Crash Course: Uniform Circular Motion. Our next test will be the week of Nov 27 Dec 1 and will cover projectiles and circular motion.

Size: px
Start display at page:

Download "Crash Course: Uniform Circular Motion. Our next test will be the week of Nov 27 Dec 1 and will cover projectiles and circular motion."

Transcription

1 Curriculum Outcomes Circular Motion (8 hours) describe uniform circular motion using algebraic and vector analysis (325 12) explain quantitatively circular motion using Newton s laws (325 13) Crash Course: Uniform Circular Motion Our next test will be the week of Nov 27 Dec 1 and will cover projectiles and circular motion Outcomes The Gravitron is an amusement park ride that takes advantage of some cool consequences of circular motion. The ride spins so fast, that you stick to the surface and don't fall out, even when the ride tilts and you're facing the ground! Gravitron 1

2 Some other technologies that involve circular motion are motors, power generators, wheels, fans, and vehicles driving around curves. Some examples from nature are tornados and hurricanes. Applications Centripetal Acceleration When an object is moving in a circle and its speed is constant, it is said to be moving with uniform circular motion. The direction of the object's velocity is always tangent to the circle, and is therefore always changing this means it is always accelerating! Centripetal a 2

3 Centripetal Acceleration If you did some crazy hard math, you could prove that the acceleration vector always points in toward the centre of the circle. This is called centripetal acceleration, and is calculated using the magnitude of the velocity and radius of the circular path. Centripetal a Centripetal a 3

4 Centripetal Force We know from Physics 11 that acceleration is caused by forces, so there must be a force that pushes in the direction of a c. We call this the centripetal force. It is not a new type of force, but a new label that can be given to other existing forces, like gravity, friction, or tension. Centripetal Force Gravity acts as the centripetal force that keeps planets moving along their orbital paths. Friction acts as the centripetal force that keeps a car on the road when taking a sharp turn. Tension acts as the centripetal force that keeps an object in motion when swinging around in a circle on a string In all cases, the centripetal force is provided by another existing force, & acts toward the centre of the object's circular path. Centripetal Force 4

5 Centripetal Force Example 1 5

6 Example 1 Example 2 6

7 Example 2 Example 2 7

8 p. 559 #15 19 Nov 20 9:36 AM 8

9 Nov 20 9:40 AM Nov 20 9:53 AM 9

10 Describing Rotational Motion Recall from the Waves unit of Physics 11 that waves with periodic motion can be described using frequency and period. Quantity Symbol Units Rotational Motion Describing Rotational Motion Recall from the Waves unit of Physics 11 that waves with periodic motion can be described using frequency and period. Quantity Symbol Units Rotational Motion 10

11 Describing Rotational Motion Again, by doing a bunch of magic rearranging and substituting involving formulas for frequency/ period, circumference, velocity, acceleration, and force... You can get other formulas for centripetal force, this time involving mass, radius, and frequency or period: Rotational Motion Banked Curves Land vehicles can use friction between the tires and the road as a centripetal force, but airplanes cannot. Air friction acts opposite the flight of the plane, and can't act perpendicular to the direction of motion even when travelling in uniform circular motion. Banked Curves 11

12 In order to travel in uniform circular motion, there still must be a centripetal force. The only way a plane can accomplish this motion is by tilting (banking) the plane so that part of the plane's lift force can act toward the center of the turn. Banked Curves In order to travel in uniform circular motion, there still must be a centripetal force. The only way a plane can accomplish this motion is by tilting (banking) the plane so that part of the plane's lift force can act toward the center of the turn. Banked Curves 12

13 Sometimes roads are banked too this helps vehicles stay on the road when the frictional force isn't strong enough to keep them on the road. This has the same effect as it does on airplanes, only now the x component of the Normal force acts as the centripetal force. If the road is banked properly, friction is not needed at all. This formula shows us that as velocity increases, so must the angle of banking. Notice that the mass doesn't matter. Banked Curves Nov 15 7:03 PM 13

14 Example 3 Nov 20 10:01 AM 14

15 p. 566 #20 23 Nov 20 10:04 AM 15

16 Nov 20 10:04 AM 16

Name St. Mary's HS AP Physics Circular Motion HW

Name St. Mary's HS AP Physics Circular Motion HW Base your answers to questions 1 and 2 on the following situation. An object weighing 10 N swings at the end of a rope that is 0.72 m long as a simple pendulum.

Circular Motion. ว Note and Worksheet 2. Recall that the defining equation for instantaneous acceleration is

Circular Motion Imagine you have attached a rubber stopper to the end of a string and are whirling the stopper around your head in a horizontal circle. If both the speed of the stopper and the radius of

AP Physics 1 Lesson 9 Homework Outcomes. Name

AP Physics 1 Lesson 9 Homework Outcomes Name Date 1. Define uniform circular motion. 2. Determine the tangential velocity of an object moving with uniform circular motion. 3. Determine the centripetal

B) v `2. C) `2v. D) 2v. E) 4v. A) 2p 25. B) p C) 2p. D) 4p. E) 4p 2 25

1. 3. A ball attached to a string is whirled around a horizontal circle of radius r with a tangential velocity v. If the radius is changed to 2r and the magnitude of the centripetal force is doubled the

Circular Motion & Gravitation FR Practice Problems

1) A mass m is attached to a length L of string and hung straight strainght down from a pivot. Small vibrations at the pivot set the mass into circular motion, with the string making an angle θ with the

Circular Motion PreTest

Circular Motion PreTest Date: 06/03/2008 Version #: 0 Name: 1. In a series of test runs, a car travels around the same circular track at different velocities. Which graph best shows the relationship between

Uniform Circular Motion. Uniform Circular Motion

Uniform Circular Motion Uniform Circular Motion Uniform Circular Motion An object that moves at uniform speed in a circle of constant radius is said to be in uniform circular motion. Question: Why is uniform

Upon collision, the clay and steel block stick together and move to the right with a speed of

1. A 2.0-kilogram ball traveling north at 4.0 meters per second collides head on with a 1.0-kilogram ball traveling south at 8.0 meters per second. What is the magnitude of the total momentum of the two

Circular Motion. Unit 7

Circular Motion Unit 7 Do Now You drive a car that follows a circular path with the radius r = 100 m. Find the distance travelled if you made one complete circle. C 2 R 2(3.14)(100) 6.28(100) 628m Uniform

Projectile Motion. directions simultaneously. deal with is called projectile motion. ! An object may move in both the x and y

Projectile Motion! An object may move in both the x and y directions simultaneously! The form of two-dimensional motion we will deal with is called projectile motion Assumptions of Projectile Motion! The

Physics 111: Mechanics Lecture 9

Physics 111: Mechanics Lecture 9 Bin Chen NJIT Physics Department Circular Motion q 3.4 Motion in a Circle q 5.4 Dynamics of Circular Motion If it weren t for the spinning, all the galaxies would collapse

Blueberry Muffin Nov. 29/30, 2016 Period: Names:

Blueberry Muffin Nov. 9/30, 016 Period: Names: Congratulations! 1. To solve the problems, use your etextbook, physical textbooks, physics websites, your Sketchbooks.. Show your thinking through calculations,

Centripetal acceleration

Book page 250-252 cgrahamphysics.com 2016 Centripetal acceleration Acceleration for circular motion Linear acceleration a = v = v u t t For circular motion: Instantaneous velocity is always tangent to

Algebra Based Physics Uniform Circular Motion

1 Algebra Based Physics Uniform Circular Motion 2016 07 20 www.njctl.org 2 Uniform Circular Motion (UCM) Click on the topic to go to that section Period, Frequency and Rotational Velocity Kinematics of

review of angle measure in degrees and radians; remember that the radian is a "unitless" unit

Ch6 Page 1 Chapter 6: Circular Motion, Orbits, and Gravity Tuesday, September 17, 2013 10:00 PM Circular Motion rotational kinematics angular position measured in degrees or radians review of angle measure

Circular Motion CENTRIPETAL ACCELERATION. tf-t,

Circular Motion Ill SECTION OBJECTIVES Solve problems involving centripetal acceleration. Solve problems involving centripetal force. Explain how the apparent existence of an outward force in circular

a reference frame that accelerates in a straight line a reference frame that moves along a circular path Straight Line Accelerated Motion

1.12.1 Introduction Go back to lesson 9 and provide bullet #3 In today s lesson we will consider two examples of non-inertial reference frames: a reference frame that accelerates in a straight line a reference

Circular Motion Class:

Circular Motion Class: Name: Date: 1. What is the magnitude of the centripetal acceleration of a 4-kilogram mass orbiting at 10 meters per second with a radius of 2 meters? (1) 5 m/sec 2 (2) 50 m/sec 2

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above.

1. The magnitude of the gravitational force between two objects is 20. Newtons. If the mass of each object were doubled, the magnitude of the gravitational force between the objects would be A) 5.0 N B)

Chapter 8: Dynamics in a plane

8.1 Dynamics in 2 Dimensions p. 210-212 Chapter 8: Dynamics in a plane 8.2 Velocity and Acceleration in uniform circular motion (a review of sec. 4.6) p. 212-214 8.3 Dynamics of Uniform Circular Motion

1. In which situation is an object undergoing centripetal acceleration? (C) a car accelerating on a drag strip (D) a hockey puck gliding on ice

Physics 3204 Assignment 2.1 UCM DUE: Thursday Nov 24, 2017 Name: Part A. Multiple Choice: Select the best possible answer. Place the answer on the answer sheet. 1. In which situation is an object undergoing

1 of 5 10/4/2009 8:45 PM

http://sessionmasteringphysicscom/myct/assignmentprint?assignmentid= 1 of 5 10/4/2009 8:45 PM Chapter 8 Homework Due: 9:00am on Wednesday October 7 2009 Note: To understand how points are awarded read

Blueberry Muffin Nov. 29/30, 2016 Period: Names:

Blueberry Muffin Nov. 29/30, 2016 Period: Names: Congratulations! 1. To solve the problems, use your etextbook, physical textbooks, physics websites, your Sketchbooks. 2. Show your thinking through calculations,

Exam 1 Solutions. Kinematics and Newton s laws of motion

Exam 1 Solutions Kinematics and Newton s laws of motion No. of Students 80 70 60 50 40 30 20 10 0 PHY231 Spring 2012 Midterm Exam 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Raw Score 1. In which

Extra Circular Motion Questions

Extra Circular Motion Questions Elissa is at an amusement park and is driving a go-cart around a challenging track. Not being the best driver in the world, Elissa spends the first 10 minutes of her go-cart

Circular Motion. 2 types of Acceleration. Centripetal Force and Acceleration. In a circle. Constant Velocity vs. Constant Speed.

Circular Motion What does it mean to accelerate Centripetal Force and Acceleration Constant Velocity vs. Constant Speed. 2 types of Acceleration In a circle Direction of acceleration / velocity top view

Unit 2: Forces Chapter 6: Systems in Motion

Forces Unit 2: Forces Chapter 6: Systems in Motion 6.1 Motion in Two Dimension 6.2 Circular Motion 6.3 Centripetal Force, Gravitation, and Satellites 6.4 Center of Mass 6.1 Investigation: Launch Angle

Physics 2211 ABC Quiz #3 Solutions Spring 2017

Physics 2211 ABC Quiz #3 Solutions Spring 2017 I. (16 points) A block of mass m b is suspended vertically on a ideal cord that then passes through a frictionless hole and is attached to a sphere of mass

A Level. A Level Physics. Circular Motion (Answers) Edexcel. Name: Total Marks: /30

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. Edexcel A Level A Level Physics Circular Motion (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. Total for

Centripetal force keeps an Rotation and Revolution

Centripetal force keeps an object in circular motion. Which moves faster on a merry-go-round, a horse near the outside rail or one near the inside rail? While a hamster rotates its cage about an axis,

No Brain Too Small PHYSICS

MECHANICS: CIRCULAR MOTION QUESTIONS CIRCULAR MOTION (2016;1) Alice is in a car on a ride at a theme park. The car travels along a circular track that is banked, as shown in the diagram. On the diagram,

Assignment - Periodic Motion. Reading: Giancoli, Chapter 5 Holt, Chapter 7. Objectives/HW:

Assignment - Periodic Motion Reading: Giancoli, Chapter 5 Holt, Chapter 7 Objectives/HW: The student will be able to: 1 Define and calculate period and frequency. 2 Apply the concepts of position, distance,

Circular Velocity and Centripetal Acceleration

1. An object is spun around in circular motion such that it completes 100 cycles in 25 s. a. What is the period of its rotation? [0.25 s] b. If the radius is 0.3 m what is the velocity? [7.54 m/s] c. Draw

Circular Motion and Gravitation

Chapter 6 Circular Motion and Gravitation To understand the dynamics of circular motion. To study the application of circular motion as it applies to Newton's law of gravitation. To examine the idea of

Uniform Circular Motion

Circular Motion Uniform Circular Motion Uniform Circular Motion Traveling with a constant speed in a circular path Even though the speed is constant, the acceleration is non-zero The acceleration responsible

Circular Motion. - The velocity is tangent to the path and perpendicular to the radius of the circle

Circular Motion Level : Physics Teacher : Kim 1. Uniform Circular Motion - According to Newton s 1 st law, an object in motion will move in a straight line at a constant speed unless an unbalance force

Chapter 5 Lecture Notes

Formulas: a C = v 2 /r a = a C + a T F = Gm 1 m 2 /r 2 Chapter 5 Lecture Notes Physics 2414 - Strauss Constants: G = 6.67 10-11 N-m 2 /kg 2. Main Ideas: 1. Uniform circular motion 2. Nonuniform circular

UCM-Circular Motion. Base your answers to questions 1 and 2 on the information and diagram below.

Base your answers to questions 1 and 2 on the information and diagram The diagram shows the top view of a 65-kilogram student at point A on an amusement park ride. The ride spins the student in a horizontal

Cutnell/Johnson Physics

Cutnell/Johnson Physics Classroom Response System Questions Chapter 5 Dynamics of Uniform Circular Motion Interactive Lecture Questions 5.1.1. An airplane flying at 115 m/s due east makes a gradual turn

Axis Balanced Forces Centripetal force. Change in velocity Circular Motion Circular orbit Collision. Conservation of Energy

When something changes its velocity The rate of change of velocity of a moving object. Can result from a change in speed and/or a change in direction On surface of earth, value is 9.8 ms-²; increases nearer

AP Q1 Practice Questions Kinematics, Forces and Circular Motion

AP Q1 Practice Questions Kinematics, Forces and Circular Motion Q1 1999B1. (REDUCED 9 mins) The Sojourner rover vehicle shown in the sketch above was used to explore the surface of Mars as part of the

Circular Motion 8.01 W04D1

Circular Motion 8.01 W04D1 Next Reading Assignment: W04D2 Young and Freedman: 3.4; 5.4-5.5 Experiment 2: Circular Motion 2 Concept Question: Coastal Highway A sports car drives along the coastal highway

TYPICAL NUMERIC QUESTIONS FOR PHYSICS I REGULAR QUESTIONS TAKEN FROM CUTNELL AND JOHNSON CIRCULAR MOTION CONTENT STANDARD IB

TYPICAL NUMERIC QUESTIONS FOR PHYSICS I REGULAR QUESTIONS TAKEN FROM CUTNELL AND JOHNSON CIRCULAR MOTION CONTENT STANDARD IB 1. A car traveling at 20 m/s rounds a curve so that its centripetal acceleration

Periodic Motion. Circular Motion, Gravity, Simple Harmonic Motion

Periodic Motion Circular Motion, Gravity, Simple Harmonic Motion Periodic Motion I. Circular Motion - kinematics & centripetal acceleration - dynamics & centripetal force - centrifugal force II. Universal

Earth moves 30,000 m/s around sun

Motion in Our Daily Lives Emphasis on amusement parks, circular motion What kind of motions do we feel? Aside from vibrations, don t feel constant velocity Earth moves 30,000 m/s around sun only curves

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

Physics 12. Unit 5 Circular Motion and Gravitation Part 1

Physics 12 Unit 5 Circular Motion and Gravitation Part 1 1. Nonlinear motions According to the Newton s first law, an object remains its tendency of motion as long as there is no external force acting

Chapter 8. Dynamics II: Motion in a Plane

Chapter 8. Dynamics II: Motion in a Plane Chapter Goal: To learn how to solve problems about motion in a plane. Slide 8-2 Chapter 8 Preview Slide 8-3 Chapter 8 Preview Slide 8-4 Chapter 8 Preview Slide

closed book & notes calculator permitted

midterm 2 page 1 of 5 closed book & notes calculator permitted score 48 minutes potentially useful equations x = vt cos Ô= adj hyp F =ma v = v o +at sin Ô= opp hyp f k =µ k N x = 1 2 (v o+v) t tan Ô= opp

Unit 5 Circular Motion and Gravitation

Unit 5 Circular Motion and Gravitation In the game of tetherball, the struck ball whirls around a pole. In what direction does the net force on the ball point? 1) Tetherball 1) toward the top of the pole

Test Corrections Use these concepts to explain corrected answers. Make sure you apply the concepts to the specific situation in each problem.

Test Corrections Use these concepts to explain corrected answers. Make sure you apply the concepts to the specific situation in each problem. Circular Motion Concepts When an object moves in a circle,

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity

Chapter 6 Preview Looking Ahead Lecture Presentation Chapter 6 Circular Motion, Orbits, and Gravity Text: p. 160 Slide 6-2 Chapter 6 Preview Looking Back: Centripetal Acceleration In Section 3.8, you learned

Chapter 5 Circular Motion; Gravitation

Chapter 5 Circular Motion; Gravitation Units of Chapter 5 Kinematics of Uniform Circular Motion Dynamics of Uniform Circular Motion Highway Curves, Banked and Unbanked Newton s Law of Universal Gravitation

ΣF=ma SECOND LAW. Make a freebody diagram for EVERY problem!

PHYSICS HOMEWORK #31 SECOND LAW ΣF=ma NEWTON S LAWS Newton s Second Law of Motion The acceleration of an object is directly proportional to the force applied, inversely proportional to the mass of the

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT CIRCULAR MOTION MULTIPLE CHOICE / 30 OPEN ENDED / 65 TOTAL / 95 NAME: 1. An object travels along a path at constant speed. There is a constant

66 Chapter 6: FORCE AND MOTION II

Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions 1.Which quantity can be converted from the English system to the metric system by the conversion factor 5280 mi f 12 f in 2.54 cm 1 in 1 m 100 cm 1 3600 h? s a. feet

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below.

Base your answers to questions 1 and 2 on the information and diagram below. The diagram shows the top view of a -kilogram student at point A on an amusement park ride. The ride spins the student in a

Experiencing Acceleration: The backward force you feel when your car accelerates is caused by your body's inertia. Chapter 3.3

Experiencing Acceleration: The backward force you feel when your car accelerates is caused by your body's inertia. Chapter 3.3 Feeling of apparent weight: Caused your body's reaction to the push that the

Make sure you know the three laws inside and out! You must know the vocabulary too!

Newton's Laws Study Guide Test March 9 th The best plan is to study every night for 15 to 20 minutes. Make sure you know the three laws inside and out! You must know the vocabulary too! Newton s First

Cp physics web review chapter 7 gravitation and circular motion

Name: Class: _ Date: _ ID: A Cp physics web review chapter 7 gravitation and circular motion Multiple Choice Identify the choice that best completes the statement or answers the question.. What is the

Centripetal Force and Centripetal Acceleration Questions

Centripetal Force and Centripetal Acceleration Questions A 2.10 m rope attaches a tire to an overhanging tree limb. A girl swinging on the tire has a tangential speed of 2.50 m/s. If the magnitude of the

AP Physics C - Problem Drill 18: Gravitation and Circular Motion

AP Physics C - Problem Drill 18: Gravitation and Circular Motion Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as 1. Two objects some

AP Physics Daily Problem #31

AP Physics Daily Problem #31 A 10kg mass is whirled around on the end of a 3m long cord. The speed of the mass is 7m/s. Ignore gravitational forces. 3.0m 7.0m/s Draw a free body diagram of the mass. (hint:

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] A) Its vertical speed remains the same, and its horizontal

Circular Motion Test Review

Circular Motion Test Review Name: Date: 1) Is it possible for an object moving with a constant speed to accelerate? Explain. A) No, if the speed is constant then the acceleration is equal to zero. B) No,

Rotational Kinematics

Rotational Kinematics Rotational Coordinates Ridged objects require six numbers to describe their position and orientation: 3 coordinates 3 axes of rotation Rotational Coordinates Use an angle θ to describe

Chapter 5 Circular Motion; Gravitation

Chapter 5 Circular Motion; Gravitation Units of Chapter 5 Kinematics of Uniform Circular Motion Dynamics of Uniform Circular Motion Highway Curves, Banked and Unbanked Nonuniform Circular Motion Centrifugation

Chapter 6: Systems in Motion

Chapter 6: Systems in Motion The celestial order and the beauty of the universe compel me to admit that there is some excellent and eternal Being, who deserves the respect and homage of men Cicero (106

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS GIANCOLI CHAPTER 5: CIRCULAR MOTION; GRAVITATION LSN 5-1: KINEMATICS OF UNIFORM CIRCULAR MOTION LSN 5-2: DYNAMICS OF UNIFORM CIRCULAR MOTION LSN 5-3:

HW Chapter 5 Q 7,8,18,21 P 4,6,8. Chapter 5. The Law of Universal Gravitation Gravity

HW Chapter 5 Q 7,8,18,21 P 4,6,8 Chapter 5 The Law of Universal Gravitation Gravity Newton s Law of Universal Gravitation Every particle in the Universe attracts every other particle with a force that

Chapter 6: Circular Motion, Orbits, and Gravity Tuesday, September 17, :00 PM. Circular Motion. Rotational kinematics

Ch6 Page 1 Chapter 6: Circular Motion, Orbits, and Gravity Tuesday, September 17, 2013 10:00 PM Circular Motion Rotational kinematics We'll discuss the basics of rotational kinematics in this chapter;

Chapter 5. A rock is twirled on a string at a constant speed. The direction of its acceleration at point P is A) B) P C) D)

A 1500 kg car travels at a constant speed of 22 m/s around a circular track which has a radius of 80 m. Which statement is true concerning this car? A) The velocity of the car is changing. B) The car is

Episode 224: Describing circular motion

Episode 224: Describing circular motion In this episode, you will introduce the importance of circular motion and explain the need for a centripetal force to keep an object moving along a circular path.

Lecture 6. Circular Motion. Pre-reading: KJF 6.1 and 6.2. Please take a clicker CIRCULAR MOTION KJF

Lecture 6 Circular Motion Pre-reading: KJF 6.1 and 6.2 Please take a clicker CIRCULAR MOTION KJF 6.1 6.4 Angular position If an object moves in a circle of radius r, then after travelling a distance s

Dynamics Review Outline

Dynamics Review Outline 2.1.1-C Newton s Laws of Motion 2.1 Contact Forces First Law (Inertia) objects tend to remain in their current state of motion (at rest of moving at a constant velocity) until acted

Chapter 6 Review Answer Key Understanding Vocabulary 1. displacement 2. trajectory 3. projectile 4. parabola 5. range 6. revolves 7. rotates 8. angular speed 9. centripetal force 10. law of universal gravitation

ASTRONAUT PUSHES SPACECRAFT

ASTRONAUT PUSHES SPACECRAFT F = 40 N m a = 80 kg m s = 15000 kg a s = F/m s = 40N/15000 kg = 0.0027 m/s 2 a a = -F/m a = -40N/80kg = -0.5 m/s 2 If t push = 0.5 s, then v s = a s t push =.0014 m/s, and

Multiple Choice Portion

Unit 5: Circular Motion and Gravitation Please Note that the gravitational potential energy questions are located in Unit 4 (Energy etc.) Multiple Choice Portion 1. What is the centripetal acceleration

Physics A - PHY 2048C

Physics A - PHY 2048C Dynamics of 10/18/2017 My Office Hours: Thursday 2:00-3:00 PM 212 Keen Building Warm-up Questions 1 Did you read Chapters 8.1-8.7 in the textbook? 2 In uniform circular motion, which

Chapter 6 Circular Motion, Orbits and Gravity

Chapter 6 Circular Motion, Orbits and Gravity Topics: The kinematics of uniform circular motion The dynamics of uniform circular motion Circular orbits of satellites Newton s law of gravity Sample question:

Chapter 7: Circular Motion

Chapter 7: Circular Motion Spin about an axis located within the body Example: Spin about an axis located outside the body. Example: Example: Explain why it feels like you are pulled to the right side

Chapter 5 Review : Circular Motion; Gravitation

Chapter 5 Review : Circular Motion; Gravitation Conceptual Questions 1) Is it possible for an object moving with a constant speed to accelerate? Explain. A) No, if the speed is constant then the acceleration

Circular Motion and Gravitation Practice Test Provincial Questions

Circular Motion and Gravitation Practice Test Provincial Questions 1. A 1 200 kg car is traveling at 25 m s on a horizontal surface in a circular path of radius 85 m. What is the net force acting on this

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

1. An object is fired with an initial velocity of 23 m/s [R30 U]. What are the initial components of its velocity?

Physics 304 Unit 1 - Total Review 1. An object is fired with an initial velocity of 3 m/s [R30U]. What are the initial components of its velocity?. An object rolls off the top of a horizontal table. a)

Circular Motion 1

--------------------------------------------------------------------------------------------------- Circular Motion 1 ---------------------------------------------------------------------------------------------------

AP C - Webreview ch 7 (part I) Rotation and circular motion

Name: Class: _ Date: _ AP C - Webreview ch 7 (part I) Rotation and circular motion Multiple Choice Identify the choice that best completes the statement or answers the question. 1. 2 600 rev/min is equivalent

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 16, 2000 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion

Circular Motion (Chapter 5)

Circular Motion (Chapter 5) So far we have focused on linear motion or motion under gravity (free-fall). Question: What happens when a ball is twirled around on a string at constant speed? Ans: Its velocity

Let's first discuss the period and frequency for circular motion: period T: amount of time needed to complete one revolution (unit: s, min, h, etc.

Chapter 5: Dynamics of Uniform Circular Motion Tuesday, September 17, 2013 10:00 PM Rotational kinematics We'll discuss the basics of rotational kinematics in this chapter; the kinematics equations for

Newton s Laws.

Newton s Laws http://mathsforeurope.digibel.be/images Forces and Equilibrium If the net force on a body is zero, it is in equilibrium. dynamic equilibrium: moving relative to us static equilibrium: appears

P - f = m a x. Now, if the box is already moving, for the frictional force, we use

Chapter 5 Class Notes This week, we return to forces, and consider forces pointing in different directions. Previously, in Chapter 3, the forces were parallel, but in this chapter the forces can be pointing

Chapter 6 UNIFORM CIRCULAR MOTION AND GRAVITATION

Chapter 6 UNIFORM CIRCULAR MOTION AND GRAVITATION An object moving in a circle must have a force acting on it; otherwise it would move in a straight line. The direction of the force is towards the center

NAME. (2) Choose the graph below that represents the velocity vs. time for constant, nonzero acceleration in one dimension.

(1) The figure shows a lever (which is a uniform bar, length d and mass M), hinged at the bottom and supported steadily by a rope. The rope is attached a distance d/4 from the hinge. The two angles are

Uniform Circular Motion

Uniform Circular Motion 2.4 Knowledge and Skills Checklist Do I know that uniform circular motion means that a body is moving in a circular path with constant speed? Do I know that, although the speed