# 9.2 Worksheet #3 - Circular and Satellite Motion

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 9.2 Worksheet #3 - Circular and Satellite Motion 1. A car just becomes airborne as it comes off the crest of a bridge that has circular cross section of radius 78.0 m. What is the speed of the car? 2. A satellite has a circular path of radius 4.87 x 105 km about a planet that rotates once in 16.5 hours. To an observer on the planet's surface, the satellite always appears to be stationary. a. What is the speed of the satellite in its orbit? b. Calculate the centripetal acceleration of the satellite. c. What is the local acceleration due to gravity "g" at the altitude of the satellite above the planet? 3. Sputnik I, Earth s first artificial satellite, had an orbital period of s. What was the average orbital radius of Sputnik s orbit? (Hint: Mass of earth, Me = 5.98 x 1024 kg) 4. During an Apollo lunar landing mission, the command module continued to orbit the Moon in a near circular orbit of height 100 km above the lunar surface. How long did it take the command module to orbit the Moon? [Mass of moon = 7.4 x 1022 kg ; Radius of Moon = x 106 m] 5. A satellite in GEO (Geosynchronous Earth Orbit) is placed at such a height so that its period of orbit equals 1 day. If it moves in the same direction that the earth rotates, it will always appear at the same location in the sky. Use the earth-moon distance (3.84 x 108 m, measured centre to centre) along with the lunar period (27.3 days) to calculate: a. the fraction of its distance to the moon from the earth's centre b. the number of earth radii above the ground c. the height above the ground for such a satellite if it moves in a geostationary orbit above the earth's equator.

3 b. What is the agent (cause) of the centripetal force for the satellite? c. How much work is done on the satellite during one complete orbit of the earth? Explain your answer. d. How long would you predict it to take for the satellite to make one complete revolution around the earth? 10. The earth's orbit around the sun is very nearly circular, with an average radius of 1.5 x 108 km. Assume the mass of the earth is 6 x 1024 kg. a. What is the average speed of the earth in its orbit around the sun? b. What is the magnitude of the earth's average acceleration in its orbit around the sun? Show your working. c. With what force does the sun attract the earth? Past HSC Questions The diagram shows four positions of a car on a roller coaster ride. At which point during this ride would the occupant experience maximum g force? (A) P (B) Q (C) R (D) S

4 5. The table contains information related to two planets orbiting a distant star. The orbital period of the planet Ba can be determined by using data selected from this table. What is the orbital period of the planet Ba? (A) 3.10 x10 7 s (C) 1.39 x10 8 s (B) 5.51 x10 7 s (D) 2.47 x10 8 s 2003 A satellite moves in uniform circular motion around Earth. The following table shows the symbols used in the diagrams below. These diagrams are NOT drawn to scale. Key: F net force on satellite v velocity of satellite Which diagram shows the direction of F and v at the position indicated? (A) (B) (C) (D)

5 For a satellite moving in uniform circular motion around Earth, the centripetal force is provided by the gravitational force. The mass of Earth is M E. The mass of the satellite is M S. The distance of the satellite from the centre of Earth is d. Which of the following equations should be used to calculate the speed of this satellite? (A) (B) (C) (D) Two planets, X and Y, travel around a star in the same direction, in circular orbits. Planet X completes one revolution about the star in time T. The radii of the orbits are in the ratio 1: 4. How many revolutions does planet Y make about the star in the same time T? (A) 1/8 revolution (B) 1/2 revolution (C) 2 revolutions (D) 8 revolutions Question 17 (6 marks) A satellite of mass 150 kg is launched from Earth s surface into a uniform circular orbit of radius 7.5 x 10 6 m. (a) Calculate the magnitude of the gravitational potential energy Ep of the satellite. (c) Discuss the effect of Earth s rotational motion on the launch of this satellite. (b) From this uniform circular orbit, the satellite can escape Earth s gravitational field when its kinetic energy is equal to the magnitude of the gravitational potential energy. Use this relationship to calculate the escape velocity of the satellite.

6 2004 Question 17 (6 marks) In July 1969 the Apollo 11 Command Module with Michael Collins on board orbited the Moon waiting for the Ascent Module to return from the Moon s surface. The mass of the Command Module was 9.98 x 10 3 kg, its period was 119 minutes, and the radius of its orbit from the Moon s centre was 1.85 x10 6 metres. (a) Assuming the Command Module was in circular orbit, calculate (i) the mass of the Moon; (2) (ii) the magnitude of the orbital velocity of the Command Module.(2) (b) The docking of the Ascent Module with the Command Module resulted in an increase in mass of the orbiting spacecraft. The spacecraft remained at the same altitude. This docking procedure made no difference to the orbital speed. Justify this statement Question 18 (4 marks) A car with a mass of 800 kg travels at a constant speed of 7.5 m.s 1 on a roundabout so that it follows a circular path with a radius of 16 m. Question 19 (6 marks) On 11 June 2003 the Mars Rover called Spirit was launched on a satellite from Earth when the planets were in the positions shown in the diagram below. The satellite arrived at Mars on 3 December A person observing this situation makes the following statement. There is no net force acting on the car because the speed is constant and the friction between the tyres and the road balances the centripetal force acting on the car. Assess this statement. Support your answer with an analysis of the horizontal forces acting on the car, using the numerical data provided above. (a) Indicate on the diagram the approximate positions of Earth and Mars on 3 December 2003 and show the satellite s trajectory to Mars. (b) Discuss the effect of Earth s motion on the launch and trajectory to Mars of this satellite.

7 Why would a satellite in low orbit around Earth eventually fall to Earth? (A) It is not in a geostationary orbit. (B) Gravity is too strong at low orbits. (C) The sun s solar wind pushes it out of orbit. (D) The upper atmosphere gradually slows it down. 3. The initial velocity required by a space probe to just escape the gravitational pull of a planet is called escape velocity. Which of the following quantities does NOT affect the magnitude of the escape velocity? (A) Mass of the planet (B) Mass of the space probe (C) Radius of the planet (D) Universal gravitational constant 4. A space probe, P, is in a stable orbit around a small, distant planet. The probe fires a forward-facing rocket that reduces its orbital speed by half. Which of the following best illustrates the subsequent motion of the probe? Question 16 (5 marks) From nearest to furthest, the four satellite moons of Jupiter first observed by Galileo in the year 1610 are called Io, Europa, Ganymede and Callisto. For the first three moons, the orbital period T of each is exactly twice the period of the one orbiting immediately inside it. That is, T Europa 2 x T Io T Ganymede 2 x T Europa The mass of Jupiter is kg, and the orbital radius of Io is km. (a) Use Kepler s Law of Periods to calculate Ganymede s orbital radius. (b) Calculate Ganymede s orbital speed.

### Proficient. a. The gravitational field caused by a. The student is able to approximate a numerical value of the

Unit 6. Circular Motion and Gravitation Name: I have not failed. I've just found 10,000 ways that won't work.-- Thomas Edison Big Idea 1: Objects and systems have properties such as mass and charge. Systems

### /////// ///////////// Module ONE /////////////// ///////// Space

// // / / / / //// / ////// / /// / / // ///// ////// ////// Module ONE Space 1 Gravity Knowledge and understanding When you have finished this chapter, you should be able to: define weight as the force

### The escape speed for an object leaving the surface of any celestial body of mass M and radius d is

8-3 Escape Speed Vocabulary Escape Speed: The minimum speed an object must possess in order to escape from the gravitational pull of a body. In Chapter 6, you worked with gravitational potential energy

### Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity

Chapter 6 Preview Looking Ahead Lecture Presentation Chapter 6 Circular Motion, Orbits, and Gravity Text: p. 160 Slide 6-2 Chapter 6 Preview Looking Back: Centripetal Acceleration In Section 3.8, you learned

### Advanced Higher Physics. Rotational motion

Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration

### Universal Gravitation

Universal Gravitation Johannes Kepler Johannes Kepler was a German mathematician, astronomer and astrologer, and key figure in the 17th century Scientific revolution. He is best known for his laws of planetary

### Traveling Into Space. Use Target Reading Skills. How Do Rockets Work? Building Vocabulary

Traveling Into Space This section explains how rockets work. It also describes the history of space exploration and explains how space shuttles, space stations, and space probes are used in exploring space

### AP Physics QUIZ Gravitation

AP Physics QUIZ Gravitation Name: 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

### DEVIL CHAPTER 6 TEST REVIEW

IB PHYSICS Name: Period: Date: # Marks: 51 DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 6 TEST REVIEW 1. A cyclist rides around a circular track at a uniform speed. Which of the following correctly gives

### Chapter 8. Dynamics II: Motion in a Plane

Chapter 8. Dynamics II: Motion in a Plane Chapter Goal: To learn how to solve problems about motion in a plane. Slide 8-2 Chapter 8 Preview Slide 8-3 Chapter 8 Preview Slide 8-4 Chapter 8 Preview Slide

### Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

### Physics 1100: Uniform Circular Motion & Gravity

Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Physics 1100: Uniform Circular Motion & Gravity 1. In the diagram below, an object travels over a hill, down a valley, and around a loop the loop at constant

### Practice Test for Midterm Exam

A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

### Chapter 4 Circular Motion and Gravitation Planetary Data Homework # 26

Planetary Data Homework # 26 PLANETARY DATA Mean Distance Mass from Sun Radius Period Planet (kg) (m) (m) (days) Sun 1.99 x 10 30 6.970 x 10 8 Mercury 3.30 x 10 23 5.791 x 10 10 2.439 x 10 6 87.97 Venus

### Episode 403: Orbital motion

Episode 40: Orbital motion In this episode, students will learn how to combine concepts learned in the study of circular motion with Newton s Law of Universal Gravitation to understand the (circular) motion

### 7.4 Universal Gravitation

Circular Motion Velocity is a vector quantity, which means that it involves both speed (magnitude) and direction. Therefore an object traveling at a constant speed can still accelerate if the direction

### AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation 1. Each of five satellites makes a circular orbit about an object that is much more massive than any of the satellites. The mass and orbital radius of each

### Nm kg. The magnitude of a gravitational field is known as the gravitational field strength, g. This is defined as the GM

Copyright FIST EDUCATION 011 0430 860 810 Nick Zhang Lecture 7 Gravity and satellites Newton's Law of Universal Gravitation Gravitation is a force of attraction that acts between any two masses. The gravitation

### Chapter 5 Part 2. Newton s Law of Universal Gravitation, Satellites, and Weightlessness

Chapter 5 Part 2 Newton s Law of Universal Gravitation, Satellites, and Weightlessness Newton s ideas about gravity Newton knew that a force exerted on an object causes an acceleration. Most forces occurred

### AP Physics C Textbook Problems

AP Physics C Textbook Problems Chapter 13 Pages 412 416 HW-16: 03. A 200-kg object and a 500-kg object are separated by 0.400 m. Find the net gravitational force exerted by these objects on a 50.0-kg object

### Radial Acceleration. recall, the direction of the instantaneous velocity vector is tangential to the trajectory

Radial Acceleration recall, the direction of the instantaneous velocity vector is tangential to the trajectory 1 Radial Acceleration recall, the direction of the instantaneous velocity vector is tangential

### AP Physics 1 Chapter 7 Circular Motion and Gravitation

AP Physics 1 Chapter 7 Circular Motion and Gravitation Chapter 7: Circular Motion and Angular Measure Gravitation Angular Speed and Velocity Uniform Circular Motion and Centripetal Acceleration Angular

### WORK & ENERGY. Work W = Fdcosα 1. A force of 25.0 Newtons is applied so as to move a 5.0 kg mass a distance of 20.0 meters. How much work was done?

PHYSICS HOMEWORK #41 Work W = Fdcosα 1. A force of 25.0 Newtons is applied so as to move a 5.0 kg mass a distance of 20.0 meters. How much work was done? 2. A force of 120 N is applied to the front of

### Planetary Mechanics:

Planetary Mechanics: Satellites A satellite is an object or a body that revolves around another body due to the gravitational attraction to the greater mass. Ex: The planets are natural satellites of the

### Understanding Motion, Energy & Gravity

Speed, Velocity & Acceleration Understanding Motion, Energy & Gravity Chapter 4 speed: distance traveled per unit time (e.g., m/s, mph, km/ hr) velocity: speed & direction acceleration: change in velocity

### Circular Motion & Gravitation FR Practice Problems

1) A mass m is attached to a length L of string and hung straight strainght down from a pivot. Small vibrations at the pivot set the mass into circular motion, with the string making an angle θ with the

### Cutnell/Johnson Physics

Cutnell/Johnson Physics Classroom Response System Questions Chapter 5 Dynamics of Uniform Circular Motion Interactive Lecture Questions 5.1.1. An airplane flying at 115 m/s due east makes a gradual turn

### r r Sample Final questions for PS 150

Sample Final questions for PS 150 1) Which of the following is an accurate statement? A) Rotating a vector about an axis passing through the tip of the vector does not change the vector. B) The magnitude

### Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 9 Lecture Pearson Physics Gravity and Circular Motion Prepared by Chris Chiaverina Chapter Contents Newton's Law of Universal Gravity Applications of Gravity Circular Motion Planetary Motion and

### 1 A car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true?

Slide 1 / 30 1 car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true? The car s velocity is constant The car s acceleration is constant The

### Slide 1 / The discovery of Universal Gravitation is associated with: Robert Hook Isaac Newton James Joule Max Plank Christian Huygens

Slide 1 / 22 1 The discovery of Universal Gravitation is associated with: Robert Hook Isaac Newton James Joule Max Plank hristian Huygens Slide 2 / 22 2 Two objects with equal masses of 1 kg each are separated

### AP Physics C Summer Assignment Kinematics

AP Physics C Summer Assignment Kinematics 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will the motorcycle

### PRACTICE TEST for Midterm Exam

South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

### Honors Physics Final Exam Review. Symbol Units Units (if applicable)

Honors Physics Final Exam Review Name: Date: Write the symbol and the SI units for each of the following: Symbol Units Units (if applicable) 1) Time 2) Distance 3) Speed 4) Displacement 5) Velocity 6)

### End-of-Chapter Exercises

End-of-Chapter Exercises Exercises 1 12 are primarily conceptual questions that are designed to see if you have understood the main concepts of the chapter. Treat all balls with mass as point masses. 1.

Question 8.1: the following: (a) You can shield a charge from electrical forces by putting it inside a hollow conductor. Can you shield a body from the gravitational influence of nearby matter by putting

### Distance = Rate x Time Middle grades

Distance = Rate x Time Middle grades Lesson Summary Students practice using the equation distance = rate x time using trajectory data from the Apollo 11 lunar landing mission. Prior Knowledge & Skills

### Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam #2, Chapters 5-7 Name PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The quantity 1/2 mv2 is A) the potential energy of the object.

### Gravitation. Luis Anchordoqui

Gravitation Kepler's law and Newton's Synthesis The nighttime sky with its myriad stars and shinning planets has always fascinated people on Earth. Towards the end of the XVI century the astronomer Tycho

### Can you shield a body from the gravitational influence of nearby matter by putting it inside a hollow sphere or by some other means?

Question 8.1: the following: You can shield a charge from electrical forces by putting it inside a hollow conductor. Can you shield a body from the gravitational influence of nearby matter by putting it

### Earth in Space. Guide for Reading How does Earth move in space? What causes the cycle of seasons on Earth?

Earth in Space How does Earth move in space? What causes the cycle of seasons on Earth? The study of the moon, stars, and other objects in space is called astronomy. Ancient astronomers studied the movements

### PHYS101 Sec 001 Hour Exam No. 2 Page: 1

PHYS101 Sec 001 Hour Exam No. 2 Page: 1 1 The angle between the rotation axis of a planet and the perpendicular to the plane of its orbit is called its axial tilt. Which of these planets has an axial tilt

Chapter 13. Newton s Theory of Gravity The beautiful rings of Saturn consist of countless centimeter-sized ice crystals, all orbiting the planet under the influence of gravity. Chapter Goal: To use Newton

### Experiencing Acceleration: The backward force you feel when your car accelerates is caused by your body's inertia. Chapter 3.3

Experiencing Acceleration: The backward force you feel when your car accelerates is caused by your body's inertia. Chapter 3.3 Feeling of apparent weight: Caused your body's reaction to the push that the

### Gravitational Fields

Gravitational Fields Examples 00 Currently, the space probe, Cassini, is between Jupiter and Saturn. Cassini s mission is to deliver a probe to one of Saturn s moons, Titan, and then orbit Saturn collecting

### Gravity & The Distances to Stars. Lecture 8. Homework 2 open Exam on Tuesday in class bring ID and #2 pencil

1 Gravity & The Distances to Stars Lecture 8 Homework 2 open Exam on Tuesday in class bring ID and #2 pencil 2 Preparing for the Exam 1 Exams in this class are multiple choice, but the questions can be

### PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion

### AP Physics-B Universal Gravitation Introduction: Kepler s Laws of Planetary Motion: Newton s Law of Universal Gravitation: Performance Objectives:

AP Physics-B Universal Gravitation Introduction: Astronomy is the oldest science. Practical needs and imagination acted together to give astronomy an early importance. For thousands of years, the motions

### EXAM #2. ANSWERS ASTR , Spring 2008

EXAM #2. ANSWERS ASTR 1101-001, Spring 2008 1. In Copernicus s heliocentric model of the universe, which of the following astronomical objects was placed in an orbit around the Earth? The Moon 2. In his

### A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great Pearson Education, Inc.

Q13.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2

### Physics Mechanics Lecture 30 Gravitational Energy

Physics 170 - Mechanics Lecture 30 Gravitational Energy Gravitational Potential Energy Gravitational potential energy of an object of mass m a distance r from the Earth s center: Gravitational Potential

### Weightlessness and satellites in orbit. Orbital energies

Weightlessness and satellites in orbit Orbital energies Review PE = - GMm R v escape = 2GM E R = 2gR E Keppler s law: R3 = GM s T 2 4π 2 Orbital Motion Orbital velocity escape velocity In orbital motion

### HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT CIRCULAR MOTION MULTIPLE CHOICE / 30 OPEN ENDED / 65 TOTAL / 95 NAME: 1. An object travels along a path at constant speed. There is a constant

### Dynamics Review Checklist

Dynamics Review Checklist Newton s Laws 2.1.1 Explain Newton s 1 st Law (the Law of Inertia) and the relationship between mass and inertia. Which of the following has the greatest amount of inertia? (a)

### Circular Motion and Gravitation

Chapter 6 Circular Motion and Gravitation To understand the dynamics of circular motion. To study the application of circular motion as it applies to Newton's law of gravitation. To examine the idea of

### ASTR 4800: Space Science - Practice & Policy Today s Topic: Science Goes to the Moon & Planets. Next class: Visit by Richard Truly, former NASA

ASTR 4800: Space Science - Practice & Policy Today s Topic: Science Goes to the Moon & Planets. Next class: Visit by Richard Truly, former NASA Administrator & Shuttle Pilot Read: readings noted on class

### Circular Velocity and Centripetal Acceleration

1. An object is spun around in circular motion such that it completes 100 cycles in 25 s. a. What is the period of its rotation? [0.25 s] b. If the radius is 0.3 m what is the velocity? [7.54 m/s] c. Draw

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the

### W = 750 m. PHYS 101 SP17 Exam 1 BASE (A) PHYS 101 Exams. The next two questions pertain to the situation described below.

PHYS 101 Exams PHYS 101 SP17 Exa BASE (A) The next two questions pertain to the situation described below. A boat is crossing a river with a speed to the water. The river is flowing at a speed W = 750

### Chapter 9 Circular Motion Dynamics

Chapter 9 Circular Motion Dynamics Chapter 9 Circular Motion Dynamics... 9. Introduction Newton s Second Law and Circular Motion... 9. Universal Law of Gravitation and the Circular Orbit of the Moon...

### PSI AP Physics C Universal Gravity Multiple Choice Questions

PSI AP Physics C Universal Gravity Multiple Choice Questions 1. Who determined the value of the gravitational constant (G)? (A) Newton (B) Galileo (C) Einstein (D) Schrödinger (E) Cavendish 2. Who came

### Which of the following planets are all made up of gas? When a planets orbit around the Sun looks like an oval, it s called a(n)

When a planets orbit around the Sun looks like an oval, it s called a(n) - ellipse - circle - axis - rotation Which of the following planets are all made up of gas? - Venus, Mars, Saturn and Pluto - Jupiter,

### Lesson 9. Luis Anchordoqui. Physics 168. Tuesday, October 24, 17

Lesson 9 Physics 168 1 Static Equilibrium 2 Conditions for Equilibrium An object with forces acting on it but that is not moving is said to be in equilibrium 3 Conditions for Equilibrium (cont d) First

### 16. A ball is thrown straight up with an initial speed of 30 m/s. What is its speed after 4.2 s? a. 11 m/s b. 30 m/s c. 42 m/s d.

Page 1 1. If you are driving 90 km/h along a straight road and you look to the side for 3.0 s, how far do you travel during this inattentive period? a. 30 m b. 25 m c. 50 m d. 75 m 2. A polar bear starts

### PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions (In summer 2014 we have not covered questions 30-35,40,41) 1.Which quantity can be converted from the English system to the metric system by the conversion factor

### Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006

Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006 Instructor: L. M. Khandro 10/19/06 Please Note: the following test derives from a course and text that covers the entire topic of

### Measuring Force You may have measured forces using a spring scale. The of the spring in the scale depends on the amount of (a type of ) acting on it.

Forces 12.1 Name 1 A is a push or a pull that on an. How do forces affect the motion of an object? Measuring Force You may have measured forces using a spring scale. The of the spring in the scale depends

### Celestial Objects. Background Questions. 1. What was invented in the 17 th century? How did this help the study of our universe? 2. What is a probe?

Background Questions Celestial Objects 1. What was invented in the 17 th century? How did this help the study of our universe? 2. What is a probe? 3. Describe the Galileo probe mission. 4. What are scientists

### Physics 152: Gravity Homework (and some Exam) Problems

Physics 152: Gravity Homework (and some Exam) Problems Michael Fowler 6/1/07 1. Warm-up exercise: deriving acceleration in circular motion from Pythagoras theorem. Imagine a cannon on a high mountain shoots

### Friction is always opposite to the direction of motion.

6. Forces and Motion-II Friction: The resistance between two surfaces when attempting to slide one object across the other. Friction is due to interactions at molecular level where rough edges bond together:

### How do we describe motion?

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves \$ speed = distance!#"units

### 9.3 Worked Examples Circular Motion

9.3 Worked Examples Circular Motion Example 9.1 Geosynchronous Orbit A geostationary satellite goes around the earth once every 3 hours 56 minutes and 4 seconds, (a sidereal day, shorter than the noon-to-noon

### Uniform Circular Motion

Uniform Circular Motion 2.4 Knowledge and Skills Checklist Do I know that uniform circular motion means that a body is moving in a circular path with constant speed? Do I know that, although the speed

### Algebra Based Physics Uniform Circular Motion

1 Algebra Based Physics Uniform Circular Motion 2016 07 20 www.njctl.org 2 Uniform Circular Motion (UCM) Click on the topic to go to that section Period, Frequency and Rotational Velocity Kinematics of

### CHAPTER 10 TEST REVIEW

IB PHYSICS Name: Period: Date: # Marks: 69 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 10 TEST REVIEW 1. A spacecraft travels away from Earth in a straight line with its motors shut

### The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest.

T2-2 [195 marks] 1. The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest. What is the speed of the object after 0.60 s? A. 7.0 ms

### Satellites and Kepler's Laws: An Argument for Simplicity

OpenStax-CNX module: m444 Satellites and Kepler's Laws: An Argument for Simplicity OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License.0 Abstract

### Review - Chapter 1. Ans: 2.12m

Review - Chapter 1 The distance d that a certain particle moves may be calculated from the expression d = at + bt 2 where a and b are constants; and t is the elapsed time. The dimensions of the quantities

(numerical value) In calculating, you will find the total distance traveled. Displacement problems will find the distance from the starting point to the ending point. *Calculate the total amount traveled

### 2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Daily Life Some of the topics we will explore: How do we describe motion? (Speed,

### 10.2

10.1 10.2 10.3 10.4 10.5 10.6 d = ½ g t 2 d = 5 m g = 10 m/s 2 t = sqrt (2d/g) t = sqrt (1) t = 1 second Time to hit ground = 1 second In that 1 second, horizontal distance travelled = 20m Horizontal speed

### 10.2

10.1 10.2 10.3 10.4 10.5 10.6 d = ½ g t 2 d = 5 m g = 10 m/s 2 t = sqrt (2d/g) t = sqrt (1) t = 1 second Time to hit ground = 1 second In that 1 second, horizontal distance travelled = 20m Horizontal speed

### Chapter 5 Matter in Motion Focus Notes

Chapter 5 Matter in Motion Focus Notes Section 1 Define the following terms: Motion, Speed, Velocity, and Acceleration Motion: an object s change in position relative to a reference point. Speed: the distance

### P211 Spring 2004 Form A

1. A 2 kg block A traveling with a speed of 5 m/s as shown collides with a stationary 4 kg block B. After the collision, A is observed to travel at right angles with respect to the initial direction with

### Centripetal Acceleration & Projectile Motion. 4th 6wks

Centripetal Acceleration & Projectile Motion 4th 6wks Centripetal Force and Acceleration Centripetal Acceleration (A C ) is the acceleration of an object towards the center of a curved or circular path.

### Dynamics Test K/U 28 T/I 16 C 26 A 30

Name: Dynamics Test K/U 28 T/I 16 C 26 A 30 A. True/False Indicate whether the sentence or statement is true or false. 1. The normal force that acts on an object is always equal in magnitude and opposite

### Lecture 13. Gravity in the Solar System

Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

### Practice Problems from Chapters 11-13, for Midterm 2. Physics 11a Fall 2010

Practice Problems from Chapters 11-13, for Midterm 2. Physics 11a Fall 2010 Chapter 11 1. The Ferris wheel shown below is turning at constant speed. Draw and label free-body diagrams showing the forces

### Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts

Jupiter Orbit, Rotation Physical Properties Atmosphere, surface Interior Magnetosphere Moons (Voyager 1) Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by

### Introduction to Astronomy

Introduction to Astronomy AST0111-3 (Astronomía) Semester 2014B Prof. Thomas H. Puzia Newton s Laws Big Ball Fail Universal Law of Gravitation Every mass attracts every other mass through a force called

### 9/13/ Describing Motion: Examples from Everyday Life. Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity

9/13/17 Lecture Outline 4.1 Describing Motion: Examples from Everyday Life Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity Our goals for learning: How do we describe motion?

### Part 4: Exploration 1

Part 4: Exploration 1 Reaction Engine An engine, such as a jet or rocket engine, that ejects gas at high velocity and develops its thrust from the resulting reaction This movement follows Newton s Third

### Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 3 - Gravity and Motion Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. In 1687 Isaac Newton published the Principia in which he set out his concept

### Patterns in the Solar System (Chapter 18)

GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Patterns in the Solar System (Chapter 18) For this assignment you will require: a calculator, colored pencils, a metric ruler, and meter stick.

### Second Semester Review

Second Semester Review Name Section 4.2 1. Define energy What is energy? Explain if it is scalar or vector in nature. 2. Explain what factors affect the speed of a rollercoaster. Whether a rollercoaster

### 12/1/2014. Chapter 5 Circular Motion; Gravitation. Contents of Chapter 5. Contents of Chapter Kinematics of Uniform Circular Motion

Lecture PowerPoints Chapter 5 Physics: Principles with Applications, 7 th edition Giancoli Chapter 5 Circular Motion; Gravitation This work is protected by United States copyright laws and is provided

### EDUCATION DAY WORKBOOK

Grades 9 12 EDUCATION DAY WORKBOOK It is with great thanks for their knowledge and expertise that the individuals who devised this book are recognized. MAKING MEASUREMENTS Time: Solve problems using a

### I pt mass = mr 2 I sphere = (2/5) mr 2 I hoop = mr 2 I disk = (1/2) mr 2 I rod (center) = (1/12) ml 2 I rod (end) = (1/3) ml 2

Fall 008 RED Barcode Here Physics 105, sections 1 and Exam 3 Please write your CID Colton -3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.