Alien Earths Using Conic Sections to Explore the Solar System

Size: px
Start display at page:

Download "Alien Earths Using Conic Sections to Explore the Solar System"

Transcription

1 Alien Earths Using Conic Sections to Explore the Solar System Teachers: Amena Mitha and Andy Eschbacher Target Audience: 11 th Grade Algebra II and Physics students Project Description: The Alien Earths project is a multi-disciplinary project-based lesson series that encompasses concepts in Algebra II about conic sections, the dynamics of gravity in the solar system, and a search for potential life to motivate a space mission. The lessons will take place within a 6-week period that culminates with a final project that pulls in the previous lessons in an interactive and technologically motivated way. The lesson sequence is as follows: 1. Alien Earths Search for life an inquiry-driven lesson that lets students explore the solar system s planets, moons, and other objects for properties that may support life; 2. Introduction to Gravity an interactive and generative lesson that allows students to use computer simulations as a playground to explore the shapes and dynamical quantities involved in gravity in our solar system; 3. Conic Sections another interactive simulation that allows students to discover different types of conic sections; 4. Centripetal Force Lab a lab exploration of central forces that uses everyday objects to explore some of the dynamics of gravity; 5. Gravity Analysis a more in-depth lesson on gravity that draws from the experiences of the two previous lessons to allow students to explore and find empirical data for the equations that govern gravity; 6. Orbit of Satellites a lesson based on a NASA applet (via the internet) that uses real-time data of satellite positions and trajectories that allows students to explore the shape of satellite orbits in tangible and relevant situation; 7. Stop-Motion Animation -- An animation that represents the culmination of the work of the whole project Driving Question: The driving question for the Alien Earths project is, How can we use conic equations to plan a mission to explore a planet or moon to find life? Within this driving question there are three lesson objectives, with the question stressing that all the objectives are intimately intertwined. The first, on the use of conic sections, is a part of mathematics education that is rarely discussed in detail and is usually motivated from a decontextualized point of view. Next, the part of the question that deals with gravity is implicit in plan a mission to explore a planet or moon. Gravitation of varying acceleration is a difficult subject to explore in a classroom setting since humans experience the same acceleration for most heights. We do not have practical experience experimenting with gravity as one would have, say, experience experimenting with merry-go-rounds or friction. Therefore, developing an intuition from the ground up is a major objective that the project aims to address.

2 Overall Goals: The goals of the project include: gaining intuition about planetary and satellite orbits, understanding the similarities and differences between various conic sections and their applications to science, and, finally, illustrating the mechanisms of gravity and how it affects objects in space. Project Objectives: The Alien Earths Project consists of seven integrated lessons, each with unique student objectives. In this project, students will be able to: Alien Earths 1. Identify characteristics for environments that are suitable for life. 2. Conduct research using the internet to identify planets and/or moons that are potential candidates for further exploration. Introduction to Gravity 1. Describe the orbits of planetary bodies 2. Identify the two independent variables (mass and distance) that determine the magnitude of a gravitational force 3. Develop an intuition about celestial dynamics Conic Sections 1. Relate representations of quadratic functions, such as algebraic, tabular, graphical and verbal descriptions. 2. Identify the similarities and differences between different types of conic sections. 3. Recognize various planetary orbits and relate them to conic sections Centripetal Force 1. Compare measurements to theoretical results 2. Relate centripetal forces from tension to centripetal forces due to gravity Gravity Analysis 1. Compare measurements to theoretical results 2. Relate centripetal forces from tension to centripetal forces due to gravity Orbit of Satellites 1. Calculate forces from Newton s law of gravitation 2. Infer functional forms through data interpretation 3. Identify forces and velocity on a free-body diagram of a planet in a circular orbit Stop-Motion Animation 1. Reinterpret dynamics into a frame-by-frame animation

3 2. Construct conic section equations that intersect at specific locations Rationale: This project will connect math and physics concepts to real-world applications. This is important because often times the connections between high school subjects are too tenuous. Further, the subject of space exploration is very rich and leaves a wide range of people with a sense of wonder. With all the space missions to Mars, Jupiter, and Saturn as well as their moons, it is easy to keep the project relevant and include recently discovered phenomena. The project contains a wide variety of activities that will appeal to all learning styles, which is something we believe will maximize participation, learning, and creativity. Background: Major concepts addressed in the lessons (see separate sheet Concept Map as well): 1. Forces a. Gravitational forces as a cause of planetary orbits; b. Newton s second law a law that relates force, mass, and acceleration; c. Centripetal forces center seeking forces responsible for allowing one to stay in an orbit or to negotiate a tight turn in a car. 2. Conic Sections a. Ellipse shapes that describe the shape of stable planetary orbits for the case when the mass of the orbiting body is much smaller than the mass of the gravitating center; b. Hyperbola important shapes for describing trajectories that escape planetary orbits; c. Parabola the limiting case between ellipses and hyperbolae. The form y = ax 2 +bx+c is important in mathematics (e.g., finding the roots of equations) and science (e.g., near-earth dynamics). 3. Data interpretation using data to infer the properties of an ellipse 4. Viability of life-sustaining worlds biological investigations into requirements of life (water, nutrients, energy source, etc.) Standards: Biology: 11. Science Concepts. The student knows that organism maintain homeostasis. The student is expected to: b. Investigate and identify how organisms, including humans, respond to external stimuli; 12. Science Concepts. The student knows that interdependence and interactions occur within an ecosystem. The student is expected to: b. Interpret interactions among organism exhibiting predation, parasitism, commensalism, and mutualism; d. Identify and illustrate that long-term survival of species is dependent on a resource base that may be limited;

4 Physics: 1. Scientific processes. The student, for at least 40% of instructional time, conducts field and laboratory investigations using safe, environmentally appropriate, and ethical practices. The student is expected to: a. Analyze examples of uniform and accelerated motion including linear, projectile, and circular; b. Demonstrate the effects of forces on the motion of objects. 4. Science Concepts. The student knows the laws governing motion. The student is expected to: b. Analyze examples of uniform and accelerated motion including linear, projectile, and circular; c. Demonstrate the effects of forces on the motion of objects; 6. Science Concepts. The student knows forces in nature. The student is expected to: a. Identify the influence of mass and distance on gravitational forces; Algebra II: 5. Algebra and geometry. The student knows the relationship between the geometric and algebraic descriptions of conic sections. The student is expected to: a. Sketch graphs of conic sections to relate simple parameter changes in the equation to corresponding changes in the graph; b. Identify symmetries from graphs of conic sections; c. Identify the conic section from a given equation; 7. Quadratic and square root functions. The student interprets and describes the effects of changes in the parameters of quadratic functions in applied and mathematical situations. The student is expected to: a. Use characteristics of the quadratic parent function to sketch the related graphs and connect between the y = ax 2 + bx + c and the y = a (x - h) 2 + k symbolic representations of quadratic functions; b. Use the parent function to investigate, describe, and predict the effects of changes in a, h, and k on the graphs of y = a (x - h) 2 + k form of a function in applied and purely mathematical situations; Final Product: The final product will be as follows: Students are to create a stop-motion animation that takes a spacecraft from an earth orbit of their choosing (elliptical or circular) to a hyperbolic orbit that intersects the planet and finally maintains a stable orbit. Students are expected to respect distance and time scales as well as relevant motion of the planets/moons as the spacecraft is on its mission. For instance, if a spacecraft is to travel from earth to mars, mars is not at the future point at which the spacecraft will intersect it (mars), so mars must move into to the position in a relevant amount of time.

5 This project encompasses the students knowledge of conic sections as descriptions of planetary orbits, reveals an alternate interpretations of velocity through a transformation to a discrete time, and how one can interconnect different conic sections to form a rough trajectory of what a spacecraft would follow going from the earth to another planet or moon.

Gravitation. Makes the World Go Round

Gravitation. Makes the World Go Round Gravitation Makes the World Go Round Gravitational Force The Force of gravity is an attractive force felt between all objects that have mass. G=6.67x10-11 N m 2 /kg 2 Example 1: What is the Force of Gravity

More information

Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy. Hello!

Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy. Hello! PHY131H1F - Class 13 Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy Under the Flower of Kent apple tree in the Woolsthorpe

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy

Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy PHY131H1F - Class 13 Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy Under the Flower of Kent apple tree in the Woolsthorpe

More information

Physics Course Syllabus CHS Science Department

Physics Course Syllabus CHS Science Department 1 Physics Course Syllabus CHS Science Department Contact Information: Parents may contact me by phone, email or visiting the school. Teacher: Mr. Joshua Queen Email Address: joshua.queen@ccsd.us or josh.queen@students.ccsd.us

More information

Episode 403: Orbital motion

Episode 403: Orbital motion Episode 40: Orbital motion In this episode, students will learn how to combine concepts learned in the study of circular motion with Newton s Law of Universal Gravitation to understand the (circular) motion

More information

Name. Satellite Motion Lab

Name. Satellite Motion Lab Name Satellite Motion Lab Purpose To experiment with satellite motion using an interactive simulation in order to gain an understanding of Kepler s Laws of Planetary Motion and Newton s Law of Universal

More information

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves 7.1 Ellipse An ellipse is a curve that is the locus of all points in the plane the sum of whose distances r1 and r from two fixed

More information

Curriculum Map: Mathematics

Curriculum Map: Mathematics Curriculum Map: Mathematics Course: Honors Algebra II Grade(s): 9/10 Unit 1: Expressions, Equations, and Inequalities In this unit, students review basics concepts and skills of algebra studied in previous

More information

FORCE. The 4 Fundamental Forces of Nature

FORCE. The 4 Fundamental Forces of Nature FORCE - Force a push or pull. Results only from interaction with another object. Without interaction, forces cannot be present. - Measured in Newtons (N) 1 Newton is the amount of force required to give

More information

CIRCULAR MOTION AND UNIVERSAL GRAVITATION

CIRCULAR MOTION AND UNIVERSAL GRAVITATION CIRCULAR MOTION AND UNIVERSAL GRAVITATION Uniform Circular Motion What holds an object in a circular path? A force. String Friction Gravity What happens when the force is diminished? Object flies off in

More information

3. Recognize that when a science investigation is replicated, very similar results are expected.

3. Recognize that when a science investigation is replicated, very similar results are expected. STANDARD 5.1 SCIENTIFIC PROCESSES ALL STUDENTS WILL DEVELOP PROBLEM-SOLVING, DECISION-MAKING AND INQUIRY SKILLS, REFLECTED BY FORMULATING USABLE QUESTIONS AND HYPOTHESES, PLANNING EXPERIMENTS, CONDUCTING

More information

Key Points: Learn the relationship between gravitational attractive force, mass and distance. Understand that gravity can act as a centripetal force.

Key Points: Learn the relationship between gravitational attractive force, mass and distance. Understand that gravity can act as a centripetal force. Lesson 9: Universal Gravitation and Circular Motion Key Points: Learn the relationship between gravitational attractive force, mass and distance. Understand that gravity can act as a centripetal force.

More information

Algebra II (One-Half to One Credit).

Algebra II (One-Half to One Credit). 111.33. Algebra II (One-Half to One Credit). T 111.33. Algebra II (One-Half to One Credit). (a) Basic understandings. (1) Foundation concepts for high school mathematics. As presented in Grades K-8, the

More information

Week Topics of study Home/Independent Learning Assessment (If in addition to homework) 7 th September 2015

Week Topics of study Home/Independent Learning Assessment (If in addition to homework) 7 th September 2015 Week Topics of study Home/Independent Learning Assessment (If in addition to homework) 7 th September Teacher feedback to prompt action FP1: No lessons Student to write feedback in here when necessary

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 13. Newton s Theory of Gravity The beautiful rings of Saturn consist of countless centimeter-sized ice crystals, all orbiting the planet under the influence of gravity. Chapter Goal: To use Newton

More information

Lecture Outline. Chapter 13 Gravity Pearson Education, Inc. Slide 13-1

Lecture Outline. Chapter 13 Gravity Pearson Education, Inc. Slide 13-1 Lecture Outline Chapter 13 Gravity Slide 13-1 The plan Lab this week: exam problems will put problems on mastering for chapters without HW; will also go over exam 2 Final coverage: now posted; some sections/chapters

More information

Score 0.0. Mastery. 3.5 In addition to score 3.0 performance, the student has partial success at score 4.0 content.

Score 0.0. Mastery. 3.5 In addition to score 3.0 performance, the student has partial success at score 4.0 content. Strand: Life Science Topic: 6.LS.3 -.4 Abiotic & Biotic Factors/Symbiosis Given two organisms, student will analyze the likelihood of survival when abiotic and biotic factors are removed. Explain how viruses

More information

Circular Motion and Gravitation. Centripetal Acceleration

Circular Motion and Gravitation. Centripetal Acceleration Circular Motion and Gravitation Centripetal Acceleration Recall linear acceleration 3. Going around a curve, at constant speed 1. Speeding up vi vi Δv a ac ac vi ac 2. Slowing down v velocity and acceleration

More information

Multiple Choice Portion

Multiple Choice Portion Unit 5: Circular Motion and Gravitation Please Note that the gravitational potential energy questions are located in Unit 4 (Energy etc.) Multiple Choice Portion 1. What is the centripetal acceleration

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

Physics for Scientists and Engineers 4th Edition, 2017

Physics for Scientists and Engineers 4th Edition, 2017 A Correlation of Physics for Scientists and Engineers 4th Edition, 2017 To the AP Physics C: Mechanics Course Descriptions AP is a trademark registered and/or owned by the College Board, which was not

More information

Planetary Real Estate

Planetary Real Estate Planetary Real Estate http://questgarden.com/18/94/4/060329145856/index.htm Focus on Inquiry The student will focus on inquiry by gathering information on a planet, comet, moon, or asteroid of their choice

More information

Circular Motion and Gravity Lecture 5

Circular Motion and Gravity Lecture 5 Circular Motion and Gravity Lecture 5 ˆ Today we talk about circular motion. There are two reasons to do this... ˆ Last week we talked about Newton s laws in problems dealing with straight-line motion.

More information

(d) State the effect on the magnitude of the centripetal force in the following cases:

(d) State the effect on the magnitude of the centripetal force in the following cases: YEAR 12 PHYSICS: UNIFORM CIRCULAR MOTION ASSIGNMENT NAME: QUESTION 1 (a) A car of mass 1200 kg rounds a bend of radius 50m at a speed of 20ms -1. What centripetal acceleration does it experience? (b) Calculate

More information

Amarillo ISD Math Curriculum

Amarillo ISD Math Curriculum Amarillo Independent School District follows the Texas Essential Knowledge and Skills (TEKS). All of AISD curriculum and documents and resources are aligned to the TEKS. The State of Texas State Board

More information

PHYSICS 12 NAME: Gravitation

PHYSICS 12 NAME: Gravitation NAME: Gravitation 1. The gravitational force of attraction between the Sun and an asteroid travelling in an orbit of radius 4.14x10 11 m is 4.62 x 10 17 N. What is the mass of the asteroid? 2. A certain

More information

A study on the elliptical orbit of Europa when leaving Earth: is the strength of the ellipse a complication or negligible?

A study on the elliptical orbit of Europa when leaving Earth: is the strength of the ellipse a complication or negligible? A study on the elliptical orbit of Europa when leaving Earth: is the strength of the ellipse a complication or negligible? Simon de Regt Objective Europa simon.deregt@wur.nl Benjamin Schoemaker Objective

More information

HMH Fuse Algebra correlated to the. Texas Essential Knowledge and Skills for Mathematics High School Algebra 2

HMH Fuse Algebra correlated to the. Texas Essential Knowledge and Skills for Mathematics High School Algebra 2 HMH Fuse Algebra 2 2012 correlated to the Texas Essential Knowledge and Skills for Mathematics High School Algebra 2 111.33. Algebra II (b) Knowledge and skills. (1) Foundations for functions. The student

More information

Unit 5 Gravitation. Newton s Law of Universal Gravitation Kepler s Laws of Planetary Motion

Unit 5 Gravitation. Newton s Law of Universal Gravitation Kepler s Laws of Planetary Motion Unit 5 Gravitation Newton s Law of Universal Gravitation Kepler s Laws of Planetary Motion Into to Gravity Phet Simulation Today: Make sure to collect all data. Finished lab due tomorrow!! Universal Law

More information

7.4 Universal Gravitation

7.4 Universal Gravitation Circular Motion Velocity is a vector quantity, which means that it involves both speed (magnitude) and direction. Therefore an object traveling at a constant speed can still accelerate if the direction

More information

Circular Motion 1

Circular Motion 1 --------------------------------------------------------------------------------------------------- Circular Motion 1 ---------------------------------------------------------------------------------------------------

More information

Albuquerque Public Schools High School District Benchmark Assessment Algebra I Assessment Alignment

Albuquerque Public Schools High School District Benchmark Assessment Algebra I Assessment Alignment NM PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: These standards should be

More information

Updated 09/15/04 Integrated Mathematics 4

Updated 09/15/04 Integrated Mathematics 4 Integrated Mathematics 4 Integrated Mathematics 4 provides students an advanced study of trigonometry, functions, analytic geometry, and data analysis with a problem-centered, connected approach in preparation

More information

You Might Also Like. I look forward helping you focus your instruction while saving tons of time. Kesler Science Station Lab Activities 40%+ Savings!

You Might Also Like. I look forward helping you focus your instruction while saving tons of time. Kesler Science Station Lab Activities 40%+ Savings! Thanks Connect Thank you for downloading my product. I truly appreciate your support and look forward to hearing your feedback. You can connect with me and find many free activities and strategies over

More information

Chapter 4. Motion and gravity

Chapter 4. Motion and gravity Chapter 4. Motion and gravity Announcements Labs open this week to finish. You may go to any lab section this week (most people done). Lab exercise 2 starts Oct 2. It's the long one!! Midterm exam likely

More information

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2012 Pearson Education, Inc.

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2012 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 1 4.1 Describing Motion: Examples from Everyday Life Our goals for learning: How do we describe motion? How is mass different

More information

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 13 Lecture RANDALL D. KNIGHT Chapter 13 Newton s Theory of Gravity IN THIS CHAPTER, you will learn to understand the motion of satellites

More information

CORRELATION TO THE GEORGIA PERFORMANCE STANDARDS

CORRELATION TO THE GEORGIA PERFORMANCE STANDARDS D:\Documents and Settings\Administrator\My Documents\Adoptions\Georgia\2007 GA Physics Correlation with PIC.doc Last saved: 5/15/2007 CORRELATION TO THE GEORGIA PERFORMANCE STANDARDS Subject Area: Physics

More information

9/13/ Describing Motion: Examples from Everyday Life. Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity

9/13/ Describing Motion: Examples from Everyday Life. Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity 9/13/17 Lecture Outline 4.1 Describing Motion: Examples from Everyday Life Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity Our goals for learning: How do we describe motion?

More information

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds.

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds. Name: Hour: 1. The slope of the tangent on a position-time graph equals the: Sem 1 Exam Review Advanced Physics 2015-2016 2. The area under the curve on a velocity-time graph equals the: 3. The graph below

More information

Lecture D30 - Orbit Transfers

Lecture D30 - Orbit Transfers J. Peraire 16.07 Dynamics Fall 004 Version 1.1 Lecture D30 - Orbit Transfers In this lecture, we will consider how to transfer from one orbit, or trajectory, to another. One of the assumptions that we

More information

More examples: Summary of previous lecture

More examples: Summary of previous lecture More examples: 3 N Individual Forces Net Force 5 N 37 o 4 N Summary of previous lecture 1 st Law A net non zero force is required to change the velocity of an object. nd Law What happens when there is

More information

Conceptual Physical Science 6 th Edition

Conceptual Physical Science 6 th Edition 1 2 1 Conceptual Physical Science 6 th Edition Chapter 4: GRAVITY, PROJECTILES, AND SATELLITES Sections 4.1, 4.5-4.9 only 3 2017 Pearson Education, Inc. This lecture will help you understand: The Universal

More information

Chapter 13 Gravity Pearson Education, Inc. Slide 13-1

Chapter 13 Gravity Pearson Education, Inc. Slide 13-1 Chapter 13 Gravity Slide 13-1 The plan Lab this week: there will be time for exam problems Final exam: sections posted today; some left out Final format: all multiple choice, almost all short problems,

More information

MS-ESS1-1 Earth's Place in the Universe

MS-ESS1-1 Earth's Place in the Universe MS-ESS1-1 Earth's Place in the Universe Students who demonstrate understanding can: MS-ESS1-1. Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses

More information

School District of Springfield Township

School District of Springfield Township School District of Springfield Township Course Name: Physics (Honors) Springfield Township High School Course Overview Course Description Physics (Honors) is a rigorous, laboratory-oriented program consisting

More information

Chapter 6 Review Answer Key

Chapter 6 Review Answer Key Chapter 6 Review Answer Key Understanding Vocabulary 1. displacement 2. trajectory 3. projectile 4. parabola 5. range 6. revolves 7. rotates 8. angular speed 9. centripetal force 10. law of universal gravitation

More information

Radial Acceleration. recall, the direction of the instantaneous velocity vector is tangential to the trajectory

Radial Acceleration. recall, the direction of the instantaneous velocity vector is tangential to the trajectory Radial Acceleration recall, the direction of the instantaneous velocity vector is tangential to the trajectory 1 Radial Acceleration recall, the direction of the instantaneous velocity vector is tangential

More information

NAME: PERIOD: DATE: LAB PARTNERS: LAB #39 ECCENTRICITY OF PLANETARY ORBITS

NAME: PERIOD: DATE: LAB PARTNERS: LAB #39 ECCENTRICITY OF PLANETARY ORBITS NAME: PERIOD: DATE: LAB PARTNERS: LAB #39 ECCENTRICITY OF PLANETARY ORBITS INTRODUCTION Our sun is not exactly in the center of the orbits of the planets, and therefore the planetary orbits are not circular.

More information

Warren County Schools PHYSICS PACING GUIDE (SEMESTER)

Warren County Schools PHYSICS PACING GUIDE (SEMESTER) Warren County Schools PHYSICS PACING GUIDE 2017 2018 (SEMESTER) Philosophical approach to the process of teaching and learning science in the Warren County School District (WCS). In WCS there is an emphasis

More information

Highland Park Physics I Curriculum Semester I Weeks 1-4

Highland Park Physics I Curriculum Semester I Weeks 1-4 NAME OF UNIT: Kinematics Components Unit Name Introduction Short Descriptive Overview Concepts Weeks 1-4 Survival Physics Describing Motion Mathematical Model of Motion In Physics, students conduct field

More information

Name Class Date. Chapter 23 Touring Our Solar System Investigation 23

Name Class Date. Chapter 23 Touring Our Solar System Investigation 23 Chapter 23 Touring Our Solar System Investigation 23 Exploring Orbits Introduction In 1609, the German mathematician and astronomer Johannes Kepler deciphered a major puzzle of the solar system. The strange

More information

Uniform Circular Motion

Uniform Circular Motion Circular Motion Uniform Circular Motion Uniform Circular Motion Traveling with a constant speed in a circular path Even though the speed is constant, the acceleration is non-zero The acceleration responsible

More information

HIGLEY UNIFIED SCHOOL DISTRICT INSTRUCTIONAL ALIGNMENT. Physics Quarter 1. Scientific Inquiry (Duration 1 Week)

HIGLEY UNIFIED SCHOOL DISTRICT INSTRUCTIONAL ALIGNMENT. Physics Quarter 1. Scientific Inquiry (Duration 1 Week) HIGLEY UNIFIED SCHOOL DISTRICT INSTRUCTIONAL ALIGNMENT Physics Quarter 1 Scientific Inquiry (Duration 1 Week) Big Idea: Essential Questions: 1. Design an appropriate protocol (written plan of action) for

More information

Centripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass.

Centripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass. Name: ate: 1. The graph given shows the weight of three objects on planet X as a function of their mass. 3. If the circular track were to suddenly become frictionless at the instant shown in the diagram,

More information

Stage 1 Desired Results

Stage 1 Desired Results Physics 2015-2016 Brian Cranston, bcranston@lrhsd.org x8395, Jenn Pulliam, jpulliam@lrhsd.org x8833, Jeffrey Thompson, jthompson@lrhsd.org x8706, Rich Watson, rwatson@lrhsd.org x6627 Unit 2 Newton s Laws

More information

Chapter 13: universal gravitation

Chapter 13: universal gravitation Chapter 13: universal gravitation Newton s Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler s Laws and the Motion of Planets Spherical Mass Distributions Apparent

More information

How do we describe motion?

How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Everyday Life Our goals for learning: How do we describe motion? How is mass different

More information

Physics I. Unit 1 Methods in Science (Systems of Units) Competencies (Do) Students should be able to demonstrate scientific methods.

Physics I. Unit 1 Methods in Science (Systems of Units) Competencies (Do) Students should be able to demonstrate scientific methods. Physics I Unit 1 Methods in Science (Systems of Units) Estimated Time Frame Big Ideas for Units 10 Days Tools are needed for the study of Physics, such as measurement, conversions, significant figures,

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) L06: Interplanetary Trajectories Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation 2 Problem Statement? Hint #1: design the Earth-Mars transfer using known concepts

More information

AP Physics 1 Chapter 7 Circular Motion and Gravitation

AP Physics 1 Chapter 7 Circular Motion and Gravitation AP Physics 1 Chapter 7 Circular Motion and Gravitation Chapter 7: Circular Motion and Angular Measure Gravitation Angular Speed and Velocity Uniform Circular Motion and Centripetal Acceleration Angular

More information

Centripetal Acceleration & Projectile Motion. 4th 6wks

Centripetal Acceleration & Projectile Motion. 4th 6wks Centripetal Acceleration & Projectile Motion 4th 6wks Centripetal Force and Acceleration Centripetal Acceleration (A C ) is the acceleration of an object towards the center of a curved or circular path.

More information

Saint Lucie County Science Scope and Sequence

Saint Lucie County Science Scope and Sequence Course: Honors Physics 1 Course Code: 2003390 UNIT 4 TOPIC of STUDY: Newton s Laws of Motion and the Law of Gravity STANDARDS: 10: Energy, 12: Motion ~Net force produces motion ~There are four fundamental

More information

South Slave Divisional Education Council. Physics 20. Curriculum Package February 2012

South Slave Divisional Education Council. Physics 20. Curriculum Package February 2012 South Slave Divisional Education Council Physics 20 Curriculum Package February 2012 2012 Unit A: Kinematics Focusing Questions: How do changes in position, velocity and acceleration allow us to predict

More information

(A) demonstrate safe practices during laboratory and field investigations as outlined in the Texas Safety Standards

(A) demonstrate safe practices during laboratory and field investigations as outlined in the Texas Safety Standards Alignment of Alien Rescue with the Texas Essential Knowledge and Skills (TEKS) Alien Rescue was designed to meet the learning goals set out in the National Science Standards and TEKS. The following is

More information

4.3 Conservation Laws in Astronomy

4.3 Conservation Laws in Astronomy 4.3 Conservation Laws in Astronomy Our goals for learning: Why do objects move at constant velocity if no force acts on them? What keeps a planet rotating and orbiting the Sun? Where do objects get their

More information

Algebra II Introduction 1

Algebra II Introduction 1 Introduction 1 Building on their work with linear, quadratic, and exponential functions, students extend their repertoire of functions to include logarithmic, polynomial, rational, and radical functions

More information

What students need to know for PRE-CALCULUS Students expecting to take Pre-Calculus should demonstrate the ability to:

What students need to know for PRE-CALCULUS Students expecting to take Pre-Calculus should demonstrate the ability to: What students need to know for PRE-CALCULUS 2014-2015 Students expecting to take Pre-Calculus should demonstrate the ability to: General: keep an organized notebook take good notes complete homework every

More information

APS 1030 Astronomy Lab 79 Kepler's Laws KEPLER'S LAWS

APS 1030 Astronomy Lab 79 Kepler's Laws KEPLER'S LAWS APS 1030 Astronomy Lab 79 Kepler's Laws KEPLER'S LAWS SYNOPSIS: Johannes Kepler formulated three laws that described how the planets orbit around the Sun. His work paved the way for Isaac Newton, who derived

More information

9.2 Worksheet #3 - Circular and Satellite Motion

9.2 Worksheet #3 - Circular and Satellite Motion 9.2 Worksheet #3 - Circular and Satellite Motion 1. A car just becomes airborne as it comes off the crest of a bridge that has circular cross section of radius 78.0 m. What is the speed of the car? 2.

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

Milford Public Schools Curriculum

Milford Public Schools Curriculum Milford Public Schools Curriculum Department: SCIENCE Course Name: Grade 8 Course Description Physical Science UNIT 1 - Motion LEARNING GOALS Enduring Understanding(s): Motion is relative to a reference

More information

Domain IV Science. Science Competencies 4/14/2016. EC-6 Core Subjects: Science

Domain IV Science. Science Competencies 4/14/2016. EC-6 Core Subjects: Science EC-6 Core Subjects: Science TExES #291 Review Domain IV Science Approximately 19% of the test Approximately 52 Items 40 minutes Averages 46 seconds per question Science Competencies Competency I: Lab Processes,

More information

Course Name: AP Physics. Team Names: Jon Collins. Velocity Acceleration Displacement

Course Name: AP Physics. Team Names: Jon Collins. Velocity Acceleration Displacement Course Name: AP Physics Team Names: Jon Collins 1 st 9 weeks Objectives Vocabulary 1. NEWTONIAN MECHANICS and lab skills: Kinematics (including vectors, vector algebra, components of vectors, coordinate

More information

Northwestern Connecticut Community College Course Syllabus

Northwestern Connecticut Community College Course Syllabus Northwestern Connecticut Community College Course Syllabus Course Title: Introductory Physics Course #: PHY 110 Course Description: 4 credits (3 class hours and 3 laboratory hours per week) Physics 110

More information

Chapter 4 Thrills and Chills +Math +Depth Acceleration of the Moon +Concepts The Moon is 60 times further away from the center of Earth than objects on the surface of Earth, and moves about Earth in an

More information

AP Physics 1. Course Overview

AP Physics 1. Course Overview Radnor High School Course Syllabus AP Physics 1 Credits: Grade Weighting: Yes Prerequisites: Co-requisites: Length: Format: 1.0 Credit, weighted Honors chemistry or Advanced Chemistry Honors Pre-calculus

More information

NSTA Web Seminar: Force and Motion: Stop Faking It!

NSTA Web Seminar: Force and Motion: Stop Faking It! LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NSTA Web Seminar: Force and Motion: Stop Faking It! Thursday, January 15, 2009 Force and Motion Circular motion Different frames of reference Gravitational forces

More information

Algebra II. Algebra II Higher Mathematics Courses 77

Algebra II. Algebra II Higher Mathematics Courses 77 Algebra II Building on their work with linear, quadratic, and exponential functions, students extend their repertoire of functions to include logarithmic, polynomial, rational, and radical functions in

More information

Dublin City Schools Science Graded Course of Study Physical Science

Dublin City Schools Science Graded Course of Study Physical Science I. Content Standard: Students demonstrate an understanding of the composition of physical systems and the concepts and principles that describe and predict physical interactions and events in the natural

More information

Physics C: Mechanics

Physics C: Mechanics Physics C: Mechanics 2013 2014 PISCATAWAY TOWNSHIP SCHOOLS COURSE SYLLABUS Mr. Rohan Gokhale rgokhale@pway.org www.piscatawayschools.org/phs Brief Description of Course The AP Physics course is a full

More information

Science Lesson Plans Fourth Grade Curriculum Total Activities: 115

Science Lesson Plans Fourth Grade Curriculum Total Activities: 115 Time4Learning Online Learning for Homeschool and Enrichment www.time4learning.com Languages Arts, Math and more Multimedia s, Interactive Exercises, Printable Worksheets and Assessments Student Paced Learning

More information

F = ma. G mm r 2. S center

F = ma. G mm r 2. S center In the early 17 th century, Kepler discovered the following three laws of planetary motion: 1. The planets orbit around the sun in an ellipse with the sun at one focus. 2. As the planets orbit around the

More information

Region 16 Board of Education. Precalculus Curriculum

Region 16 Board of Education. Precalculus Curriculum Region 16 Board of Education Precalculus Curriculum 2008 1 Course Description This course offers students an opportunity to explore a variety of concepts designed to prepare them to go on to study calculus.

More information

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/ AP Physics C Summer Assignment 2017 1. Complete the problem set that is online, entitled, AP C Physics C Summer Assignment 2017. I also gave you a copy of the problem set. You may work in groups as a matter

More information

Gravitation. Program Support Notes. Grades 10 - College. 32mins. Physics. Video Education America Bringing Learning to Life.

Gravitation. Program Support Notes. Grades 10 - College. 32mins. Physics. Video Education America Bringing Learning to Life. Video Education America Bringing Learning to Life Program Support Notes Grades 10 - College Gravitation 32mins Teacher Notes by Dr. John Nicholson, B. Sc. (Hons), Dip. Ed., Ph. D., Grad. Dip. Comp. Ed.,

More information

The Law of Ellipses (Kepler s First Law): all planets orbit the sun in a

The Law of Ellipses (Kepler s First Law): all planets orbit the sun in a Team Number Team Members Present Learning Objectives 1. Practice the Engineering Process a series of steps to follow to design a solution to a problem. 2. Practice the Five Dimensions of Being a Good Team

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are primarily conceptual questions that are designed to see if you have understood the main concepts of the chapter. Treat all balls with mass as point masses. 1.

More information

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc.

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves speed = distance time

More information

Fixed Perimeter Rectangles

Fixed Perimeter Rectangles Rectangles You have a flexible fence of length L = 13 meters. You want to use all of this fence to enclose a rectangular plot of land of at least 8 square meters in area. 1. Determine a function for the

More information

The beginnings of physics

The beginnings of physics The beginnings of physics Astronomy 101 Syracuse University, Fall 2018 Walter Freeman October 9, 2018 Astronomy 101 The beginnings of physics October 9, 2018 1 / 28 Announcements No office hours this week

More information

CIRCULAR MOTION AND SHM : Higher Level Long Questions.

CIRCULAR MOTION AND SHM : Higher Level Long Questions. CIRCULAR MOTION AND SHM : Higher Level Long Questions. ***ALL QUESTIONS ARE HIGHER LEVEL**** Circular Motion 2012 Question 12 (a) (Higher Level ) An Olympic hammer thrower swings a mass of 7.26 kg at the

More information

Motion and Forces Lab

Motion and Forces Lab Name: Motion Newton's 1st Law 1. Define Newton s first law. Motion and Forces Lab Period: 2. What will the truck want to do at rest? Explain. 3. What will the truck want to do when moving? Explain. 4.

More information

Course Title: Physics I : MECHANICS, THERMODYNAMICS, AND ATOMIC PHYSICS Head of Department:

Course Title: Physics I : MECHANICS, THERMODYNAMICS, AND ATOMIC PHYSICS Head of Department: Course Title: Physics I : MECHANICS, THERMODYNAMICS, AND ATOMIC PHYSICS Head of Department: Nadia Iskandarani Teacher(s) + e-mail: Cycle/Division: Ms.Shewon Nasir: Shewon.n@greenwood.sch.ae High School

More information

TEKS Clarification Document. Mathematics Algebra

TEKS Clarification Document. Mathematics Algebra TEKS Clarification Document Mathematics Algebra 2 2012 2013 111.31. Implementation of Texas Essential Knowledge and Skills for Mathematics, Grades 9-12. Source: The provisions of this 111.31 adopted to

More information

PSI AP Physics 1 Gravitation

PSI AP Physics 1 Gravitation PSI AP Physics 1 Gravitation Multiple Choice 1. Two objects attract each other gravitationally. If the distance between their centers is cut in half, the gravitational force A) is cut to one fourth. B)

More information

MATH10000 Mathematical Workshop Project 2 Part 1 Conic Sections

MATH10000 Mathematical Workshop Project 2 Part 1 Conic Sections MATH10000 Mathematical Workshop Project 2 Part 1 Conic Sections The aim of this project is to introduce you to an area of geometry known as the theory of conic sections, which is one of the most famous

More information

Crash Course: Uniform Circular Motion. Our next test will be the week of Nov 27 Dec 1 and will cover projectiles and circular motion.

Crash Course: Uniform Circular Motion. Our next test will be the week of Nov 27 Dec 1 and will cover projectiles and circular motion. Curriculum Outcomes Circular Motion (8 hours) describe uniform circular motion using algebraic and vector analysis (325 12) explain quantitatively circular motion using Newton s laws (325 13) Crash Course:

More information