Very basic tsunami physics...

Size: px
Start display at page:

Download "Very basic tsunami physics..."

Transcription

1 Very basic tsunami physics... Energy Bottom uplift & Waterberg formation E R M E T = 1 2 ρglλ(δh)2 L ~ 1 6 m; λ ~ 1 4 m; δh ~ 5m E R 1 18 J 1 2 E T Center of mass falls... Wavelength λ H ~ 4; H a ~ 3 13 λ >> H >> a a Potential energy goes to tsunami energy Tsunami is a shallow-water gravity wave with great wavelength and tiny amplitude

2 Navier-Stokes equations Newton s law + Conservation of matter + Viscosity ρ v t + ρ(v grad)v = grad(p) ρgrad(φ) + ( ) +ηδv + (η + η )grad div(v)

3 Gravity waves: dispersion F(z) = 2Ae -kh cosh[ k(z + h) ] and the boundary at the top gives the dispersion relation for incompressible, irrotational, small amplitude gravity waves: ω 2 = kg[ tanh(kh) ] deep water (kh goes to infinity) ω 2 = kg shallow water (kh goes to zero) ω 2 = k 2 gh c = g k = gλ u = ω k = 1 2 c = 1 2 2π g k = 1 2 gλ 2π c = gh u = ω k = c = gh

4 Tsunami eigenvalues & eigenfunctions

5

6 Modal approach - sketch Equations of elastic motion with gravity + boundary conditions FULL coupling between the fluid and solid layers Eigenvalues & Eigenfunctions x = x 1 x 2 x 3 x N-1 x N =X! x Seismic source excitation Tsunami mode propagation in LHM z Propagation factor Excitation factor Receiver factor exp( -iπ/4) ( ) = U X, ϕ, z, ω, t 8π exp[ iω( t - τ) ] J χ( h s, ϕ) R ( ω ) ωc v g I 1 s u( z, ω) v g I 1 X

7 Modal approach: formulation Direction of propagation x z -l z -l+1 Free surface l-th liquid layer EQUATIONS OF MOTION α 2 ( u) - ge z u = 2 u t 2 z -j z -j+1 j-th liquid layer ocean α 2 ( u) - β 2 ( u) = 2 u t 2 z -1 z z 1 1-st liquid layer 1-st solid layer BOUNDARY CONDITIONS α 2 u - gw = z m z m+1 m-th solid layer solid ( ) = w -j-1 ( z -j ) u -j ( z -j ) = u -j-1 ( z - j ) p -j ( z -j + w - j ) = p -j-1 ( z -j + w -j-1 ) w -j z -j z z N-1 z N (N-1)-th solid layer halfspace w -1 ( z ) = w 1 ( z ) p -1 ( z ) = σ 1 ( z ) = τ 1 ( z ) w m ( z m ) = w m+1 ( z m ) u m ( z m ) = u m+1 ( z m ) Reference 1-D model σ m ( z m ) = σ m+1 ( z m ) τ m ( z m ) = τ m+1 ( z m )

8 Modal approach: Eigenvalues velocity (km/s).2.1 p_4 p_6 p_8 g_4 g_6 g_ depth (km) frequency (Hz) Eigenfunctions of the radial and vertical (normalized to 1 at the freesurface) component of motion at frequency equal to.7 Hz, in the fluid. The curves for three crustal models 1, 2 and 3, are totally overlapped; on the bottom, the eigenfunctions in the solid layers are shown depth (km) _x 1_z 2_x 2_z 3_x 3_z

9 Modal approach: excitation spectra.4 amplitude spectra x_ss z_ss x_ds z_ds Amplitude spectra calculated for a double couple source (1 13 Nm seismic moment) at 5 km from the receiver: a) for pure strike-slip and pure dip-slip; b) for a liquid layer 4, 6 and 8 km thick; frequency (Hz) c) for different crustal model and source depths..3.4 x_4 1_9 amplitude spectra.2.1 x_6 x_8 z_4 z_6 z_8 amplitude spectra.3.2 1_14 3_9 3_ frequency (Hz) frequency (Hz)

10 Modal approach: 2D tsunami motion U( X,!,z,", t) = exp -i#/4 ( ) 8# exp[ i" ( t - X/c) ] X $ ( h s,!)r(") u z," "c v g I 1 v g I 1 ( ) U( X,!,z,",t) = exp -i#/4 ( ) 8# exp[ i" ( t - $ )] J %( h s,!)r(") "c v g I 1 s u z," ( ) v g I 1 X SHOALING FACTOR " W( X 2,,! ) w(,!) W( X 1,,! ) = 2 v g I 1 % $ 1 ' $ w(,!) 1 v g I # 1 ' 2 & J 1 J 2! H 4 1 H 2

11 Example: Synthetic signals for the tsunami mode (vertical component) excited by a dip-slip mechanism with M = Nm. h s = 14 km; h s = 34 km. 2.5 z (m) z (m) -2 2 X=5 km X=5 km z (m) z (m) z (m) z (m) -2 2 X=2 km X=2 km z (m) z (m) time (h) time (h) For each of the two source-receiver distances considered, the upper trace refers to the 1-D model and the lower trace to a laterally varying model. In the laterally varying model the liquid layer is getting thinner with increasing distance from the source, with a gradient of.175 and the uppermost solid layer is compensating this thinning.

12 Example:Sketch of a laterally heterogeneous model for a realistic scenario. Synthetic mareograms (vertical) calculated at various distances along the section. The extension of zone C is 5 km x X=5 km X=15 km -2 2 z A B C D X=65 km -2 1 ds_16_7.7 2 ds_16_8.1 ds_2_8.1 X=69 km 1 ss_16_ X=75 km distance (km) -2 3 time (h)

13 Measurement of tsunami waves Tide gauges can measure TW along the coast... Tsunami records and their f-t diagram: solid line (E) is the time of main shock, dashed line (TA) is Tsunami arrival The 26 December 24 Sumatra Tsunami: Analysis of Tide Gauge Data from the World Ocean Part 1. Indian Ocean and South Africa Alexander B. Rabinovich and Richard E. Thomson

14 Measurement of tsunami waves Tide gauges can measure TW along the coast, but their detection in open ocean is challenging, due to their wavelengths and amplitudes. ocean bottom sensors (pressure gauges & seismometers) Seismic Records of the 24 Sumatra and Other Tsunamis: A Quantitative Study Emile A. Okal

15 Measurement of tsunami waves Tide gauges can measure TW along the coast, but their detection in open ocean is challenging, due to their wavelengths and amplitudes. ocean bottom sensors hydrophones (towards high frequency bands...) a) Raw time series b) spectrogram c) close-up of the tsunami branch and comparison with w 2 =gktanh(kh) Quantification of Hydrophone Records of the 24 Sumatra Tsunami Emile A. Okal, Jacques Talandier and Dominique Reymond

16 Measurement of tsunami waves Tide gauges can measure TW along the coast, but their detection in open ocean is challenging, due to their wavelengths and amplitudes. ocean bottom sensors (pressure gauges or seismometers) sea level measurement (GPS receivers on buoys) satellite altimetry NOAA

17 Tsunami signature in the ionosphere By dynamic coupling with the atmosphere, acousticgravity waves are generated Traveling Ionospheric Disturbances (TID) can be detected and monitored by high-density GPS networks

18 Tsunami signature in the ionosphere Hines (196): atmospheric Internal Gravity Waves Peltier & Hines (1972): can generate ionospheric signatures in the plasma Lognonné et al. (1998): Analytical Coupled model Artru et al. (25): ionospheric imaging can detect tusnami signatures. GPS JAPAN net was used to map Chilean Tsunami of 21 Occhipinti et al. (26): Sumatra tsunami mapped Three-dimensional waveform modeling of ionospheric signature induced by the 24 Sumatra tsunami Giovanni Occhipinti, Philippe Lognonné, E. Alam Kherani and Helene Hebert GRL, 26, 33

19 Tsunami signature in the ionosphere Tsunami-generated IGWs and the response of the ionosphere to neutral motion at 2:4 UT. Normalized vertical velocity Perturbation in the ionospheric plasma

20 Tsunami signature in the ionosphere The TEC (Total Electron Content) perturbation induced by tsunami-coupled IGW is superimposed on a broad local-time (sunrise) TEC structure.

Corso di Laurea in Fisica - UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA TSUNAMI FABIO ROMANELLI

Corso di Laurea in Fisica - UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA TSUNAMI FABIO ROMANELLI Corso di Laurea in Fisica - UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA TSUNAMI FABIO ROMANELLI Department of Mathematics & Geosciences University of Trieste romanel@units.it http://moodle2.units.it/course/view.php?id=887

More information

Three Dimensional Simulations of Tsunami Generation and Propagation

Three Dimensional Simulations of Tsunami Generation and Propagation Chapter 1 Earth Science Three Dimensional Simulations of Tsunami Generation and Propagation Project Representative Takashi Furumura Authors Tatsuhiko Saito Takashi Furumura Earthquake Research Institute,

More information

Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami

Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L02611, doi:10.1029/2007gl032129, 2008 Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami S. Koshimura, 1 Y.

More information

Global geophysics and wave propagation

Global geophysics and wave propagation Global geophysics and wave propagation Reading: Fowler p76 83 Remote sensing Geophysical methods Seismology Gravity and bathymetry Magnetics Heat flow Seismology: Directly samples the physical properties

More information

v t + fu = 1 p y w t = 1 p z g u x + v y + w

v t + fu = 1 p y w t = 1 p z g u x + v y + w 1 For each of the waves that we will be talking about we need to know the governing equators for the waves. The linear equations of motion are used for many types of waves, ignoring the advective terms,

More information

Tsunamis and ocean waves

Tsunamis and ocean waves Department of Mathematics & Statistics AAAS Annual Meeting St. Louis Missouri February 19, 2006 Introduction Tsunami waves are generated relatively often, from various sources Serious tsunamis (serious

More information

Sound Waves Sound Waves:

Sound Waves Sound Waves: 3//18 Sound Waves Sound Waves: 1 3//18 Sound Waves Linear Waves compression rarefaction Inference of Sound Wave equation: Sound Waves We look at small disturbances in a compressible medium (note: compressible

More information

LECTURE 6 EARTHQUAKES AS TSUNAMI SOURCES

LECTURE 6 EARTHQUAKES AS TSUNAMI SOURCES LECTURE 6 EARTHQUAKES AS TSUNAMI SOURCES Northwestern University, 2007 TSUNAMI GENERATION by EARTHQUAKE SOURCES CLASSICAL APPROA CH 1. Consider model of EarthquakeRupture 2. Compute Static Deformation

More information

Inversion of tsunami data. A. Sladen CNRS, Géoazur 1/35

Inversion of tsunami data. A. Sladen CNRS, Géoazur 1/35 Inversion of tsunami data A. Sladen CNRS, Géoazur 1/35 DEFINITION Tsunami waves are gravity wave with a long period need a BIG source! 2/35 DEFINITION Krakatoa, 1883 Summer 2015, E.T. pers. comm. Lituya

More information

Surface Waves and Free Oscillations. Surface Waves and Free Oscillations

Surface Waves and Free Oscillations. Surface Waves and Free Oscillations Surface waves in in an an elastic half spaces: Rayleigh waves -Potentials - Free surface boundary conditions - Solutions propagating along the surface, decaying with depth - Lamb s problem Surface waves

More information

Figure 1: Surface waves

Figure 1: Surface waves 4 Surface Waves on Liquids 1 4 Surface Waves on Liquids 4.1 Introduction We consider waves on the surface of liquids, e.g. waves on the sea or a lake or a river. These can be generated by the wind, by

More information

Three-dimensional numerical modeling of tsunami-related internal gravity waves in the Hawaiian atmosphere

Three-dimensional numerical modeling of tsunami-related internal gravity waves in the Hawaiian atmosphere LETTER Earth Planets Space, 63, 847 851, 2011 Three-dimensional numerical modeling of tsunami-related internal gravity waves in the Hawaiian atmosphere Giovanni Occhipinti 1,2, Pierdavide Coïsson 1, Jonathan

More information

Three-dimensional numerical modeling of tsunami-related internal gravity waves in the Hawaiian atmosphere

Three-dimensional numerical modeling of tsunami-related internal gravity waves in the Hawaiian atmosphere Earth Planets Space, 58, 1 5, 2011 Three-dimensional numerical modeling of tsunami-related internal gravity waves in the Hawaiian atmosphere Giovanni Occhipinti 1,2, Pierdavide Coïsson 1, Jonathan J. Makela

More information

Lecture 1: Introduction to Linear and Non-Linear Waves

Lecture 1: Introduction to Linear and Non-Linear Waves Lecture 1: Introduction to Linear and Non-Linear Waves Lecturer: Harvey Segur. Write-up: Michael Bates June 15, 2009 1 Introduction to Water Waves 1.1 Motivation and Basic Properties There are many types

More information

SAMPLE CHAPTERS UNESCO EOLSS WAVES IN THE OCEANS. Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany

SAMPLE CHAPTERS UNESCO EOLSS WAVES IN THE OCEANS. Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany WAVES IN THE OCEANS Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany Keywords: Wind waves, dispersion, internal waves, inertial oscillations, inertial waves,

More information

Seismic signals from tsunamis in the Pacific Ocean

Seismic signals from tsunamis in the Pacific Ocean GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L03305, doi:10.1029/2007gl032601, 2008 Seismic signals from tsunamis in the Pacific Ocean Gordon Shields 1 and J. Roger Bowman 1 Received 8 November 2007; revised

More information

NUMERICAL SIMULATIONS FOR TSUNAMI FORECASTING AT PADANG CITY USING OFFSHORE TSUNAMI SENSORS

NUMERICAL SIMULATIONS FOR TSUNAMI FORECASTING AT PADANG CITY USING OFFSHORE TSUNAMI SENSORS NUMERICAL SIMULATIONS FOR TSUNAMI FORECASTING AT PADANG CITY USING OFFSHORE TSUNAMI SENSORS Setyoajie Prayoedhie Supervisor: Yushiro FUJII MEE10518 Bunichiro SHIBAZAKI ABSTRACT We conducted numerical simulations

More information

2. Theory of Small Amplitude Waves

2. Theory of Small Amplitude Waves . Theory of Small Amplitude Waves.1 General Discussion on Waves et us consider a one-dimensional (on -ais) propagating wave that retains its original shape. Assume that the wave can be epressed as a function

More information

Hydrodynamic Forces on Floating Bodies

Hydrodynamic Forces on Floating Bodies Hydrodynamic Forces on Floating Bodies 13.42 Lecture Notes; c A.H. Techet 1. Forces on Large Structures For discussion in this section we will be considering bodies that are quite large compared to the

More information

Contribution of HPC to the mitigation of natural risks. B. Feignier. CEA-DAM Ile de France Département Analyse, Surveillance, Environnement

Contribution of HPC to the mitigation of natural risks. B. Feignier. CEA-DAM Ile de France Département Analyse, Surveillance, Environnement Contribution of HPC to the mitigation of natural risks B. Feignier CEA-DAM Ile de France Département Analyse, Surveillance, Environnement Introduction Over the last 40 years, the increase in computational

More information

Lecture 7: Oceanographic Applications.

Lecture 7: Oceanographic Applications. Lecture 7: Oceanographic Applications. Lecturer: Harvey Segur. Write-up: Daisuke Takagi June 18, 2009 1 Introduction Nonlinear waves can be studied by a number of models, which include the Korteweg de

More information

Salmon: Introduction to ocean waves

Salmon: Introduction to ocean waves 9 The shallow-water equations. Tsunamis. Our study of waves approaching the beach had stopped at the point of wave breaking. At the point of wave breaking, the linear theory underlying Propositions #1

More information

Lessons from the 2004 Sumatra earthquake and the Asian tsunami

Lessons from the 2004 Sumatra earthquake and the Asian tsunami Lessons from the 2004 Sumatra earthquake and the Asian tsunami Kenji Satake National Institute of Advanced Industrial Science and Technology Outline 1. The largest earthquake in the last 40 years 2. Tsunami

More information

The Rotational and Gravitational Signature of Recent Great Earthquakes

The Rotational and Gravitational Signature of Recent Great Earthquakes The Rotational and Gravitational Signature of Recent Great Earthquakes Richard S. Gross Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 8099, USA 7th IVS General Meeting

More information

Exam in Fluid Mechanics 5C1214

Exam in Fluid Mechanics 5C1214 Eam in Fluid Mechanics 5C1214 Final eam in course 5C1214 13/01 2004 09-13 in Q24 Eaminer: Prof. Dan Henningson The point value of each question is given in parenthesis and you need more than 20 points

More information

JMA Tsunami Warning Services. Takeshi KOIZUMI Senior Coordinator for International Earthquake and Tsunami Information Japan Meteorological Agency

JMA Tsunami Warning Services. Takeshi KOIZUMI Senior Coordinator for International Earthquake and Tsunami Information Japan Meteorological Agency JMA Tsunami Warning Services Takeshi KOIZUMI Senior Coordinator for International Earthquake and Tsunami Information Japan Meteorological Agency Tectonic Setting of Japan (Headquarters for Earthquake Research

More information

Advanced Workshop on Evaluating, Monitoring and Communicating Volcanic and Seismic Hazards in East Africa.

Advanced Workshop on Evaluating, Monitoring and Communicating Volcanic and Seismic Hazards in East Africa. 2053-11 Advanced Workshop on Evaluating, Monitoring and Communicating Volcanic and Seismic Hazards in East Africa 17-28 August 2009 Seismic monitoring on volcanoes in a multi-disciplinary context Jürgen

More information

Fundamentals of Fluid Dynamics: Waves in Fluids

Fundamentals of Fluid Dynamics: Waves in Fluids Fundamentals of Fluid Dynamics: Waves in Fluids Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/ tzielins/ Institute

More information

5. What is an earthquake 6. Indicate the approximate radius of the earth, inner core, and outer core.

5. What is an earthquake 6. Indicate the approximate radius of the earth, inner core, and outer core. Tutorial Problems 1. Where Do Earthquakes Happen? 2. Where do over 90% of earthquakes occur? 3. Why Do Earthquakes Happen? 4. What are the formulae for P and S velocity 5. What is an earthquake 6. Indicate

More information

Rogue Waves. Thama Duba, Colin Please, Graeme Hocking, Kendall Born, Meghan Kennealy. 18 January /25

Rogue Waves. Thama Duba, Colin Please, Graeme Hocking, Kendall Born, Meghan Kennealy. 18 January /25 1/25 Rogue Waves Thama Duba, Colin Please, Graeme Hocking, Kendall Born, Meghan Kennealy 18 January 2019 2/25 What is a rogue wave Mechanisms causing rogue waves Where rogue waves have been reported Modelling

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11492 Figure S1 Short-period Seismic Energy Release Pattern Imaged by F-net. (a) Locations of broadband seismograph stations in Japanese F-net used for the 0.5-2.0 Hz P wave back-projection

More information

Seismogeodesy for rapid earthquake and tsunami characterization

Seismogeodesy for rapid earthquake and tsunami characterization Seismogeodesy for rapid earthquake and tsunami characterization Yehuda Bock Scripps Orbit and Permanent Array Center Scripps Institution of Oceanography READI & NOAA-NASA Tsunami Early Warning Projects

More information

43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms,

43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms, 43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms, A) her moment of inertia increases and her rotational kinetic energy remains the same.

More information

Chapter 5. The Differential Forms of the Fundamental Laws

Chapter 5. The Differential Forms of the Fundamental Laws Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations

More information

Tsunami excitation by inland/coastal earthquakes: the Green function approach

Tsunami excitation by inland/coastal earthquakes: the Green function approach Natural Hazards and Earth System Sciences 23 3: 353 365 European Geosciences Union 23 Natural Hazards and Earth System Sciences Tsunami excitation by inland/coastal earthquakes: the Green function approach

More information

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem 1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem Objective of the Chapter: Formulation of the potential flow around the hull of a ship advancing and oscillationg in waves Results of the Chapter:

More information

Chapter 3. Shallow Water Equations and the Ocean. 3.1 Derivation of shallow water equations

Chapter 3. Shallow Water Equations and the Ocean. 3.1 Derivation of shallow water equations Chapter 3 Shallow Water Equations and the Ocean Over most of the globe the ocean has a rather distinctive vertical structure, with an upper layer ranging from 20 m to 200 m in thickness, consisting of

More information

Seth Stein and Emile Okal, Department of Geological Sciences, Northwestern University, Evanston IL USA. Revised 2/5/05

Seth Stein and Emile Okal, Department of Geological Sciences, Northwestern University, Evanston IL USA. Revised 2/5/05 Sumatra earthquake moment from normal modes 2/6/05 1 Ultra-long period seismic moment of the great December 26, 2004 Sumatra earthquake and implications for the slip process Seth Stein and Emile Okal,

More information

2 The incompressible Kelvin-Helmholtz instability

2 The incompressible Kelvin-Helmholtz instability Hydrodynamic Instabilities References Chandrasekhar: Hydrodynamic and Hydromagnetic Instabilities Landau & Lifshitz: Fluid Mechanics Shu: Gas Dynamics 1 Introduction Instabilities are an important aspect

More information

Dependence of waveform of near-field coseismic ionospheric disturbances on focal mechanisms

Dependence of waveform of near-field coseismic ionospheric disturbances on focal mechanisms LETTER Earth Planets Space, 61, 939 943, 2009 Dependence of waveform of near-field coseismic ionospheric disturbances on focal mechanisms Elvira Astafyeva 1,2 and Kosuke Heki 1 1 Department of Natural

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/326/5949/112/dc1 Supporting Online Material for Global Surface Wave Tomography Using Seismic Hum Kiwamu Nishida,* Jean-Paul Montagner, Hitoshi Kawakatsu *To whom correspondence

More information

TSUNAMI PROPAGATION AND INUNDATION MODELINGS ALONG SOUTH-EAST COAST OF PAPUA NEW GUINEA

TSUNAMI PROPAGATION AND INUNDATION MODELINGS ALONG SOUTH-EAST COAST OF PAPUA NEW GUINEA TSUNAMI PROPAGATION AND INUNDATION MODELINGS ALONG SOUTH-EAST COAST OF PAPUA NEW GUINEA Martin WAREK Supervisor: Yushiro FUJII MEE12620 Bunichiro SHIBAZAKI ABSTRACT This study covers tsunami generation,

More information

Establishment and Operation of a Regional Tsunami Warning Centre

Establishment and Operation of a Regional Tsunami Warning Centre Establishment and Operation of a Regional Tsunami Warning Centre Dr. Charles McCreery, Director NOAA Richard H. Hagemeyer Pacific Tsunami Warning Center Ewa Beach, Hawaii USA Why A Regional Tsunami Warning

More information

We briefly discuss two examples for solving wave propagation type problems with finite differences, the acoustic and the seismic problem.

We briefly discuss two examples for solving wave propagation type problems with finite differences, the acoustic and the seismic problem. Excerpt from GEOL557 Numerical Modeling of Earth Systems by Becker and Kaus 2016 1 Wave propagation Figure 1: Finite difference discretization of the 2D acoustic problem. We briefly discuss two examples

More information

13.42 LECTURE 2: REVIEW OF LINEAR WAVES

13.42 LECTURE 2: REVIEW OF LINEAR WAVES 13.42 LECTURE 2: REVIEW OF LINEAR WAVES SPRING 2003 c A.H. TECHET & M.S. TRIANTAFYLLOU 1. Basic Water Waves Laplace Equation 2 φ = 0 Free surface elevation: z = η(x, t) No vertical velocity at the bottom

More information

Constraints on Shallow Low-Viscosity Earth Layers from Future GOCE Data

Constraints on Shallow Low-Viscosity Earth Layers from Future GOCE Data Constraints on Shallow Low-Viscosity Earth Layers from Future GOCE Data Hugo Schotman 1,2, Bert Vermeersen 2, Pieter Visser 2 1 2 3 rd International GOCE User Workshop, ESA Esrin, 7 November 2006 glacial-isostatic

More information

Tsunami Wave Analysis and Possibility of Splay Fault Rupture During the 2004 Indian Ocean Earthquake

Tsunami Wave Analysis and Possibility of Splay Fault Rupture During the 2004 Indian Ocean Earthquake Tsunami Wave Analysis and Possibility of Splay Fault Rupture During the 2004 Indian Ocean Earthquake The Harvard community has made this article openly available. Please share how this access benefits

More information

General-Circulation- Model System for Global Tsunami Warning

General-Circulation- Model System for Global Tsunami Warning A Coupled Teleseismic Ocean-General General-Circulation- Model System for Global Tsunami Warning Y. Tony Song Jet Propulsion Laboratory, California Institute of Technology Contents:. Tsunami formation

More information

TSUNAMI HAZARD ASSESSMENT FOR THE CENTRAL COAST OF PERU USING NUMERICAL SIMULATIONS FOR THE 1974, 1966 AND 1746 EARTHQUAKES

TSUNAMI HAZARD ASSESSMENT FOR THE CENTRAL COAST OF PERU USING NUMERICAL SIMULATIONS FOR THE 1974, 1966 AND 1746 EARTHQUAKES TSUNAMI HAZARD ASSESSMENT FOR THE CENTRAL COAST OF PERU USING NUMERICAL SIMULATIONS FOR THE 1974, 1966 AND 1746 EARTHQUAKES Sheila Yauri Supervisor: Yushiro FUJII MEE10521 Bunichiro SHIBAZAKI ABSTRACT

More information

Tsunami waveform analyses of the 2006 underthrust and 2007 outer-rise Kurile earthquakes

Tsunami waveform analyses of the 2006 underthrust and 2007 outer-rise Kurile earthquakes Author(s) 2008. This work is licensed under a Creative Commons License. Advances in Geosciences Tsunami waveform analyses of the 2006 underthrust and 2007 outer-rise Kurile earthquakes Y. Tanioka 1, Y.

More information

Sound Propagation in the Nocturnal Boundary Layer. Roger Waxler Carrick Talmadge Xiao Di Kenneth Gilbert

Sound Propagation in the Nocturnal Boundary Layer. Roger Waxler Carrick Talmadge Xiao Di Kenneth Gilbert Sound Propagation in the Nocturnal Boundary Layer Roger Waxler Carrick Talmadge Xiao Di Kenneth Gilbert The Propagation of Sound Outdoors (over flat ground) The atmosphere is a gas under the influence

More information

TSUNAMI HAZARD ASSESSMENT IN NORTHERN EGYPT USING NUMERICAL SIMULATION

TSUNAMI HAZARD ASSESSMENT IN NORTHERN EGYPT USING NUMERICAL SIMULATION TSUNAMI HAZARD ASSESSMENT IN NORTHERN EGYPT USING NUMERICAL SIMULATION Abutaleb Ali Supervisor: Bunichiro SHIBAZAKI MEE16717 Yushiro FUJII ABSTRACT To investigate the tsunami hazard along the northern

More information

INTERNAL GRAVITY WAVES

INTERNAL GRAVITY WAVES INTERNAL GRAVITY WAVES B. R. Sutherland Departments of Physics and of Earth&Atmospheric Sciences University of Alberta Contents Preface List of Tables vii xi 1 Stratified Fluids and Waves 1 1.1 Introduction

More information

Plasma waves in the fluid picture I

Plasma waves in the fluid picture I Plasma waves in the fluid picture I Langmuir oscillations and waves Ion-acoustic waves Debye length Ordinary electromagnetic waves General wave equation General dispersion equation Dielectric response

More information

Deep-Water Characteristics of the Trans-Pacific Tsunami from the 1 April 2014 M w 8.2 Iquique, Chile Earthquake

Deep-Water Characteristics of the Trans-Pacific Tsunami from the 1 April 2014 M w 8.2 Iquique, Chile Earthquake Pure Appl. Geophys. Ó 2014 Springer Basel DOI 10.1007/s00024-014-0983-8 Pure and Applied Geophysics Deep-Water Characteristics of the Trans-Pacific Tsunami from the 1 April 2014 M w 8.2 Iquique, Chile

More information

Kelvin Helmholtz Instability

Kelvin Helmholtz Instability Kelvin Helmholtz Instability A. Salih Department of Aerospace Engineering Indian Institute of Space Science and Technology, Thiruvananthapuram November 00 One of the most well known instabilities in fluid

More information

Geophysical Journal International

Geophysical Journal International Geophysical Journal International Geophys. J. Int. (2016) 204, 1148 1158 GJI Gravity, geodesy and tides doi: 10.1093/gji/ggv500 Traveling ionospheric disturbances propagating ahead of the Tohoku-Oki tsunami:

More information

Tsunami Simulation of 2009 Dusky Sound Earthquake in New Zealand

Tsunami Simulation of 2009 Dusky Sound Earthquake in New Zealand Tsunami Simulation of 2009 Dusky Sound Earthquake in New Zealand Polina Berezina 1 Institute of Geology, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine Supervisor: Prof. Kenji Satake Earthquake

More information

What is Q? Interpretation 1: Suppose A 0 represents wave amplitudes, then

What is Q? Interpretation 1: Suppose A 0 represents wave amplitudes, then What is Q? Interpretation 1: Suppose A 0 represents wave amplitudes, then A = A 0 e bt = A 0 e ω 0 t /(2Q ) ln(a) ln(a) = ln(a 0 ) ω0 t 2Q intercept slope t Interpretation 2: Suppose u represents displacement,

More information

FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES

FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES Vilma Castillejos Hernandez Supervisor: Tatsuhiko Hara MEE10508 ABSTRACT We performed time domain moment tensor

More information

Absolute strain determination from a calibrated seismic field experiment

Absolute strain determination from a calibrated seismic field experiment Absolute strain determination Absolute strain determination from a calibrated seismic field experiment David W. Eaton, Adam Pidlisecky, Robert J. Ferguson and Kevin W. Hall ABSTRACT The concepts of displacement

More information

Behavior and Sensitivity of Phase Arrival Times (PHASE)

Behavior and Sensitivity of Phase Arrival Times (PHASE) DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Behavior and Sensitivity of Phase Arrival Times (PHASE) Emmanuel Skarsoulis Foundation for Research and Technology Hellas

More information

Linear potential theory for tsunami generation and propagation

Linear potential theory for tsunami generation and propagation Linear potential theory for tsunami generation and propagation 2 3 Tatsuhiko Saito 4 5 6 7 8 9 0 2 3 4 5 National Research Institute for Earth Science and Disaster Prevention, Tsukuba, Ibaraki, Japan Running

More information

The ITSU System in the Pacific Region and Future Upgrades

The ITSU System in the Pacific Region and Future Upgrades The ITSU System in the Pacific Region and Future Upgrades Eddie Bernard Director, Pacific Marine Environmental Laboratory (PMEL) NOAA/USA Pacific Tsunami Warning Center OPERATIONAL ACTIVITIES SEISMIC DATA

More information

STUDY ON TSUNAMIGENIC EARTHQUAKE CRITERIA FOR THE INDONESIAN TSUNAMI EARLY WARNING SYSTEM

STUDY ON TSUNAMIGENIC EARTHQUAKE CRITERIA FOR THE INDONESIAN TSUNAMI EARLY WARNING SYSTEM STUDY ON TSUNAMIGENIC EARTHQUAKE CRITERIA FOR THE INDONESIAN TSUNAMI EARLY WARNING SYSTEM Nanang T. Puspito 1 1 Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology

More information

Seismic Zoning of Vietnam

Seismic Zoning of Vietnam Seismic Zoning of Definition of seismic zones Magnitude discretization SH Seismic Zoning of Smoothing of magnitude Selection of grid points within seismogenic zones SH Seismic Zoning of Distribution of

More information

Attenuation and dispersion

Attenuation and dispersion Attenuation and dispersion! Mechanisms: Absorption (inelastic); Scattering (elastic).! Mathematical descriptions! Measurement! Frequency dependence! Dispersion, its relation to attenuation Reading: Sheriff

More information

Part V. Special topics

Part V. Special topics Part V Special topics 22 Small-amplitude surface waves Surface waves in the sea are created by the interaction of wind and water which somehow transforms the steady motion of the streaming air into the

More information

Thomas Pierro, Donald Slinn, Kraig Winters

Thomas Pierro, Donald Slinn, Kraig Winters Thomas Pierro, Donald Slinn, Kraig Winters Department of Ocean Engineering, Florida Atlantic University, Boca Raton, Florida Applied Physics Laboratory, University of Washington, Seattle, Washington Supported

More information

SURFACE WAVE DISPERSION PRACTICAL (Keith Priestley)

SURFACE WAVE DISPERSION PRACTICAL (Keith Priestley) SURFACE WAVE DISPERSION PRACTICAL (Keith Priestley) This practical deals with surface waves, which are usually the largest amplitude arrivals on the seismogram. The velocity at which surface waves propagate

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING

RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 1359 RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING Shusaku INOUE 1,

More information

Concepts from linear theory Extra Lecture

Concepts from linear theory Extra Lecture Concepts from linear theory Extra Lecture Ship waves from WW II battleships and a toy boat. Kelvin s (1887) method of stationary phase predicts both. Concepts from linear theory A. Linearize the nonlinear

More information

The Solid Earth Chapter 4 Answers to selected questions. (1) Love waves involve transverse motion, generally arrive before Rayleigh waves.

The Solid Earth Chapter 4 Answers to selected questions. (1) Love waves involve transverse motion, generally arrive before Rayleigh waves. The Solid Earth Chapter 4 Answers to selected questions (1) Love waves involve transverse motion, generally arrive before Rayleigh waves. () (a) T = 10 s, v ~4 kms -1, so wavelength is ~40 km. (b) T =

More information

Given the water behaves as shown above, which direction will the cylinder rotate?

Given the water behaves as shown above, which direction will the cylinder rotate? water stream fixed but free to rotate Given the water behaves as shown above, which direction will the cylinder rotate? ) Clockwise 2) Counter-clockwise 3) Not enough information F y U 0 U F x V=0 V=0

More information

Real Time Monitoring System for Megathrust Earthquakes and Tsunamis - Cabled Network System and Buoy System in Japan -

Real Time Monitoring System for Megathrust Earthquakes and Tsunamis - Cabled Network System and Buoy System in Japan - Real Time Monitoring System for Megathrust Earthquakes and Tsunamis - Cabled Network System and Buoy System in Japan - 1 Subduction zones around the world Haiti Italy Turkey Tohoku Sichuan Taiwan Sumatra

More information

2, from which K = # " 2 % 4 3 $ ) ( )

2, from which K = #  2 % 4 3 $ ) ( ) Introducción a la Geofísica 2010-01 TAREA 6 1) FoG. Calculate the bulk modulus (K), the shear modulus (µ) and Poisson s ratio (ν) for the lower crust, upper mantle and lower mantle, respectively, using

More information

Indian Ocean Tsunami Warning System: Example from the 12 th September 2007 Tsunami

Indian Ocean Tsunami Warning System: Example from the 12 th September 2007 Tsunami Indian Ocean Tsunami Warning System: Example from the 12 th September 2007 Tsunami Charitha Pattiaratchi 1 Professor of Coastal Oceanography, The University of Western Australia Email: chari.pattiaratchi@uwa.edu.au

More information

LOCAL TSUNAMIS: CHALLENGES FOR PREPAREDNESS AND EARLY WARNING

LOCAL TSUNAMIS: CHALLENGES FOR PREPAREDNESS AND EARLY WARNING LOCAL TSUNAMIS: CHALLENGES FOR PREPAREDNESS AND EARLY WARNING HARALD SPAHN 1 1 German Technical Cooperation International Services, Jakarta, Indonesia ABSTRACT: Due to the threat of local tsunamis warning

More information

Advisors: Arcadii Grinshpan, Mathematics and Statistics Rocco Malservisi, School of Geosciences. Problem Suggested By: Rocco Malservisi

Advisors: Arcadii Grinshpan, Mathematics and Statistics Rocco Malservisi, School of Geosciences. Problem Suggested By: Rocco Malservisi Undergraduate Journal of Mathematical Modeling: One + Two Volume 8 2018 Spring 2018 Issue 2 Article 6 Tsunami Waves Samantha Pennino University of South Florida Advisors: Arcadii Grinshpan, Mathematics

More information

7. Post Glacial Rebound. Ge 163 4/16/14-

7. Post Glacial Rebound. Ge 163 4/16/14- 7. Post Glacial Rebound Ge 163 4/16/14- Outline Overview Order of magnitude estimate of mantle viscosity Essentials of fluid mechanics Viscosity Stokes Flow Biharmonic equation Half-space model Channel

More information

1. Froude Krylov Excitation Force

1. Froude Krylov Excitation Force .016 Hydrodynamics eading #8.016 Hydrodynamics Prof. A.H. Techet 1. Froude Krylov Ecitation Force Ultimately, if we assume the body to be sufficiently small as not to affect the pressure field due to an

More information

Notes on Comparing the Nano-Resolution Depth Sensor to the Co-located Ocean Bottom Seismometer at MARS

Notes on Comparing the Nano-Resolution Depth Sensor to the Co-located Ocean Bottom Seismometer at MARS Notes on Comparing the Nano-Resolution Depth Sensor to the Co-located Ocean Bottom Seismometer at MARS Elena Tolkova, Theo Schaad 1 1 Paroscientific, Inc., and Quartz Seismic Sensors, Inc. October 15,

More information

Estimating the Effect of Earth Elasticity and Variable Water Density on Tsunami Speeds

Estimating the Effect of Earth Elasticity and Variable Water Density on Tsunami Speeds GEOPHYSICAL RESEARCH LETTERS, VOL.???, XXXX, DOI:10.1029/, 1 2 Estimating the Effect of Earth Elasticity and Variable Water Density on Tsunami Speeds Victor C. Tsai 1,2, Jean-Paul Ampuero 1,2, Hiroo Kanamori

More information

Magnetohydrodynamic Waves

Magnetohydrodynamic Waves Magnetohydrodynamic Waves Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 17, 2016 These slides are largely based off of 4.5 and 4.8 of The Physics of

More information

Summary PHY101 ( 2 ) T / Hanadi Al Harbi

Summary PHY101 ( 2 ) T / Hanadi Al Harbi الكمية Physical Quantity القانون Low التعريف Definition الوحدة SI Unit Linear Momentum P = mθ be equal to the mass of an object times its velocity. Kg. m/s vector quantity Stress F \ A the external force

More information

1 The satellite altimeter measurement

1 The satellite altimeter measurement 1 The satellite altimeter measurement In the ideal case, a satellite altimeter measurement is equal to the instantaneous distance between the satellite s geocenter and the ocean surface. However, an altimeter

More information

Constraints on Mantle Structure from Surface Observables

Constraints on Mantle Structure from Surface Observables MYRES I: Heat, Helium & Whole Mantle Convection Constraints on Mantle Structure from Surface Observables Magali Billen University of California, Davis Department of Geology The Goal Use observations of

More information

Estimating the effect of Earth elasticity and variable water density on tsunami speeds

Estimating the effect of Earth elasticity and variable water density on tsunami speeds GEOPHYSICAL RESEARCH LETTERS, VOL. 4, 49 496, doi:1.1/grl.5147, 13 Estimating the effect of Earth elasticity and variable water density on tsunami speeds Victor C. Tsai, 1, Jean-Paul Ampuero, 1, Hiroo

More information

Earthscope Imaging Science & CIG Seismology Workshop

Earthscope Imaging Science & CIG Seismology Workshop Earthscope Imaging Science & CIG Seismology Introduction to Direct Imaging Methods Alan Levander Department of Earth Science Rice University 1 Two classes of scattered wave imaging systems 1. Incoherent

More information

SIO 210 Introduction to Physical Oceanography Mid-term examination Wednesday, November 2, :00 2:50 PM

SIO 210 Introduction to Physical Oceanography Mid-term examination Wednesday, November 2, :00 2:50 PM SIO 210 Introduction to Physical Oceanography Mid-term examination Wednesday, November 2, 2005 2:00 2:50 PM This is a closed book exam. Calculators are allowed. (101 total points.) MULTIPLE CHOICE (3 points

More information

JMA Tsunami Warning Services. Tomoaki OZAKI Senior Coordinator for Tsunami Forecast Modeling Japan Meteorological Agency

JMA Tsunami Warning Services. Tomoaki OZAKI Senior Coordinator for Tsunami Forecast Modeling Japan Meteorological Agency JMA Tsunami Warning Services Tomoaki OZAKI Senior Coordinator for Tsunami Forecast Modeling Japan Meteorological Agency Organization Chart of the Government of Japan Cabinet Office Diet Ministry of Internal

More information

arxiv: v1 [physics.geo-ph] 31 Dec 2013

arxiv: v1 [physics.geo-ph] 31 Dec 2013 Comparing the Nano-Resolution Depth Sensor to the Co-located Ocean Bottom Seismometer at MARS Elena Tolkova 1, Theo Schaad 2 1 NorthWest Research Associates 2 Paroscientific, Inc., and Quartz Seismic Sensors,

More information

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Alexander Chesnokov Lavrentyev Institute of Hydrodynamics Novosibirsk, Russia chesnokov@hydro.nsc.ru July 14,

More information

Tsunami Physics and Preparedness. March 6, 2005 ICTP Public Information Office 1

Tsunami Physics and Preparedness. March 6, 2005 ICTP Public Information Office 1 Tsunami Physics and Preparedness March 6, 2005 ICTP Public Information Office 1 What we do Provide world-class research facilities for scientists from developing world Foster advanced scientific research,

More information

3D IMAGING OF THE EARTH S MANTLE: FROM SLABS TO PLUMES

3D IMAGING OF THE EARTH S MANTLE: FROM SLABS TO PLUMES 3D IMAGING OF THE EARTH S MANTLE: FROM SLABS TO PLUMES Barbara Romanowicz Department of Earth and Planetary Science, U. C. Berkeley Dr. Barbara Romanowicz, UC Berkeley (KITP Colloquium 9/11/02) 1 Cartoon

More information

Laminar Boundary Layers. Answers to problem sheet 1: Navier-Stokes equations

Laminar Boundary Layers. Answers to problem sheet 1: Navier-Stokes equations Laminar Boundary Layers Answers to problem sheet 1: Navier-Stokes equations The Navier Stokes equations for d, incompressible flow are + v ρ t + u + v v ρ t + u v + v v = 1 = p + µ u + u = p ρg + µ v +

More information

Magnitude 8.2 NORTHWEST OF IQUIQUE, CHILE

Magnitude 8.2 NORTHWEST OF IQUIQUE, CHILE An 8.2-magnitude earthquake struck off the coast of northern Chile, generating a local tsunami. The USGS reported the earthquake was centered 95 km (59 miles) northwest of Iquique at a depth of 20.1km

More information

Models of tsunami waves at the Institute of Ocean Sciences

Models of tsunami waves at the Institute of Ocean Sciences Models of tsunami waves at the Institute of Ocean Sciences Josef Cherniawsky and Isaac Fine Ocean Science Division, Fisheries & Oceans Canada, Sidney, BC Port Alberni, March 27, 2014 Acknowledgements:

More information

Earthquakes 11/14/2014. Earthquakes Occur at All Boundaries. Earthquakes. Key Aspects of an Earthquake. Epicenter. Focus

Earthquakes 11/14/2014. Earthquakes Occur at All Boundaries. Earthquakes. Key Aspects of an Earthquake. Epicenter. Focus Earthquakes Earthquakes Caused by friction and movement between Earth s tectonic plates A release of force Often caused by a catch between two plates As plates slide by, they stick to each other When the

More information