Green-Naghdi type solutions to the Pressure Poisson equation with Boussinesq Scaling ADCIRC Workshop 2013

Size: px
Start display at page:

Download "Green-Naghdi type solutions to the Pressure Poisson equation with Boussinesq Scaling ADCIRC Workshop 2013"

Transcription

1 Green-Naghdi type solutions to the Pressure Poisson equation with Boussinesq Scaling ADCIRC Workshop 2013 Aaron S. Donahue*, Joannes J. Westerink, Andrew B. Kennedy Environmental Fluid Dynamics Group Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame April 30, 2013

2 Introduction Motivation Model Development Model Equations Green-Naghdi Linear Properties and Optimization Submerged Shoal Validation Conclusions and Future Work

3 Motivation Development of a phase resolving wave model that is: capable of capturing the nearshore wave dynamics. computationally efficient. able to be coupled with existing ocean circulation and phase averaged wave models, (e.g. SWAN+ADCIRC).

4 Possible Applications intro.htm Wave run up Shoaling over reefs Tsunamis Levee overtopping Wave breaking

5 Model Development Governing Equations: w t Scaling: (Boussinesq) u t + u u + w u z + 1 ρ P = 0 + u w + w w x + 1 ρ P z + g = 0 u + w z = 0 (x, y) = k 0 (x, y ) z = h0 1 h = h0 1 (u, v) = (g 0 h 0 ) 1/2 (u, v ) w = (g 0 h 0 ) 1/2 w η = h0 1 t = k 0 (g 0 h 0 ) 1/2 t P = (ρg 0 h 0 ) 1 P g = g 1 0 g Dimensionless Parameter: µ = k 0 h 0

6 Model Equations Bottom Boundary Condition µ 2 ( h) ( P) + P z + g = µ2 (u h) 2, z = h(x, y) Pressure Poisson ( ) ˆ 2 P = ˆ û Conservation of Mass ( ) ˆ û A A, η t + Conservation of Momentum u t η h udz = 0 + (u )u + w u z + P = 0 A = u i x j u i x j

7 Model Equations Bottom Boundary Condition µ 2 ( h) ( P) + P z + g = µ2 (u h) 2, z = h(x, y) Pressure Poisson ( ) ˆ 2 P = ˆ û Conservation of Mass ( ) ˆ û A A, η t + Conservation of Momentum u t η h udz = 0 + (u )u + w u z + P = 0 A = u i x j u i x j

8 Green Naghdi Expansion for solution approximation where P = gh(1 q) + u = u 0 (x, y, t) v = v 0 (x, y, t) N µ ˆβ n φ n (q)p n (x, y) n=1 h(x, y) + z q = h(x, y) + η(x, y, t) { µ n 1 n N = 0 n > N n φ n (q) = a mn (1 q m ) ˆβ n = m=0 { 0 n = 1 n + n mod 2 n > 1

9 Model Description Pressure Pressure includes hydrostatic and non hydrostatic terms Accuracy of pressure approximation can be improved by increased expansion Pressure approximation approaches theoretical pressure as N Horizontal Velocity (u and v) Depth averaged Optimized basis functions can give high order Dispersion Shoaling

10 Model Description Pressure Pressure includes hydrostatic and non hydrostatic terms Accuracy of pressure approximation can be improved by increased expansion Pressure approximation approaches theoretical pressure as N Horizontal Velocity (u and v) Depth averaged Optimized basis functions can give high order Dispersion Shoaling P = gh(1 q) + u = u 0 (x, y, t) v = v 0 (x, y, t) N µ ˆβ n φ n (q)p n (x, y) n=1

11 Linear Properties and Optimization Shifted Legendre Polynomial Basis (N=2): f 1 = 1 + 2q f 2 = 1 6q + 6q 2 φ n = f n (1) f n (q)

12 Linear Properties and Optimization Shifted Legendre Polynomial Basis (N=2): f 1 = 1 + 2q f 2 = 1 6q + 6q 2 φ n = f n (1) f n (q) C 2 gh 12 (kh)2 CAiry 2 = (kh) 2 gh 2 nd order accurate = tanh(kh) kh

13 Linear Properties and Optimization, N=2 Shifted Legendre Polynomial Basis (N=4): f 1 = 1 + 2q f 2 = 1 6q + 6q 2 f 3 = q 30q q 3 f 4 = 1 20q + 90q 2 140q q 4 φ n = f n (1) f n (q) C 2 gh = (kh)2 15(kh) 4 (kh) (kh) (kh) 4 4 th order accurate

14 Linear Properties and Optimization, N=4 Shifted Legendre Polynomial Basis (N=4): f 1 = 1 + 2q f 2 = 1 6q + 6q 2 f 3 = q 30q q 3 f 4 = 1 20q + 90q 2 140q q 4 φ n = f n (1) f n (q) C 2 gh = (kh)2 15(kh) 4 (kh) 6 C (kh) (kh) 4 lim kh gh = 4 th order accurate, but unstable at high wavenumbers

15 Asymptotic Rearrangement Arbitrary Basis functions (N=2): f 1 = a + q f 2 = b + cq + q 2 φ n = f n (1) f n (q) C 2 gh = 12 (3c + 4)(kh)2 12 3c(kh) 2 Choose c = 8/5 we get the Pade[2,2] approximation to the Airy solution. ( ) C gh = 15 (kh) (kh)2 4 th order

16 Asymptotic Rearrangement Arbitrary Basis Functions (N=4): leads to f n = n a mn q m m=0 φ n = f (1) f (q) C 2 gh = (40a 31a a 31 a 43 40a 32 a a 31 45a 41 ) kh (a 31 a a 31 a 43 a 32 a a 31 3a 41 ) kh 4

17 Asymptotic Rearrangement Arbitrary Basis Functions (N=4): leads to f n = n a mn q m m=0 φ n = f (1) f (q) C 2 gh = (40a 31a a 31 a 43 40a 32 a a 31 45a 41 ) kh (a 31 a a 31 a 43 a 32 a a 31 3a 41 ) kh 4 with proper choices for a mn s we can achieve a Pade[4,4] approximation C 2 gh = kh kh kh2 + 1, 8th order accurate 63 kh4

18 Dispersion Results (Analytic) O(µ 2 ) Pade[2,2] O(µ 4 ) Pade[4,4] 1.02 σ σairy O(µ 6 ) Pade[8,8] 0.99 O(µ 4 ) O(µ 2 ) O(µ 6 ) Figure: Ratio between the optimal dispersion relationship for subsequent orders of µ and the dispersion relation σ Airy kh

19 Dispersion Results (Numerical) kh = 0.5 E 2 = 0.034% E 4 = 0.044% kh = 2 E 2 = 0.58% E 4 = 0.034% kh = 2π E 2 = 17% E 4 = 1.5% N = 2 N = 4

20 Validation (Battjes et al submerged shoal study) H 0 = 0.02m T = 2.02s k = 3.74m h 0 = 0.4m h s = 0.1m *M.W. Dingemans, Comparison of computations with Boussinesq like model and laboratory measurements, Mast G8M technical report H, 1994

21 u P u,p η x x

22 u P u,p η x x

23 u P u,p η x x

24 u P u,p η x x

25 u P u,p η x x

26 u P u,p η x x

27 u P u,p η x x

28 u P u,p η x x

29 *Yamazaki Y. et al., 2009

30 *Yamazaki Y. et al., 2009

31 Convergence of Solution

32 Conclusions & Advantages Established a non hydrostatic phase resolving model for one horizontal dimension. Demonstrated convergence of the dispersion relationship to the Airy solution. Asymptotic rearrangement can be used to optimize convergence and remove instabilities. Validation of the code for submerged shoal problem. Demonstrated convergence of the solution to second order accuracy. The pressure solution approach is ideally suited for coupling with existing ocean models, through introduction of non hydrostatic pressure.

33 Next Steps Implementation in Discontinuous Galerkin method on an unstructured mesh. Implementation in two horizontal dimensions. Implementation of breaking, higher order nonlinearity and wetting/drying. Implementation of coupling with SWAN for transition from deep to shallow water wave phenomenon. Integration of non hydrostatic pressure within the ADCIRC model. Simulation of Fukushima Tsunami disaster.

34 Acknowledgements Richard and Peggy Notebaert Fellowship Foundation NSF CMG OCE Environmental Fluid Dynamics Group at the University of Notre Dame

BOUSSINESQ-TYPE EQUATIONS WITH VARIABLE COEFFICIENTS FOR NARROW-BANDED WAVE PROPAGATION FROM ARBITRARY DEPTHS TO SHALLOW WATERS

BOUSSINESQ-TYPE EQUATIONS WITH VARIABLE COEFFICIENTS FOR NARROW-BANDED WAVE PROPAGATION FROM ARBITRARY DEPTHS TO SHALLOW WATERS BOUSSINESQ-TYPE EQUATIONS WITH VARIABLE COEFFICIENTS FOR NARROW-BANDED WAVE PROPAGATION FROM ARBITRARY DEPTHS TO SHALLOW WATERS Gonzalo Simarro 1, Alvaro Galan, Alejandro Orfila 3 A fully nonlinear Boussinessq-type

More information

Coupled, Unstructured Grid, Wave and Circulation Models: Validation and Resolution Requirements

Coupled, Unstructured Grid, Wave and Circulation Models: Validation and Resolution Requirements Coupled, Unstructured Grid, Wave and Circulation Models: Validation and Resolution Requirements J.C. Dietrich, J.J. Westerink University of Notre Dame C. Dawson University of Texas at Austin M. Zijlema,

More information

The Whitham Equation. John D. Carter April 2, Based upon work supported by the NSF under grant DMS

The Whitham Equation. John D. Carter April 2, Based upon work supported by the NSF under grant DMS April 2, 2015 Based upon work supported by the NSF under grant DMS-1107476. Collaborators Harvey Segur, University of Colorado at Boulder Diane Henderson, Penn State University David George, USGS Vancouver

More information

A two-layer approach to wave modelling

A two-layer approach to wave modelling 1.198/rspa.4.135 A two-layer approach to wave modelling By Patrick Lynett and Philip L.-F. Liu School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA (plynett@civil.tamu.edu)

More information

Improved Performance in Boussinesq-type Equations

Improved Performance in Boussinesq-type Equations Improved Performance in Boussinesq-type Equations Andrew B. Kennedy, James T. Kirby 1 & Mauricio F. Gobbi 2 Abstract In this paper, simple but effective techniques are used to improve the performance of

More information

On the linear stability of one- and two-layer Boussinesq-type Equations for wave propagation over uneven beds

On the linear stability of one- and two-layer Boussinesq-type Equations for wave propagation over uneven beds On the linear stability of one- and two-layer Boussinesq-type Equations for wave propagation over uneven beds Gonzalo Simarro Marine Sciences Institute (ICM, CSIC), 83 Barcelona, Spain Alejandro Orfila

More information

Advances and perspectives in numerical modelling using Serre-Green Naghdi equations. Philippe Bonneton

Advances and perspectives in numerical modelling using Serre-Green Naghdi equations. Philippe Bonneton Long wave & run-up workshop Santander 2012 Advances and perspectives in numerical modelling using Serre-Green Naghdi equations Philippe Bonneton EPOC, METHYS team, Bordeaux Univ., CNRS d0 µ = λ 0 2 small

More information

v t + fu = 1 p y w t = 1 p z g u x + v y + w

v t + fu = 1 p y w t = 1 p z g u x + v y + w 1 For each of the waves that we will be talking about we need to know the governing equators for the waves. The linear equations of motion are used for many types of waves, ignoring the advective terms,

More information

The shallow water equations Lecture 8. (photo due to Clark Little /SWNS)

The shallow water equations Lecture 8. (photo due to Clark Little /SWNS) The shallow water equations Lecture 8 (photo due to Clark Little /SWNS) The shallow water equations This lecture: 1) Derive the shallow water equations 2) Their mathematical structure 3) Some consequences

More information

Dispersion in Shallow Water

Dispersion in Shallow Water Seattle University in collaboration with Harvey Segur University of Colorado at Boulder David George U.S. Geological Survey Diane Henderson Penn State University Outline I. Experiments II. St. Venant equations

More information

2017 年環境流體力學短期講座 Short Course on Environmental Flows

2017 年環境流體力學短期講座 Short Course on Environmental Flows 2017 年環境流體力學短期講座 Short Course on Environmental Flows 數學 海浪 與沿海動態過程 Mathematics, ocean waves and coastal dynamic processes Philip L-F. Liu National University of Singapore Cornell University September 2017

More information

Benchmarking of Hydrodynamic Models for Development of a Coupled Storm Surge Hazard-Infrastructure Modeling Method to improve Inundation Forecasting

Benchmarking of Hydrodynamic Models for Development of a Coupled Storm Surge Hazard-Infrastructure Modeling Method to improve Inundation Forecasting Benchmarking of Hydrodynamic Models for Development of a Coupled Storm Surge Hazard-Infrastructure Modeling Method to improve Inundation Forecasting Abstract Fragility-based models currently used in coastal

More information

Advances in Coastal Inundation Simulation Using Unstructured-Grid Coastal Ocean Models

Advances in Coastal Inundation Simulation Using Unstructured-Grid Coastal Ocean Models Advances in Coastal Inundation Simulation Using Unstructured-Grid Coastal Ocean Models Bob Beardsley (WHOI) Changsheng Chen (UMass-Dartmouth) Bob Weisberg (U. South Florida) Joannes Westerink (U. Notre

More information

Freak waves over nonuniform depth with different slopes. Shirin Fallahi Master s Thesis, Spring 2016

Freak waves over nonuniform depth with different slopes. Shirin Fallahi Master s Thesis, Spring 2016 Freak waves over nonuniform depth with different slopes Shirin Fallahi Master s Thesis, Spring 206 Cover design by Martin Helsø The front page depicts a section of the root system of the exceptional Lie

More information

Marine Hydrodynamics Lecture 19. Exact (nonlinear) governing equations for surface gravity waves assuming potential theory

Marine Hydrodynamics Lecture 19. Exact (nonlinear) governing equations for surface gravity waves assuming potential theory 13.021 Marine Hydrodynamics, Fall 2004 Lecture 19 Copyright c 2004 MIT - Department of Ocean Engineering, All rights reserved. Water Waves 13.021 - Marine Hydrodynamics Lecture 19 Exact (nonlinear) governing

More information

Modified Serre Green Naghdi equations with improved or without dispersion

Modified Serre Green Naghdi equations with improved or without dispersion Modified Serre Green Naghdi equations with improved or without dispersion DIDIER CLAMOND Université Côte d Azur Laboratoire J. A. Dieudonné Parc Valrose, 06108 Nice cedex 2, France didier.clamond@gmail.com

More information

B O S Z. - Boussinesq Ocean & Surf Zone model - International Research Institute of Disaster Science (IRIDeS), Tohoku University, JAPAN

B O S Z. - Boussinesq Ocean & Surf Zone model - International Research Institute of Disaster Science (IRIDeS), Tohoku University, JAPAN B O S Z - Boussinesq Ocean & Surf Zone model - Volker Roeber 1 Troy W. Heitmann 2, Kwok Fai Cheung 2, Gabriel C. David 3, Jeremy D. Bricker 1 1 International Research Institute of Disaster Science (IRIDeS),

More information

On the Whitham Equation

On the Whitham Equation On the Whitham Equation Henrik Kalisch Department of Mathematics University of Bergen, Norway Joint work with: Handan Borluk, Denys Dutykh, Mats Ehrnström, Daulet Moldabayev, David Nicholls Research partially

More information

Theory of linear gravity waves April 1987

Theory of linear gravity waves April 1987 April 1987 By Tim Palmer European Centre for Medium-Range Weather Forecasts Table of contents 1. Simple properties of internal gravity waves 2. Gravity-wave drag REFERENCES 1. SIMPLE PROPERTIES OF INTERNAL

More information

Shoaling of Solitary Waves

Shoaling of Solitary Waves Shoaling of Solitary Waves by Harry Yeh & Jeffrey Knowles School of Civil & Construction Engineering Oregon State University Water Waves, ICERM, Brown U., April 2017 Motivation The 2011 Heisei Tsunami

More information

PAPER 333 FLUID DYNAMICS OF CLIMATE

PAPER 333 FLUID DYNAMICS OF CLIMATE MATHEMATICAL TRIPOS Part III Wednesday, 1 June, 2016 1:30 pm to 4:30 pm Draft 21 June, 2016 PAPER 333 FLUID DYNAMICS OF CLIMATE Attempt no more than THREE questions. There are FOUR questions in total.

More information

THC-T-2013 Conference & Exhibition

THC-T-2013 Conference & Exhibition Modeling of Shutter Coastal Protection against Storm Surge for Galveston Bay C. Vipulanandan, Ph.D., P.E., Y. Jeannot Ahossin Guezo and and B. Basirat Texas Hurricane Center for Innovative Technology (THC-IT)

More information

Lecture: Wave-induced Momentum Fluxes: Radiation Stresses

Lecture: Wave-induced Momentum Fluxes: Radiation Stresses Chapter 4 Lecture: Wave-induced Momentum Fluxes: Radiation Stresses Here we derive the wave-induced depth-integrated momentum fluxes, otherwise known as the radiation stress tensor S. These are the 2nd-order

More information

Quasi-3D Nearshore Circulation Equations: a CL-Vortex Force Formulation

Quasi-3D Nearshore Circulation Equations: a CL-Vortex Force Formulation Quasi-3D Nearshore Circulation Equations: a CL-Vortex Force Formulation Fengyan Shi 1, James T. Kirby 1 and Kevin Haas 2 We formulate a CL-vortex form of surface wave force for a quasi-3d nearshore circulation

More information

Periodic Solutions of the Serre Equations. John D. Carter. October 24, Joint work with Rodrigo Cienfuegos.

Periodic Solutions of the Serre Equations. John D. Carter. October 24, Joint work with Rodrigo Cienfuegos. October 24, 2009 Joint work with Rodrigo Cienfuegos. Outline I. Physical system and governing equations II. The Serre equations A. Derivation B. Justification C. Properties D. Solutions E. Stability Physical

More information

A Strategy for the Development of Coupled Ocean- Atmosphere Discontinuous Galerkin Models

A Strategy for the Development of Coupled Ocean- Atmosphere Discontinuous Galerkin Models A Strategy for the Development of Coupled Ocean- Atmosphere Discontinuous Galerkin Models Frank Giraldo Department of Applied Math, Naval Postgraduate School, Monterey CA 93943 Collaborators: Jim Kelly

More information

arxiv: v1 [math.na] 27 Jun 2017

arxiv: v1 [math.na] 27 Jun 2017 Behaviour of the Serre Equations in the Presence of Steep Gradients Revisited J.P.A. Pitt a,, C. Zoppou a, S.G. Roberts a arxiv:706.08637v [math.na] 27 Jun 207 a Mathematical Sciences Institute, Australian

More information

PREDICTING TROPICAL CYCLONE FORERUNNER SURGE. Abstract

PREDICTING TROPICAL CYCLONE FORERUNNER SURGE. Abstract PREDICTING TROPICAL CYCLONE FORERUNNER SURGE Yi Liu 1 and Jennifer L. Irish 1 Abstract In 2008 during Hurricane Ike, a 2-m forerunner surge, early surge arrival before tropical cyclone landfall, flooded

More information

Locally Linearized Euler Equations in Discontinuous Galerkin with Legendre Polynomials

Locally Linearized Euler Equations in Discontinuous Galerkin with Legendre Polynomials Locally Linearized Euler Equations in Discontinuous Galerkin with Legendre Polynomials Harald Klimach, Michael Gaida, Sabine Roller harald.klimach@uni-siegen.de 26th WSSP 2017 Motivation Fluid-Dynamic

More information

Marine Hydrodynamics Lecture 19. Exact (nonlinear) governing equations for surface gravity waves assuming potential theory

Marine Hydrodynamics Lecture 19. Exact (nonlinear) governing equations for surface gravity waves assuming potential theory 13.021 Marine Hydrodynamics Lecture 19 Copyright c 2001 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hydrodynamics Lecture 19 Water Waves Exact (nonlinear) governing equations

More information

In two-dimensional barotropic flow, there is an exact relationship between mass

In two-dimensional barotropic flow, there is an exact relationship between mass 19. Baroclinic Instability In two-dimensional barotropic flow, there is an exact relationship between mass streamfunction ψ and the conserved quantity, vorticity (η) given by η = 2 ψ.the evolution of the

More information

Numerical dispersion and Linearized Saint-Venant Equations

Numerical dispersion and Linearized Saint-Venant Equations Numerical dispersion and Linearized Saint-Venant Equations M. Ersoy Basque Center for Applied Mathematics 11 November 2010 Outline of the talk Outline of the talk 1 Introduction 2 The Saint-Venant equations

More information

Dynamics of Strongly Nonlinear Internal Solitary Waves in Shallow Water

Dynamics of Strongly Nonlinear Internal Solitary Waves in Shallow Water Dynamics of Strongly Nonlinear Internal Solitary Waves in Shallow Water By Tae-Chang Jo and Wooyoung Choi We study the dynamics of large amplitude internal solitary waves in shallow water by using a strongly

More information

Kelvin-Helmholtz instabilities in shallow water

Kelvin-Helmholtz instabilities in shallow water Kelvin-Helmholtz instabilities in shallow water Propagation of large amplitude, long wavelength, internal waves Vincent Duchêne 1 Samer Israwi 2 Raafat Talhouk 2 1 IRMAR, Univ. Rennes 1 UMR 6625 2 Faculté

More information

A Spectral Shallow-water Wave Model with Nonlinear Energy- and Phase-evolution

A Spectral Shallow-water Wave Model with Nonlinear Energy- and Phase-evolution DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. A Spectral Shallow-water Wave Model with Nonlinear Energy- and Phase-evolution L.H. Holthuijsen Delft University

More information

The Shallow Water Equations

The Shallow Water Equations The Shallow Water Equations Clint Dawson and Christopher M. Mirabito Institute for Computational Engineering and Sciences University of Texas at Austin clint@ices.utexas.edu September 29, 2008 The Shallow

More information

Non-Hydrostatic Pressure Shallow Flows: GPU Implementation Using Finite-Volume and Finite-Difference Scheme.

Non-Hydrostatic Pressure Shallow Flows: GPU Implementation Using Finite-Volume and Finite-Difference Scheme. arxiv:176.4551v1 [math.na] 14 Jun 17 Non-Hydrostatic Pressure Shallow Flows: GPU Implementation Using Finite-Volume and Finite-Difference Scheme. C. Escalante 1 T. Morales de Luna and M.J. Castro 1 1 Departamento

More information

Shallow water approximations for water waves over a moving bottom. Tatsuo Iguchi Department of Mathematics, Keio University

Shallow water approximations for water waves over a moving bottom. Tatsuo Iguchi Department of Mathematics, Keio University Shallow water approximations for water waves over a moving bottom Tatsuo Iguchi Department of Mathematics, Keio University 1 Tsunami generation and simulation Submarine earthquake occures with a seabed

More information

Calculating Storm Surge and Other Coastal Hazards Using Geoclaw

Calculating Storm Surge and Other Coastal Hazards Using Geoclaw Calculating Storm Surge and Other Coastal Hazards Using Geoclaw Kyle T. Mandli Department of Applied Mathematics University of Washington Seattle, WA, USA Modeling and Computations of Shallow-Water Coastal

More information

Non-Hydrostatic Pressure Shallow Flows: GPU Implementation Using Finite Volume and Finite Difference Scheme.

Non-Hydrostatic Pressure Shallow Flows: GPU Implementation Using Finite Volume and Finite Difference Scheme. arxiv:1706.04551v [math.na] 1 Jul 018 Non-Hydrostatic Pressure Shallow Flows: GPU Implementation Using Finite Volume and Finite Difference Scheme. C. Escalante 1 T. Morales de Luna and M.J. Castro 1 1

More information

TIME DOMAIN COMPARISONS OF MEASURED AND SPECTRALLY SIMULATED BREAKING WAVES

TIME DOMAIN COMPARISONS OF MEASURED AND SPECTRALLY SIMULATED BREAKING WAVES TIME DOMAIN COMPARISONS OF MEASRED AND SPECTRAY SIMATED BREAKING WAVES Mustafa Kemal Özalp 1 and Serdar Beji 1 For realistic wave simulations in the nearshore zone besides nonlinear interactions the dissipative

More information

Developing a nonhydrostatic isopycnalcoordinate

Developing a nonhydrostatic isopycnalcoordinate Developing a nonhydrostatic isopycnalcoordinate ocean model Oliver Fringer Associate Professor The Bob and Norma Street Environmental Fluid Mechanics Laboratory Dept. of Civil and Environmental Engineering

More information

Implementation of Bridge Pilings in the ADCIRC Hydrodynamic Model: Upgrade and Documentation for ADCIRC Version 34.19

Implementation of Bridge Pilings in the ADCIRC Hydrodynamic Model: Upgrade and Documentation for ADCIRC Version 34.19 Implementation of Bridge Pilings in the ADCIRC Hydrodynamic Model: Upgrade and Documentation for ADCIRC Version 34.19 Richard A. Luettich, Jr. University of North Carolina at Chapel Hill Institute of Marine

More information

A few examples Shallow water equation derivation and solutions. Goal: Develop the mathematical foundation of tropical waves

A few examples Shallow water equation derivation and solutions. Goal: Develop the mathematical foundation of tropical waves A few examples Shallow water equation derivation and solutions Goal: Develop the mathematical foundation of tropical waves Previously: MCS Hovmoller Propagating w/ wave velocity From Chen et al (1996)

More information

Salmon: Introduction to ocean waves

Salmon: Introduction to ocean waves 9 The shallow-water equations. Tsunamis. Our study of waves approaching the beach had stopped at the point of wave breaking. At the point of wave breaking, the linear theory underlying Propositions #1

More information

arxiv: v2 [physics.comp-ph] 29 Apr 2016

arxiv: v2 [physics.comp-ph] 29 Apr 2016 A Stabilised Nodal Spectral Element Method for Fully Nonlinear Water Waves A. P. Engsig-Karup a, C. Eskilsson b, D. Bigoni a,c arxiv:1512.02548v2 [physics.comp-ph] 29 Apr 2016 Abstract a Department of

More information

Tsunamis and ocean waves

Tsunamis and ocean waves Department of Mathematics & Statistics AAAS Annual Meeting St. Louis Missouri February 19, 2006 Introduction Tsunami waves are generated relatively often, from various sources Serious tsunamis (serious

More information

A simple and accurate nonlinear method for recovering the surface wave elevation from pressure measurements

A simple and accurate nonlinear method for recovering the surface wave elevation from pressure measurements ICCE 2018 Baltimore July 30-August 3, 2018 A simple and accurate nonlinear method for recovering the surface wave elevation from pressure measurements Bonneton P. 1, Mouragues A. 1, Lannes D. 1, Martins

More information

6 Two-layer shallow water theory.

6 Two-layer shallow water theory. 6 Two-layer shallow water theory. Wewillnowgoontolookatashallowwatersystemthathastwolayersofdifferent density. This is the next level of complexity and a simple starting point for understanding the behaviour

More information

Bottom friction effects on linear wave propagation

Bottom friction effects on linear wave propagation Bottom friction effects on linear wave propagation G. Simarro a,, A. Orfila b, A. Galán a,b, G. Zarruk b. a E.T.S.I. Caminos, Canales y Puertos, Universidad de Castilla La Mancha. 13071 Ciudad Real, Spain.

More information

On Vertical Variations of Wave-Induced Radiation Stress Tensor

On Vertical Variations of Wave-Induced Radiation Stress Tensor Archives of Hydro-Engineering and Environmental Mechanics Vol. 55 (2008), No. 3 4, pp. 83 93 IBW PAN, ISSN 1231 3726 On Vertical Variations of Wave-Induced Radiation Stress Tensor Włodzimierz Chybicki

More information

Lecture 23. Vertical coordinates General vertical coordinate

Lecture 23. Vertical coordinates General vertical coordinate Lecture 23 Vertical coordinates We have exclusively used height as the vertical coordinate but there are alternative vertical coordinates in use in ocean models, most notably the terrainfollowing coordinate

More information

NONLINEAR INTERACTIONS BETWEEN LONG WAVES IN A TWO-LAYER FLUID. A Dissertation NAVID TAHVILDARI

NONLINEAR INTERACTIONS BETWEEN LONG WAVES IN A TWO-LAYER FLUID. A Dissertation NAVID TAHVILDARI NONLINEAR INTERACTIONS BETWEEN LONG WAVES IN A TWO-LAYER FLUID A Dissertation by NAVID TAHVILDARI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements

More information

Applying Asymptotic Approximations to the Full Two-Fluid Plasma System to Study Reduced Fluid Models

Applying Asymptotic Approximations to the Full Two-Fluid Plasma System to Study Reduced Fluid Models 0-0 Applying Asymptotic Approximations to the Full Two-Fluid Plasma System to Study Reduced Fluid Models B. Srinivasan, U. Shumlak Aerospace and Energetics Research Program, University of Washington, Seattle,

More information

An implicit time-marching algorithm for 2-D GWC shallow water models

An implicit time-marching algorithm for 2-D GWC shallow water models Appeared in: Computational Methods in Water Resources XIII, Vol. 2, Bentley et al., eds. 913-920, Balkema, 2000. An implicit time-marching algorithm for 2-D GWC shallow water models K.M. Dresback & R.L.

More information

GFD 2013 Lecture 4: Shallow Water Theory

GFD 2013 Lecture 4: Shallow Water Theory GFD 213 Lecture 4: Shallow Water Theory Paul Linden; notes by Kate Snow and Yuki Yasuda June 2, 214 1 Validity of the hydrostatic approximation In this lecture, we extend the theory of gravity currents

More information

A simple model of topographic Rossby waves in the ocean

A simple model of topographic Rossby waves in the ocean A simple model of topographic Rossby waves in the ocean V.Teeluck, S.D.Griffiths, C.A.Jones University of Leeds April 18, 2013 V.Teeluck (University of Leeds) Topographic Rossby waves (TRW) in the ocean

More information

The effect of a background shear current on large amplitude internal solitary waves

The effect of a background shear current on large amplitude internal solitary waves The effect of a background shear current on large amplitude internal solitary waves Wooyoung Choi Dept. of Mathematical Sciences New Jersey Institute of Technology CAMS Report 0506-4, Fall 005/Spring 006

More information

Chapter 4. Gravity Waves in Shear. 4.1 Non-rotating shear flow

Chapter 4. Gravity Waves in Shear. 4.1 Non-rotating shear flow Chapter 4 Gravity Waves in Shear 4.1 Non-rotating shear flow We now study the special case of gravity waves in a non-rotating, sheared environment. Rotation introduces additional complexities in the already

More information

Well-balanced shock-capturing hybrid finite volume-finite difference schemes for Boussinesq-type models

Well-balanced shock-capturing hybrid finite volume-finite difference schemes for Boussinesq-type models NUMAN 2010 Well-balanced shock-capturing hybrid finite volume-finite difference schemes for Boussinesq-type models Maria Kazolea 1 Argiris I. Delis 2 1 Environmental Engineering Department, TUC, Greece

More information

A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1

A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1 A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1 B. Srinivasan 2, U. Shumlak Aerospace and Energetics Research Program University of Washington,

More information

Modeling Nearshore Waves for Hurricane Katrina

Modeling Nearshore Waves for Hurricane Katrina Modeling Nearshore Waves for Hurricane Katrina Jane McKee Smith US Army Engineer Research & Development Center Coastal and Hydraulics Laboratory Outline Introduction Modeling Approach Hurricane Katrina

More information

PAPER 57 DYNAMICS OF ASTROPHYSICAL DISCS

PAPER 57 DYNAMICS OF ASTROPHYSICAL DISCS MATHEMATICAL TRIPOS Part III Monday, 9 June, 2014 1:30 pm to 3:30 pm PAPER 57 DYNAMICS OF ASTROPHYSICAL DISCS Attempt no more than TWO questions. There are THREE questions in total. The questions carry

More information

Introduction to Marine Hydrodynamics

Introduction to Marine Hydrodynamics 1896 190 1987 006 Introduction to Marine Hydrodynamics (NA35) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering Shanghai Jiao Tong University

More information

Stability and Shoaling in the Serre Equations. John D. Carter. March 23, Joint work with Rodrigo Cienfuegos.

Stability and Shoaling in the Serre Equations. John D. Carter. March 23, Joint work with Rodrigo Cienfuegos. March 23, 2009 Joint work with Rodrigo Cienfuegos. Outline The Serre equations I. Derivation II. Properties III. Solutions IV. Solution stability V. Wave shoaling Derivation of the Serre Equations Derivation

More information

13.42 LECTURE 2: REVIEW OF LINEAR WAVES

13.42 LECTURE 2: REVIEW OF LINEAR WAVES 13.42 LECTURE 2: REVIEW OF LINEAR WAVES SPRING 2003 c A.H. TECHET & M.S. TRIANTAFYLLOU 1. Basic Water Waves Laplace Equation 2 φ = 0 Free surface elevation: z = η(x, t) No vertical velocity at the bottom

More information

CHAPTER 34 COUPLED VIBRATION EQUATIONS FOR IRREGULAR WATER WAVES. Masao Nochino*

CHAPTER 34 COUPLED VIBRATION EQUATIONS FOR IRREGULAR WATER WAVES. Masao Nochino* CHAPTER 34 COUPLED VIBRATION EQUATIONS FOR IRREGULAR WATER WAVES Masao Nochino* Abstract A new system of equations is proposed for calculating wave deformation of irregular waves under the assumption of

More information

Internal boundary layers in the ocean circulation

Internal boundary layers in the ocean circulation Internal boundary layers in the ocean circulation Lecture 9 by Andrew Wells We have so far considered boundary layers adjacent to physical boundaries. However, it is also possible to find boundary layers

More information

RAPSODI Risk Assessment and design of Prevention Structures for enhanced tsunami DIsaster resilience

RAPSODI Risk Assessment and design of Prevention Structures for enhanced tsunami DIsaster resilience RAPSODI Risk Assessment and design of Prevention Structures for enhanced tsunami DIsaster resilience Possible NGI contributions related to tsunami modelling activities Finn Løvholt and Carl B. Harbitz

More information

10 Shallow Water Models

10 Shallow Water Models 10 Shallow Water Models So far, we have studied the effects due to rotation and stratification in isolation. We then looked at the effects of rotation in a barotropic model, but what about if we add stratification

More information

Flow in Corrugated Pipes

Flow in Corrugated Pipes Flow in Corrugated Pipes CASA Day April 7, 2010 Patricio Rosen Promotor: R.M.M. Mattheij Supervisors: J.H.M. ten Thije Boonkkamp J.A.M. Dam Outline Motivation Fluid Flow equations Method of slow variations

More information

ASYMPTOTIC AND NUMERICAL SOLUTIONS OF THE ORR-SOMMERFELD EQUATION FOR A THIN LIQUID FILM ON AN INCLINED PLANE

ASYMPTOTIC AND NUMERICAL SOLUTIONS OF THE ORR-SOMMERFELD EQUATION FOR A THIN LIQUID FILM ON AN INCLINED PLANE IV Journeys in Multiphase Flows (JEM27) March 27-3, 27 - São Paulo, Brazil Copyright c 27 by ABCM PaperID: JEM-27-9 ASYMPTOTIC AND NUMERICAL SOLUTIONS OF THE ORR-SOMMERFELD EQUATION FOR A THIN LIQUID FILM

More information

NONLINEAR(PROPAGATION(OF(STORM(WAVES:( INFRAGRAVITY(WAVE(GENERATION(AND(DYNAMICS((

NONLINEAR(PROPAGATION(OF(STORM(WAVES:( INFRAGRAVITY(WAVE(GENERATION(AND(DYNAMICS(( PanQAmericanAdvancedStudiesInsLtute TheScienceofPredicLngandUnderstandingTsunamis,Storm SurgesandTidalPhenomena BostonUniversity MechanicalEngineering NONLINEARPROPAGATIONOFSTORMWAVES: INFRAGRAVITYWAVEGENERATIONANDDYNAMICS

More information

From Navier-Stokes to Saint-Venant

From Navier-Stokes to Saint-Venant From Navier-Stokes to Saint-Venant Course 1 E. Godlewski 1 & J. Sainte-Marie 1 1 ANGE team LJLL - January 2017 Euler Eulerian vs. Lagrangian description Lagrange x(t M(t = y(t, z(t flow of the trajectories

More information

Modeling of the 2011 Tohoku-oki. oki Tsunami and it s s impacts to Hawaii

Modeling of the 2011 Tohoku-oki. oki Tsunami and it s s impacts to Hawaii WAVES 11, KONA HAWAI`I Modeling of the 2011 Tohoku-oki oki Tsunami and it s s impacts to Hawaii Yoshiki Yamazaki 1, Volker Roeber 1, Kwok Fai Cheung 1 and Thorne Lay 2 1 Department of Ocean and Resources

More information

Kinetic damping in gyro-kinetic simulation and the role in multi-scale turbulence

Kinetic damping in gyro-kinetic simulation and the role in multi-scale turbulence 2013 US-Japan JIFT workshop on New Aspects of Plasmas Kinetic Simulation NIFS, November 22-23, 2013 Kinetic damping in gyro-kinetic simulation and the role in multi-scale turbulence cf. Revisit for Landau

More information

Efficient non-hydrostatic modelling of 3D wave-induced currents using a subgrid approach

Efficient non-hydrostatic modelling of 3D wave-induced currents using a subgrid approach 1 2 Efficient non-hydrostatic modelling of 3D wave-induced currents using a subgrid approach 3 4 5 6 7 8 Dirk P. Rijnsdorp a,b,c,, Pieter B. Smit d,, Marcel Zijlema a,, Ad J. H. M. Reniers a, a Environmental

More information

Notes on Nearshore Physical Oceanography. Falk Feddersen SIO

Notes on Nearshore Physical Oceanography. Falk Feddersen SIO Notes on Nearshore Physical Oceanography Falk Feddersen SIO May 22, 2017 Contents 1 Review of Linear Surface Gravity Waves 5 1.1 Definitions..................................... 5 1.2 Potential Flow...................................

More information

SAMPLE CHAPTERS UNESCO EOLSS WAVES IN THE OCEANS. Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany

SAMPLE CHAPTERS UNESCO EOLSS WAVES IN THE OCEANS. Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany WAVES IN THE OCEANS Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany Keywords: Wind waves, dispersion, internal waves, inertial oscillations, inertial waves,

More information

Very basic tsunami physics...

Very basic tsunami physics... Very basic tsunami physics... Energy Bottom uplift & Waterberg formation E R 4.8 + 1.5M E T = 1 2 ρglλ(δh)2 L ~ 1 6 m; λ ~ 1 4 m; δh ~ 5m E R 1 18 J 1 2 E T Center of mass falls... Wavelength λ H ~ 4;

More information

Modeling of Coastal Ocean Flow Fields

Modeling of Coastal Ocean Flow Fields Modeling of Coastal Ocean Flow Fields John S. Allen College of Oceanic and Atmospheric Sciences Oregon State University 104 Ocean Admin Building Corvallis, OR 97331-5503 phone: (541) 737-2928 fax: (541)

More information

RELAXED VARIATIONAL PRINCIPLE FOR WATER WAVE MODELING

RELAXED VARIATIONAL PRINCIPLE FOR WATER WAVE MODELING RELAXED VARIATIONAL PRINCIPLE FOR WATER WAVE MODELING DENYS DUTYKH 1 Senior Research Fellow UCD & Chargé de Recherche CNRS 1 University College Dublin School of Mathematical Sciences Workshop on Ocean

More information

Resonant excitation of trapped coastal waves by free inertia-gravity waves

Resonant excitation of trapped coastal waves by free inertia-gravity waves Resonant excitation of trapped coastal waves by free inertia-gravity waves V. Zeitlin 1 Institut Universitaire de France 2 Laboratory of Dynamical Meteorology, University P. and M. Curie, Paris, France

More information

A note on the shoaling of acoustic gravity waves

A note on the shoaling of acoustic gravity waves A note on the shoaling of acoustic gravity waves USAMA KADRI MICHAEL STIASSNIE Technion Israel Institute of Technology Faculty of Civil Environmental Engineering Technion 32, Haifa ISRAEL usamakadri@gmailcom

More information

Algebraic geometry for shallow capillary-gravity waves

Algebraic geometry for shallow capillary-gravity waves Algebraic geometry for shallow capillary-gravity waves DENYS DUTYKH 1 Chargé de Recherche CNRS 1 Université de Savoie Laboratoire de Mathématiques (LAMA) 73376 Le Bourget-du-Lac France Seminar of Computational

More information

Model equations for planetary and synoptic scale atmospheric motions associated with different background stratification

Model equations for planetary and synoptic scale atmospheric motions associated with different background stratification Model equations for planetary and synoptic scale atmospheric motions associated with different background stratification Stamen Dolaptchiev & Rupert Klein Potsdam Institute for Climate Impact Research

More information

The Dynamics of Detonation with WENO and Navier-Stokes Shock-Capturing

The Dynamics of Detonation with WENO and Navier-Stokes Shock-Capturing The Dynamics of Detonation with WENO and Navier-Stokes Shock-Capturing Christopher M. Romick, University of Notre Dame, Notre Dame, IN Tariq D. Aslam, Los Alamos National Laboratory, Los Alamos, NM and

More information

Chapter 3. Shallow Water Equations and the Ocean. 3.1 Derivation of shallow water equations

Chapter 3. Shallow Water Equations and the Ocean. 3.1 Derivation of shallow water equations Chapter 3 Shallow Water Equations and the Ocean Over most of the globe the ocean has a rather distinctive vertical structure, with an upper layer ranging from 20 m to 200 m in thickness, consisting of

More information

Chapter 7: Natural Convection

Chapter 7: Natural Convection 7-1 Introduction 7- The Grashof Number 7-3 Natural Convection over Surfaces 7-4 Natural Convection Inside Enclosures 7-5 Similarity Solution 7-6 Integral Method 7-7 Combined Natural and Forced Convection

More information

Symmetric Instability and Rossby Waves

Symmetric Instability and Rossby Waves Chapter 8 Symmetric Instability and Rossby Waves We are now in a position to begin investigating more complex disturbances in a rotating, stratified environment. Most of the disturbances of interest are

More information

Tyn Myint-U Lokenath Debnath. Linear Partial Differential Equations for Scientists and Engineers. Fourth Edition. Birkhauser Boston Basel Berlin

Tyn Myint-U Lokenath Debnath. Linear Partial Differential Equations for Scientists and Engineers. Fourth Edition. Birkhauser Boston Basel Berlin Tyn Myint-U Lokenath Debnath Linear Partial Differential Equations for Scientists and Engineers Fourth Edition Birkhauser Boston Basel Berlin Preface to the Fourth Edition Preface to the Third Edition

More information

Hydrodynamic analysis and modelling of ships

Hydrodynamic analysis and modelling of ships Hydrodynamic analysis and modelling of ships Wave loading Harry B. Bingham Section for Coastal, Maritime & Structural Eng. Department of Mechanical Engineering Technical University of Denmark DANSIS møde

More information

Chapter 7. Linear Internal Waves. 7.1 Linearized Equations. 7.2 Linear Vertical Velocity Equation

Chapter 7. Linear Internal Waves. 7.1 Linearized Equations. 7.2 Linear Vertical Velocity Equation Chapter 7 Linear Internal Waves Here we now derive linear internal waves in a Boussinesq fluid with a steady (not time varying) stratification represented by N 2 (z) andnorotationf =0. 7.1 Linearized Equations

More information

Storm Surge Frequency Analysis using a Modified Joint Probability Method with Optimal Sampling (JPM-OS)

Storm Surge Frequency Analysis using a Modified Joint Probability Method with Optimal Sampling (JPM-OS) Storm Surge Frequency Analysis using a Modified Joint Probability Method with Optimal Sampling (JPM-OS) Jay Ratcliff Coastal Hydraulics Lab, of Engineers (USACE) Engineering Research and Development Center

More information

Efficient FEM-multigrid solver for granular material

Efficient FEM-multigrid solver for granular material Efficient FEM-multigrid solver for granular material S. Mandal, A. Ouazzi, S. Turek Chair for Applied Mathematics and Numerics (LSIII), TU Dortmund STW user committee meeting Enschede, 25th September,

More information

10. Buoyancy-driven flow

10. Buoyancy-driven flow 10. Buoyancy-driven flow For such flows to occur, need: Gravity field Variation of density (note: not the same as variable density!) Simplest case: Viscous flow, incompressible fluid, density-variation

More information

Effect of continental slope on N-wave type tsunami run-up

Effect of continental slope on N-wave type tsunami run-up 656865OCS0010.1177/1759313116656865The International Journal of Ocean and Climate SystemsNaik and Behera research-article2016 Original Article Effect of continental slope on N-wave type tsunami run-up

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Mass Conservation in shallow water storm surge computations Jeffrey P. Laible Department of Civil and Environmental Engineering University of Vermont Burlington, Vermont 05405 E-mail: laible@emba. uvm.

More information

Concepts from linear theory Extra Lecture

Concepts from linear theory Extra Lecture Concepts from linear theory Extra Lecture Ship waves from WW II battleships and a toy boat. Kelvin s (1887) method of stationary phase predicts both. Concepts from linear theory A. Linearize the nonlinear

More information

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Dedicated to Todd F. Dupont on the occasion of his 65th birthday Yingjie Liu, Chi-Wang Shu and Zhiliang

More information