2 CFE Advanced Higher Physics Unit 1 Rotational Motion and Astrophysics Kinematic relationships 1 The displacement, s in metres, of an object after a time, t in seconds, is given by s = 90t 4 t 2 a) Find

More information

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011 PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this

More information

Chapter 8. Rotational Motion

Chapter 8. Rotational Motion Chapter 8 Rotational Motion Rotational Work and Energy W = Fs = s = rθ Frθ Consider the work done in rotating a wheel with a tangential force, F, by an angle θ. τ = Fr W =τθ Rotational Work and Energy

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

Physics 101: Lecture 13 Rotational Kinetic Energy and Rotational Inertia. Physics 101: Lecture 13, Pg 1

Physics 101: Lecture 13 Rotational Kinetic Energy and Rotational Inertia. Physics 101: Lecture 13, Pg 1 Physics 0: Lecture 3 Rotational Kinetic Energy and Rotational Inertia Physics 0: Lecture 3, Pg Overview of Semester Newton s Laws F Net = m a Work-Energy F Net = m a W Net = DKE multiply both sides by

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = s = rφ = Frφ Fr = τ (torque) = τφ r φ s F to s θ = 0 DEFINITION

More information

Rolling, Torque, Angular Momentum

Rolling, Torque, Angular Momentum Chapter 11 Rolling, Torque, Angular Momentum Copyright 11.2 Rolling as Translational and Rotation Combined Motion of Translation : i.e.motion along a straight line Motion of Rotation : rotation about a

More information

Chapter 9-10 Test Review

Chapter 9-10 Test Review Chapter 9-10 Test Review Chapter Summary 9.2. The Second Condition for Equilibrium Explain torque and the factors on which it depends. Describe the role of torque in rotational mechanics. 10.1. Angular

More information

Chapter 8, Rotational Equilibrium and Rotational Dynamics. 3. If a net torque is applied to an object, that object will experience:

Chapter 8, Rotational Equilibrium and Rotational Dynamics. 3. If a net torque is applied to an object, that object will experience: CHAPTER 8 3. If a net torque is applied to an object, that object will experience: a. a constant angular speed b. an angular acceleration c. a constant moment of inertia d. an increasing moment of inertia

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics

Chapter 8. Rotational Equilibrium and Rotational Dynamics Chapter 8 Rotational Equilibrium and Rotational Dynamics Wrench Demo Torque Torque, τ, is the tendency of a force to rotate an object about some axis τ = Fd F is the force d is the lever arm (or moment

More information

Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1

Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1 Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1 1. A 50-kg boy and a 40-kg girl sit on opposite ends of a 3-meter see-saw. How far from the girl should the fulcrum be placed in order for the

More information

Physics 201, Practice Midterm Exam 3, Fall 2006

Physics 201, Practice Midterm Exam 3, Fall 2006 Physics 201, Practice Midterm Exam 3, Fall 2006 1. A figure skater is spinning with arms stretched out. A moment later she rapidly brings her arms close to her body, but maintains her dynamic equilibrium.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two men, Joel and Jerry, push against a wall. Jerry stops after 10 min, while Joel is

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = rφ = Frφ Fr = τ (torque) = τφ r φ s F to x θ = 0 DEFINITION OF

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

More information

PHYS 111 HOMEWORK #11

PHYS 111 HOMEWORK #11 PHYS 111 HOMEWORK #11 Due date: You have a choice here. You can submit this assignment on Tuesday, December and receive a 0 % bonus, or you can submit this for normal credit on Thursday, 4 December. If

More information

Rotation. PHYS 101 Previous Exam Problems CHAPTER

Rotation. PHYS 101 Previous Exam Problems CHAPTER PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that

More information

Kinetic Energy of Rolling

Kinetic Energy of Rolling Kinetic Energy of Rolling A solid disk and a hoop (with the same mass and radius) are released from rest and roll down a ramp from a height h. Which one is moving faster at the bottom of the ramp? A. they

More information

Chapter 10: Dynamics of Rotational Motion

Chapter 10: Dynamics of Rotational Motion Chapter 10: Dynamics of Rotational Motion What causes an angular acceleration? The effectiveness of a force at causing a rotation is called torque. QuickCheck 12.5 The four forces shown have the same strength.

More information

Rotational Mechanics Part III Dynamics. Pre AP Physics

Rotational Mechanics Part III Dynamics. Pre AP Physics Rotational Mechanics Part III Dynamics Pre AP Physics We have so far discussed rotational kinematics the description of rotational motion in terms of angle, angular velocity and angular acceleration and

More information

Rotation Quiz II, review part A

Rotation Quiz II, review part A Rotation Quiz II, review part A 1. A solid disk with a radius R rotates at a constant rate ω. Which of the following points has the greater angular velocity? A. A B. B C. C D. D E. All points have the

More information

PHYSICS 220. Lecture 15. Textbook Sections Lecture 15 Purdue University, Physics 220 1

PHYSICS 220. Lecture 15. Textbook Sections Lecture 15 Purdue University, Physics 220 1 PHYSICS 220 Lecture 15 Angular Momentum Textbook Sections 9.3 9.6 Lecture 15 Purdue University, Physics 220 1 Last Lecture Overview Torque = Force that causes rotation τ = F r sin θ Work done by torque

More information

1 MR SAMPLE EXAM 3 FALL 2013

1 MR SAMPLE EXAM 3 FALL 2013 SAMPLE EXAM 3 FALL 013 1. A merry-go-round rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. Figure 11.21 shows four different cases involving a

More information

TutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?

TutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning? 1. rpm is about rad/s. 7. ROTATIONAL MOTION 2. A wheel rotates with constant angular acceleration of π rad/s 2. During the time interval from t 1 to t 2, its angular displacement is π rad. At time t 2

More information

Chap. 10: Rotational Motion

Chap. 10: Rotational Motion Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics - Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Newton s Laws for Rotation n e t I 3 rd part [N

More information

Concept Question: Normal Force

Concept Question: Normal Force Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical

More information

AP practice ch 7-8 Multiple Choice

AP practice ch 7-8 Multiple Choice AP practice ch 7-8 Multiple Choice 1. A spool of thread has an average radius of 1.00 cm. If the spool contains 62.8 m of thread, how many turns of thread are on the spool? "Average radius" allows us to

More information

Physics 130: Questions to study for midterm #1 from Chapter 8

Physics 130: Questions to study for midterm #1 from Chapter 8 Physics 130: Questions to study for midterm #1 from Chapter 8 1. If the beaters on a mixer make 800 revolutions in 5 minutes, what is the average rotational speed of the beaters? a. 2.67 rev/min b. 16.8

More information

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW Pagpalain ka! (Good luck, in Filipino) Date Chapter 8 - Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body

More information

Rotation review packet. Name:

Rotation review packet. Name: Rotation review packet. Name:. A pulley of mass m 1 =M and radius R is mounted on frictionless bearings about a fixed axis through O. A block of equal mass m =M, suspended by a cord wrapped around the

More information

Torque. Introduction. Torque. PHY torque - J. Hedberg

Torque. Introduction. Torque. PHY torque - J. Hedberg Torque PHY 207 - torque - J. Hedberg - 2017 1. Introduction 2. Torque 1. Lever arm changes 3. Net Torques 4. Moment of Rotational Inertia 1. Moment of Inertia for Arbitrary Shapes 2. Parallel Axis Theorem

More information

Centripetal acceleration ac = to2r Kinetic energy of rotation KE, = \lto2. Moment of inertia. / = mr2 Newton's second law for rotational motion t = la

Centripetal acceleration ac = to2r Kinetic energy of rotation KE, = \lto2. Moment of inertia. / = mr2 Newton's second law for rotational motion t = la The Language of Physics Angular displacement The angle that a body rotates through while in rotational motion (p. 241). Angular velocity The change in the angular displacement of a rotating body about

More information

PHYSICS I RESOURCE SHEET

PHYSICS I RESOURCE SHEET PHYSICS I RESOURCE SHEET Cautions and Notes Kinematic Equations These are to be used in regions with constant acceleration only You must keep regions with different accelerations separate (for example,

More information

Chapter 8 Rotational Motion

Chapter 8 Rotational Motion Chapter 8 Rotational Motion Chapter 8 Rotational Motion In this chapter you will: Learn how to describe and measure rotational motion. Learn how torque changes rotational velocity. Explore factors that

More information

Physics 207: Lecture 24. Announcements. No labs next week, May 2 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here.

Physics 207: Lecture 24. Announcements. No labs next week, May 2 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here. Physics 07: Lecture 4 Announcements No labs next week, May 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here Today s Agenda ecap: otational dynamics and torque Work and energy with example Many

More information

Rotational Motion and Torque

Rotational Motion and Torque Rotational Motion and Torque Introduction to Angular Quantities Sections 8- to 8-2 Introduction Rotational motion deals with spinning objects, or objects rotating around some point. Rotational motion is

More information

Ch 8. Rotational Dynamics

Ch 8. Rotational Dynamics Ch 8. Rotational Dynamics Rotational W, P, K, & L (a) Translation (b) Combined translation and rotation ROTATIONAL ANALOG OF NEWTON S SECOND LAW FOR A RIGID BODY ROTATING ABOUT A FIXED AXIS = τ Iα Requirement:

More information

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Chapter 12: Rotation of Rigid Bodies Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Translational vs Rotational 2 / / 1/ 2 m x v dx dt a dv dt F ma p mv KE mv Work Fd P Fv 2 /

More information

1. An object is dropped from rest. Which of the five following graphs correctly represents its motion? The positive direction is taken to be downward.

1. An object is dropped from rest. Which of the five following graphs correctly represents its motion? The positive direction is taken to be downward. Unless otherwise instructed, use g = 9.8 m/s 2 Rotational Inertia about an axis through com: Hoop about axis(radius=r, mass=m) : MR 2 Hoop about diameter (radius=r, mass=m): 1/2MR 2 Disk/solid cyllinder

More information

Exercise Torque Magnitude Ranking Task. Part A

Exercise Torque Magnitude Ranking Task. Part A Exercise 10.2 Calculate the net torque about point O for the two forces applied as in the figure. The rod and both forces are in the plane of the page. Take positive torques to be counterclockwise. τ 28.0

More information

Lesson 8. Luis Anchordoqui. Physics 168. Thursday, October 11, 18

Lesson 8. Luis Anchordoqui. Physics 168. Thursday, October 11, 18 Lesson 8 Physics 168 1 Rolling 2 Intuitive Question Why is it that when a body is rolling on a plane without slipping the point of contact with the plane does not move? A simple answer to this question

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 13 pages. Make sure none are missing 2.

More information

PHYSICS. Chapter 12 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 12 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 12 Lecture RANDALL D. KNIGHT Chapter 12 Rotation of a Rigid Body IN THIS CHAPTER, you will learn to understand and apply the physics

More information

We define angular displacement, θ, and angular velocity, ω. What's a radian?

We define angular displacement, θ, and angular velocity, ω. What's a radian? We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise

More information

Rotational Dynamics continued

Rotational Dynamics continued Chapter 9 Rotational Dynamics continued 9.4 Newton s Second Law for Rotational Motion About a Fixed Axis ROTATIONAL ANALOG OF NEWTON S SECOND LAW FOR A RIGID BODY ROTATING ABOUT A FIXED AXIS I = ( mr 2

More information

Suggested Problems. Chapter 1

Suggested Problems. Chapter 1 Suggested Problems Ch1: 49, 51, 86, 89, 93, 95, 96, 102. Ch2: 9, 18, 20, 44, 51, 74, 75, 93. Ch3: 4, 14, 46, 54, 56, 75, 91, 80, 82, 83. Ch4: 15, 59, 60, 62. Ch5: 14, 52, 54, 65, 67, 83, 87, 88, 91, 93,

More information

PS 11 GeneralPhysics I for the Life Sciences

PS 11 GeneralPhysics I for the Life Sciences PS 11 GeneralPhysics I for the Life Sciences ROTATIONAL MOTION D R. B E N J A M I N C H A N A S S O C I A T E P R O F E S S O R P H Y S I C S D E P A R T M E N T F E B R U A R Y 0 1 4 Questions and Problems

More information

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches AP Physics B Practice Questions: Rotational Motion Multiple-Choice Questions 1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

More information

Chapter 10. Rotation of a Rigid Object about a Fixed Axis

Chapter 10. Rotation of a Rigid Object about a Fixed Axis Chapter 10 Rotation of a Rigid Object about a Fixed Axis Angular Position Axis of rotation is the center of the disc Choose a fixed reference line. Point P is at a fixed distance r from the origin. A small

More information

Rotational Dynamics, Moment of Inertia and Angular Momentum

Rotational Dynamics, Moment of Inertia and Angular Momentum Rotational Dynamics, Moment of Inertia and Angular Momentum Now that we have examined rotational kinematics and torque we will look at applying the concepts of angular motion to Newton s first and second

More information

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av

More information

OUTCOME 2 KINEMATICS AND DYNAMICS

OUTCOME 2 KINEMATICS AND DYNAMICS Unit 60: Dynamics of Machines Unit code: H/601/1411 QCF Level:4 Credit value:15 OUTCOME 2 KINEMATICS AND DYNAMICS TUTORIAL 3 GYROSCOPES 2 Be able to determine the kinetic and dynamic parameters of mechanical

More information

AP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems

AP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems AP Physics C: Rotation II (Torque and Rotational Dynamics, Rolling Motion) Problems 1980M3. A billiard ball has mass M, radius R, and moment of inertia about the center of mass I c = 2 MR²/5 The ball is

More information

Rotational Motion About a Fixed Axis

Rotational Motion About a Fixed Axis Rotational Motion About a Fixed Axis Vocabulary rigid body axis of rotation radian average angular velocity instantaneous angular average angular Instantaneous angular frequency velocity acceleration acceleration

More information

Review. Checkpoint 2 / Lecture 13. Strike (Day 8)

Review. Checkpoint 2 / Lecture 13. Strike (Day 8) Physics 101: Lecture 14 Parallel Axis Theorem, Rotational Energy, Conservation of Energy Examples, and a Little Torque Review Rotational Kinetic Energy K rot = ½ I w 2 Rotational Inertia I = S m i r i2

More information

THE GYROSCOPE REFERENCES

THE GYROSCOPE REFERENCES THE REFERENCES The Feynman Lectures on Physics, Chapter 20 (this has a very nice, intuitive description of the operation of the gyroscope) Copy available at the Resource Centre. Most Introductory Physics

More information

Fundamentals Physics. Chapter 10 Rotation

Fundamentals Physics. Chapter 10 Rotation Fundamentals Physics Tenth Edition Halliday Chapter 10 Rotation 10-1 Rotational Variables (1 of 15) Learning Objectives 10.01 Identify that if all parts of a body rotate around a fixed axis locked together,

More information

TOPIC D: ROTATION EXAMPLES SPRING 2018

TOPIC D: ROTATION EXAMPLES SPRING 2018 TOPIC D: ROTATION EXAMPLES SPRING 018 Q1. A car accelerates uniformly from rest to 80 km hr 1 in 6 s. The wheels have a radius of 30 cm. What is the angular acceleration of the wheels? Q. The University

More information

Angular Momentum. Objectives CONSERVATION OF ANGULAR MOMENTUM

Angular Momentum. Objectives CONSERVATION OF ANGULAR MOMENTUM Angular Momentum CONSERVATION OF ANGULAR MOMENTUM Objectives Calculate the angular momentum vector for a moving particle Calculate the angular momentum vector for a rotating rigid object where angular

More information

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 8 Lecture Pearson Physics Rotational Motion and Equilibrium Prepared by Chris Chiaverina Chapter Contents Describing Angular Motion Rolling Motion and the Moment of Inertia Torque Static Equilibrium

More information

Chapter 8 Lecture Notes

Chapter 8 Lecture Notes Chapter 8 Lecture Notes Physics 2414 - Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ

More information

Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia. 8.01t Nov 3, 2004

Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia. 8.01t Nov 3, 2004 Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia 8.01t Nov 3, 2004 Rotation and Translation of Rigid Body Motion of a thrown object Translational Motion of the Center of Mass Total

More information

Study Guide Solutions

Study Guide Solutions Study Guide Solutions Table of Contents Chapter 1 A Physics Toolkit... 3 Vocabulary Review... 3 Section 1.1: Mathematics and Physics... 3 Section 1.2: Measurement... 3 Section 1.3: Graphing Data... 4 Chapter

More information

Chap10. Rotation of a Rigid Object about a Fixed Axis

Chap10. Rotation of a Rigid Object about a Fixed Axis Chap10. Rotation of a Rigid Object about a Fixed Axis Level : AP Physics Teacher : Kim 10.1 Angular Displacement, Velocity, and Acceleration - A rigid object rotating about a fixed axis through O perpendicular

More information

PHY2020 Test 2 November 5, Name:

PHY2020 Test 2 November 5, Name: 1 PHY2020 Test 2 November 5, 2014 Name: sin(30) = 1/2 cos(30) = 3/2 tan(30) = 3/3 sin(60) = 3/2 cos(60) = 1/2 tan(60) = 3 sin(45) = cos(45) = 2/2 tan(45) = 1 sin(37) = cos(53) = 0.6 cos(37) = sin(53) =

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.6 The Action of Forces and Torques on Rigid Objects Chapter 8 developed the concepts of angular motion. θ : angles and radian measure for angular variables ω :

More information

DYNAMICS OF RIGID BODIES

DYNAMICS OF RIGID BODIES DYNAMICS OF RIGID BODIES Measuring angles in radian Define the value of an angle θ in radian as θ = s r, or arc length s = rθ a pure number, without dimension independent of radius r of the circle one

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity

Chapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity Chapter 8 Rotational Equilibrium and Rotational Dynamics 1. Torque 2. Torque and Equilibrium 3. Center of Mass and Center of Gravity 4. Torque and angular acceleration 5. Rotational Kinetic energy 6. Angular

More information

Essential Physics I. Lecture 9:

Essential Physics I. Lecture 9: Essential Physics I E I Lecture 9: 15-06-15 Last lecture: review Conservation of momentum: p = m v p before = p after m 1 v 1,i + m 2 v 2,i = m 1 v 1,f + m 2 v 2,f m 1 m 1 m 2 m 2 Elastic collision: +

More information

Angular Momentum L = I ω

Angular Momentum L = I ω Angular Momentum L = Iω If no NET external Torques act on a system then Angular Momentum is Conserved. Linitial = I ω = L final = Iω Angular Momentum L = Iω Angular Momentum L = I ω A Skater spins with

More information

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum:

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum: linear momentum: Chapter 8: Momentum, Impulse, & Collisions Newton s second law in terms of momentum: impulse: Under what SPECIFIC condition is linear momentum conserved? (The answer does not involve collisions.)

More information

Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:

Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved: 8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

Chapter 11 Rolling, Torque, and Angular Momentum

Chapter 11 Rolling, Torque, and Angular Momentum Prof. Dr. I. Nasser Chapter11-I November, 017 Chapter 11 Rolling, Torque, and Angular Momentum 11-1 ROLLING AS TRANSLATION AND ROTATION COMBINED Translation vs. Rotation General Rolling Motion General

More information

Name: Date: Period: AP Physics C Rotational Motion HO19

Name: Date: Period: AP Physics C Rotational Motion HO19 1.) A wheel turns with constant acceleration 0.450 rad/s 2. (9-9) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions

More information