Abstract. 1 Introduction

Size: px
Start display at page:

Download "Abstract. 1 Introduction"

Transcription

1 Mass Conservation in shallow water storm surge computations Jeffrey P. Laible Department of Civil and Environmental Engineering University of Vermont Burlington, Vermont uvm. edit Abstract Storm surge computations involve both an applied pressure field and a strong wind stress loading. The shallow water equation are commonly used for tidal simulations and have been thoroughly investigated for this type of loading. The storm surge computations on the other hand, have not been as extensively investigated. In this paper we examine the behavior of both the primitive and wave equation form of the shallow water equations and observe some deficiencies in mass conservation. Using afilteredprimitive equation formulation and an extended derivative operator, improved solutions can be obtained. 1 Introduction The solution of the shallow water equations for tidal simulations has been successfully accomplished by formulations based on both the primitive [1] and wave equation [2] forms. However, some recent experiments for storm surge computations, using both a prescribed surface elevation (due to the pressure drop at the center of a typhoon) and significant wind stress terms, resulted in solutions that appear to lose mass. Separating the two effects, it was determined that the difficulty arises due to the wind stress portion of the solution. To investigate this, a one dimensional analytic solution for an off shore wind was formulated and compared with the Generalized Wave Continuity Equation formulation (GWCE) and a Filtered Primitive

2 396 Computer Methods in Water Resources XII Equation (FPE) formulation. The primitive equations alone are unstable for this problem due to 2 Ax waves. The FPE solution however is stable, but shows some mass balance loss. The GWCE solution is stable but shows a serious mass balance loss. One source of the loss in the GWCE formulation occurs due to the fact that the GWCE is based on a weak form of the continuity equation. The FPE equations on the other hand, are based on a strong form of the continuity equation. Another source of error occurs due to the land boundary condition. At boundary nodes, linear element only incorporate information over a single element whereas interior nodes incorporate information over two elements. As a result, numerical derivative operators are less accurate at the boundary giving rise to an accuracy loss at the boundary. To improve on this, a special derivative operator was developed. This operator is based on the fact that gradients evaluated at the mid-side of elements, as an area weighted average of attached elements, demonstrate superconvergence. Using the derivatives at the mid-sides of elements, one can form a projection of the gradient to the nodes, that is of a higher order of accuracy. The projection is done entirely on linear triangles and does not require the use of quadratic element. Using the higher order derivative operator and the FPE formulation the results are significantly improved. The higher order derivative operator used in conjunction with the GWCE did not show any improvement. 2 Governing Equations The full shallow water equations are based on a vertical integration of the Navier Stokes equations and mass conservation. The equations may be stated in Cartesian coordinates (x,y) as : - U) = 0 ^ ' I K _ la. -fll Vo " V vf } Un (^ dc, fl(gcq, d(hv) JL == 1-1 rtri = U (o) ^ Qx dy Equations 1 and 2 are the non conservative form of the x and y momentum equations and 3 is the continuity equation. U and V are the vertically averaged horizontal velocities and ( is the change in surface elevation from

3 Computer Methods in Water Resources XII 397 some initial datum. H is the total depth H h + f, and h is the bathymetric water depth. The other terms are: g - gravitational constant, / - Coriolis parameter / = 2fi sin 0/, 0/ - latitude, Q, - angular velocity of the earth, AH - horizontal eddy viscosity, r^, Ty - x and y wind shear stresses, TX CwW^cos 0^, Ty = CwW*sm 0^, C^- wind shear coefbcient, W - wind velocity, 0%, - angle of wind measured positive from x (east) axis, Q, - bottom friction parameter = g(u* + V^^/C^ C^ - Chezy coefficient, R - internal fluid source, /"<,, V<> - velocity of the fluid source, t- time, HX and riy - components of the outward unit normal. Appropriate boundary conditions are f = Cp on a tidal boundary and Vn = n^lf + riyv or?l = ^^E + S^"^, ^/ = ^^E + S^^i^ on aland or flow boundary. The GWCE formulation is derived from the above equations by: 1) taking a time derivative of the continuity equation, 2) substituting the conservative form of the momentum equations M^c UL+HM^, My<. = VL+HMy and 3) adding the continuity equation multiplied by a penalty factor G. The formulation may be expressed as: This equation is typically solved for ( while equations 1 and 2 are solved for U and V. Equation 4 takes the form: where all the nonlinear, velocity and load terms are contained in %. 3 Finite Element Derivative Evaluation In a standard Galerkin formulation using linear triangles, the approximation of a derivative at a node involves the area weighted average of the derivatives of the elements surrounding a node such as node o infigurela. The information that contributes to the derivative is restricted to the nodes shown by circles. We will refer to this as the standard derivative operator (SDO). We now consider an extended derivative operator (EDO). Consider the derivative at the midpoint 2. This derivative can be computed from an area weighted average of the elements attached to point 2, i.e., where TV are the linear triangle basis functions. The derivative at midpoint 2 now incorporates information from the node p, shown by the square.

4 398 Computer Methods in Water Resources XII Figure 1 a) Test mesh, b) linterior midside triangle. Similarly, the derivative at midpoints 1 and 3 can be computed from the elements adjacent to these nodes. Given the derivatives at midpoints, we can write an expression for these values in terms of the nodal values of an element as shown in figurelb. In terms of the natural coordinates and 77, a linear interpolation for the derivative at any coordinate and 77 may be written as: Tdx dx\ ~ [ iode3 Substituting the and 77 coordinates of the midpoints, we obtain an interpolation relation: ) midside I ^ ) nodes I I ^ o l i Conversely we can obtain an extrapolation relation: S} l^zj nodes midside If we apply the above formula to all the elements attached to node o and take an area weight average of the nodal derivative at each node, the information utilized in evaluating a nodal derivative, such as at point o, will incorporate information from the nodes marked by both the circles and squares of figure la. The SDO and EDO for the equilateral mesh (all sides of length 1) are compared for two boundary nodes in the table below.

5 Computer Methods in Water Resources XII , l\, 10 ".". 4~"! 3p"4 9 Node 8 : Last column is the % error for = a^ + y^ =.5774( Ci9 0 = ( ( (g Ci90 Node 11: Last column is the % error for ( = x^ + y* 0 EDO f = (3Ca - 3(4 - Kg + 3Cio ~ 3Ci2 - Cis) /3 0 qnn ojju Sii ^i/ii =--5774C C Cio ^ Cn Ci2 _o T^nn rjd(j lin &y 11 = -1925Ci* -.SGGOCa ^ ~.86GOQ ^^ (o ^^ Cip Cn C^ +.[ _l The errors in the a;and y derivative for the doubly curved function ( = x^ + 7/2 are also shown in these tables. The EDO shows 1/2 the error of the SDO and is clearly better than a linear approximation but not as accurate as a quadratic approximation. Convergence is linear, that is, using elements with 1/2 the element side lengths (96 vs. 48 elements) the derivative errors are reduced by 1/2 for both operators. 4 Filtered Primitive Equation Formulation The EDO has been incorporated into thefilteredprimitive equation formulation (FPE) and the generalized wave continuity equation formulation (GWCE) of the shallow water equations. Here we briefly discuss the FPE method since this method can be improved by the EDO formulation. Application of the Bubnov Galerkin method to equations l-»3 using nodal integration, yields an explicit system of equations _ " *'-^'-

6 400 Computer Methods in Water Resources XII These nonlinear equations are solve by a multi-step Taylor method. The terms R%, Ry and R% consist of nodal vectors V,, Cb, H, R, r^, Ty, and matrices Mn,DX.,DY. For linear triangles, Mn is a diagonal matrix with each entry one third of the sum of the element areas attached to a node. DX and DY are sparse matrices that produce the SDO or EDO derivatives at the nodes, i.e. = DX *. Since the Galerkin method for the primitive equations suffers from 2Arc oscillations, the surface elevations are periodically filtered, not necessarily at each time step. The filtered solution is obtained from equation 7. (7) PF = «*W. * (DY * () The matrix Kp is a weighed (W) second order derivative operator, (<p ^linear basis functions, W=l or nodal depth). The right hand side is constructed from a current vector and a Lagrange multiplier (A) that is introduced to enforce mass conservation. The details of this formulation along with a dispersion analysis of the method are given in [1]. It has been shown that this filtering allows one to use a strong solution of the primitive equations rater than a weak solution as in the GWCE formulation. The stationary K L matrix is reduced once and occasionally applied (e.g. every 8 time steps) producing very accurate solution for tidal simulations. This method avoids the selection and tuning of the penalty parameter "G" in the GWCE formulation. The dispersion analysis shows that the FPE method is not "folded" whereas the GWCE formulation is folded for " G" necessary to achieve mass conservation. 5 Numerical Results and Conclusions We consider the problem when wind stress (r^,r^) is the only loading. Figure 2. FE channel mesh. Ty wind load. Node 75 for ( ) plots.

7 Computer Methods in Water Resources XII 401 Unlike tidal simulations, there are no prescribed surface elevations. All boundary conditions are on the velocity, typically requiring to zero velocity normal to the boundary. As a test problem, we consider a channel as shown in figure 2. The linearized channel equations with constant coefficients and no friction ( + h& = 0, fjf + g^ = 2 ) have the solution : v c = P=(J In these equations, ±y is the distance from the channel midpoint and I is one half of the total channel length. At y = ±1 the series vanishes and we have ^, = 1%, consistent with the + <, = % since = 0 at %/ = f. Figure 3 compares the GWCE and FPE solutions using the higher order derivative operator with the exact solution for the surface elevation at a land boundary (node 75). Exact FPE EO D G W C E EO D 3 4 Time (sec) 6 7 X 10 4 Figure 3 Exact, FPE and GWCE solutions. Figure 3 illustrate that thefilteredprimitive formulation (FPE) using the extended derivative operator (EDO) and shows a closefitto the analytic solution. Using the EDO operator in the wave equation formulation (GWCE),

8 402 Computer Methods in Water Resources XII however, did not show any improvement. The GWCE formulation shows a damped behavior, that may be related to the "G " term of the GWCE formulation (see equation 5) and the weak formulation of the continuity equation. The conclusion is that, the extended derivative formulation,edo, used in conjunction with the flittered primitive equation formulation, FPE, is a viable scheme to obtain more accurate solutions of the surface elevation at land boundaries. The source of the mass loss, apparent in of the damped solution of the GWCE is currently a topic of continued study. References [1] Laible, J.P. and Lillys, T.P., "A filtered solution of the primitive shallowwater equations", Advances in Water Resources, Vol. 20, No. 1, pp , [2] Westerink, J.J, Luettich, R.A., and Kolar, R.L., "Advances infiniteelement modeling of coastal ocean hydrodynamics", Computational Methods in Water Resources XI, Computational Mechanics Publication, Editors: Aldama et al.,volume 2, pp , 1996 [3] Wang, J.D. and Connor, J.J., "Mathematical Modeling of Near Coastal Circulation", Ralph M. Parsons Lab. for Water Resources ad Hydrodynamics, MIT, Report No. 200, pp. 143, 1975.

An implicit time-marching algorithm for 2-D GWC shallow water models

An implicit time-marching algorithm for 2-D GWC shallow water models Appeared in: Computational Methods in Water Resources XIII, Vol. 2, Bentley et al., eds. 913-920, Balkema, 2000. An implicit time-marching algorithm for 2-D GWC shallow water models K.M. Dresback & R.L.

More information

Truncation Error Analysis of Shallow Water Models Based on the Generalized Wave Continuity Equation

Truncation Error Analysis of Shallow Water Models Based on the Generalized Wave Continuity Equation Appeared in: Computational Methods in Water Resources XI. Volume 2: Computational Methods in Surface Flow and Transport Problems. Aldama et al. (eds.), Computational Mechanics Publications, Southampton,

More information

Models of ocean circulation are all based on the equations of motion.

Models of ocean circulation are all based on the equations of motion. Equations of motion Models of ocean circulation are all based on the equations of motion. Only in simple cases the equations of motion can be solved analytically, usually they must be solved numerically.

More information

Coupled, Unstructured Grid, Wave and Circulation Models: Validation and Resolution Requirements

Coupled, Unstructured Grid, Wave and Circulation Models: Validation and Resolution Requirements Coupled, Unstructured Grid, Wave and Circulation Models: Validation and Resolution Requirements J.C. Dietrich, J.J. Westerink University of Notre Dame C. Dawson University of Texas at Austin M. Zijlema,

More information

centrifugal acceleration, whose magnitude is r cos, is zero at the poles and maximum at the equator. This distribution of the centrifugal acceleration

centrifugal acceleration, whose magnitude is r cos, is zero at the poles and maximum at the equator. This distribution of the centrifugal acceleration Lecture 10. Equations of Motion Centripetal Acceleration, Gravitation and Gravity The centripetal acceleration of a body located on the Earth's surface at a distance from the center is the force (per unit

More information

Chapter 2. General concepts. 2.1 The Navier-Stokes equations

Chapter 2. General concepts. 2.1 The Navier-Stokes equations Chapter 2 General concepts 2.1 The Navier-Stokes equations The Navier-Stokes equations model the fluid mechanics. This set of differential equations describes the motion of a fluid. In the present work

More information

Continuous, discontinuous and coupled discontinuous continuous Galerkin nite element methods for the shallow water equations

Continuous, discontinuous and coupled discontinuous continuous Galerkin nite element methods for the shallow water equations INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2006; 52:63 88 Published online 10 February 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/d.1156

More information

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE In this chapter, the governing equations for the proposed numerical model with discretisation methods are presented. Spiral

More information

General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be

General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be a bonus) is well written (take your time to edit) shows

More information

Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow

Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow OCEN 678-600 Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow Date distributed : 9.18.2005 Date due : 9.29.2005 at 5:00 pm Return your solution either in class or in my mail

More information

The Shallow Water Equations

The Shallow Water Equations The Shallow Water Equations Clint Dawson and Christopher M. Mirabito Institute for Computational Engineering and Sciences University of Texas at Austin clint@ices.utexas.edu September 29, 2008 The Shallow

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. V9. Surface Integrals Surface

More information

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions.

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions. Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

Dynamic Meteorology - Introduction

Dynamic Meteorology - Introduction Dynamic Meteorology - Introduction Atmospheric dynamics the study of atmospheric motions that are associated with weather and climate We will consider the atmosphere to be a continuous fluid medium, or

More information

University of Illinois at Urbana-Champaign College of Engineering

University of Illinois at Urbana-Champaign College of Engineering University of Illinois at Urbana-Champaign College of Engineering CEE 570 Finite Element Methods (in Solid and Structural Mechanics) Spring Semester 03 Quiz # April 8, 03 Name: SOUTION ID#: PS.: A the

More information

LES of turbulent shear flow and pressure driven flow on shallow continental shelves.

LES of turbulent shear flow and pressure driven flow on shallow continental shelves. LES of turbulent shear flow and pressure driven flow on shallow continental shelves. Guillaume Martinat,CCPO - Old Dominion University Chester Grosch, CCPO - Old Dominion University Ying Xu, Michigan State

More information

Applications in Fluid Mechanics

Applications in Fluid Mechanics CHAPTER 8 Applications in Fluid 8.1 INTRODUCTION The general topic of fluid mechanics encompasses a wide range of problems of interest in engineering applications. The most basic definition of a fluid

More information

Implementation of Bridge Pilings in the ADCIRC Hydrodynamic Model: Upgrade and Documentation for ADCIRC Version 34.19

Implementation of Bridge Pilings in the ADCIRC Hydrodynamic Model: Upgrade and Documentation for ADCIRC Version 34.19 Implementation of Bridge Pilings in the ADCIRC Hydrodynamic Model: Upgrade and Documentation for ADCIRC Version 34.19 Richard A. Luettich, Jr. University of North Carolina at Chapel Hill Institute of Marine

More information

CIV-E1060 Engineering Computation and Simulation Examination, December 12, 2017 / Niiranen

CIV-E1060 Engineering Computation and Simulation Examination, December 12, 2017 / Niiranen CIV-E16 Engineering Computation and Simulation Examination, December 12, 217 / Niiranen This examination consists of 3 problems rated by the standard scale 1...6. Problem 1 Let us consider a long and tall

More information

Effect of Liquid Viscosity on Sloshing in A Rectangular Tank

Effect of Liquid Viscosity on Sloshing in A Rectangular Tank International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 5 Issue 8 ǁ August. 2017 ǁ PP. 32-39 Effect of Liquid Viscosity on Sloshing

More information

Lecture 2. Lecture 1. Forces on a rotating planet. We will describe the atmosphere and ocean in terms of their:

Lecture 2. Lecture 1. Forces on a rotating planet. We will describe the atmosphere and ocean in terms of their: Lecture 2 Lecture 1 Forces on a rotating planet We will describe the atmosphere and ocean in terms of their: velocity u = (u,v,w) pressure P density ρ temperature T salinity S up For convenience, we will

More information

Finite Elements for Nonlinear Problems

Finite Elements for Nonlinear Problems Finite Elements for Nonlinear Problems Computer Lab 2 In this computer lab we apply finite element method to nonlinear model problems and study two of the most common techniques for solving the resulting

More information

Geomorphological Modelling in Coastal Waters

Geomorphological Modelling in Coastal Waters Abstract Geomorphological Modelling in Coastal Waters Morteza Kolahdoozan 1, Roger A. Falconer 2 (Fellow), Yiping Chen 3 Details are given herein of the development and application of a three dimensional

More information

unit; 1m The ONJUKU COAST Total number of nodes; 600 Total nimber of elements; 1097 Onjuku Port 5 Iwawada Port No.5 No.2 No.3 No.4 No.

unit; 1m The ONJUKU COAST Total number of nodes; 600 Total nimber of elements; 1097 Onjuku Port 5 Iwawada Port No.5 No.2 No.3 No.4 No. Estimation of Tidal Currents by Kalman Filter with FEM Using Parallel Computing Naeko TAKAHASHI Abstract The purpose of this research is to estimate of tidal currents using Kalman Filter combined with

More information

Interpolation Functions for General Element Formulation

Interpolation Functions for General Element Formulation CHPTER 6 Interpolation Functions 6.1 INTRODUCTION The structural elements introduced in the previous chapters were formulated on the basis of known principles from elementary strength of materials theory.

More information

d v 2 v = d v d t i n where "in" and "rot" denote the inertial (absolute) and rotating frames. Equation of motion F =

d v 2 v = d v d t i n where in and rot denote the inertial (absolute) and rotating frames. Equation of motion F = Governing equations of fluid dynamics under the influence of Earth rotation (Navier-Stokes Equations in rotating frame) Recap: From kinematic consideration, d v i n d t i n = d v rot d t r o t 2 v rot

More information

Due Tuesday, November 23 nd, 12:00 midnight

Due Tuesday, November 23 nd, 12:00 midnight Due Tuesday, November 23 nd, 12:00 midnight This challenging but very rewarding homework is considering the finite element analysis of advection-diffusion and incompressible fluid flow problems. Problem

More information

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017 Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

Lecture 1: Introduction and Review

Lecture 1: Introduction and Review Lecture 1: Introduction and Review Review of fundamental mathematical tools Fundamental and apparent forces Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study

More information

Static & Dynamic. Analysis of Structures. Edward L.Wilson. University of California, Berkeley. Fourth Edition. Professor Emeritus of Civil Engineering

Static & Dynamic. Analysis of Structures. Edward L.Wilson. University of California, Berkeley. Fourth Edition. Professor Emeritus of Civil Engineering Static & Dynamic Analysis of Structures A Physical Approach With Emphasis on Earthquake Engineering Edward LWilson Professor Emeritus of Civil Engineering University of California, Berkeley Fourth Edition

More information

Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

More information

Dynamics II: rotation L. Talley SIO 210 Fall, 2011

Dynamics II: rotation L. Talley SIO 210 Fall, 2011 Dynamics II: rotation L. Talley SIO 210 Fall, 2011 DATES: Oct. 24: second problem due Oct. 24: short info about your project topic Oct. 31: mid-term Nov. 14: project due Rotation definitions Centrifugal

More information

Homework 4 in 5C1212; Part A: Incompressible Navier- Stokes, Finite Volume Methods

Homework 4 in 5C1212; Part A: Incompressible Navier- Stokes, Finite Volume Methods Homework 4 in 5C11; Part A: Incompressible Navier- Stokes, Finite Volume Methods Consider the incompressible Navier Stokes in two dimensions u x + v y = 0 u t + (u ) x + (uv) y + p x = 1 Re u + f (1) v

More information

Preprocessor Geometry Properties )Nodes, Elements(, Material Properties Boundary Conditions(displacements, Forces )

Preprocessor Geometry Properties )Nodes, Elements(, Material Properties Boundary Conditions(displacements, Forces ) در برنامه يك تدوين براي بعدي دو يك سازه محيط MATLAB Preprocessor Geometry Properties )Nodes, Elements(, Material Properties Boundary Conditions(displacements, Forces ) Definition of Stiffness Matrices

More information

^Laboratorio Nacional de Computaqao Cientifica, Rua Lauro Muller 455, Rio de Janeiro, RJ , Brasil

^Laboratorio Nacional de Computaqao Cientifica, Rua Lauro Muller 455, Rio de Janeiro, RJ , Brasil A space-timefiniteelement formulation for the shallow water equations F.L.B. Ribeiro,' A.C. Galeao," L. Landau* "Programa de Engenharia Civil, COPPE / Universidade Federal do Rio de Janeiro, Caixa Postal

More information

Numerical control and inverse problems and Carleman estimates

Numerical control and inverse problems and Carleman estimates Numerical control and inverse problems and Carleman estimates Enrique FERNÁNDEZ-CARA Dpto. E.D.A.N. - Univ. of Sevilla from some joint works with A. MÜNCH Lab. Mathématiques, Univ. Blaise Pascal, C-F 2,

More information

Contents. Parti Fundamentals. 1. Introduction. 2. The Coriolis Force. Preface Preface of the First Edition

Contents. Parti Fundamentals. 1. Introduction. 2. The Coriolis Force. Preface Preface of the First Edition Foreword Preface Preface of the First Edition xiii xv xvii Parti Fundamentals 1. Introduction 1.1 Objective 3 1.2 Importance of Geophysical Fluid Dynamics 4 1.3 Distinguishing Attributes of Geophysical

More information

Analysis of Steady State Heat Conduction Problem Using EFGM

Analysis of Steady State Heat Conduction Problem Using EFGM International Journal of Engineering and Management Research, Vol.-2, Issue-6, December 2012 ISSN No.: 2250-0758 Pages: 40-47 www.ijemr.net Analysis of Steady State Heat Conduction Problem Using EFGM Manpreet

More information

Industrial Applications of Computational Mechanics Extended Civil Engineering Problems. Prof. Dr.-Ing. Casimir Katz SOFiSTiK AG

Industrial Applications of Computational Mechanics Extended Civil Engineering Problems. Prof. Dr.-Ing. Casimir Katz SOFiSTiK AG Industrial Applications of Computational Mechanics Extended Civil Engineering Problems Prof. Dr.-Ing. Casimir Katz SOFiSTiK AG Beyond Structural Analysis Multiphysics» Heat Conduction, Radiation» Potential

More information

Fluid Animation. Christopher Batty November 17, 2011

Fluid Animation. Christopher Batty November 17, 2011 Fluid Animation Christopher Batty November 17, 2011 What distinguishes fluids? What distinguishes fluids? No preferred shape Always flows when force is applied Deforms to fit its container Internal forces

More information

2. FLUID-FLOW EQUATIONS SPRING 2019

2. FLUID-FLOW EQUATIONS SPRING 2019 2. FLUID-FLOW EQUATIONS SPRING 2019 2.1 Introduction 2.2 Conservative differential equations 2.3 Non-conservative differential equations 2.4 Non-dimensionalisation Summary Examples 2.1 Introduction Fluid

More information

An Overview of Fluid Animation. Christopher Batty March 11, 2014

An Overview of Fluid Animation. Christopher Batty March 11, 2014 An Overview of Fluid Animation Christopher Batty March 11, 2014 What distinguishes fluids? What distinguishes fluids? No preferred shape. Always flows when force is applied. Deforms to fit its container.

More information

SMAST Technical Report The Performance of a Coupled 1-D Circulation and Bottom Boundary Layer Model with Surface Wave Forcing

SMAST Technical Report The Performance of a Coupled 1-D Circulation and Bottom Boundary Layer Model with Surface Wave Forcing 1 SMAST Technical Report 01-03-20 The Performance of a Coupled 1-D Circulation and Bottom Boundary Layer Model with Surface Wave Forcing Y. Fan and W. S. Brown Ocean Process Analysis Laboratory Institute

More information

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction OCN/ATM/ESS 587 The wind-driven ocean circulation. Friction and stress The Ekman layer, top and bottom Ekman pumping, Ekman suction Westward intensification The wind-driven ocean. The major ocean gyres

More information

Swash Zone Dynamics: Modeling and Data Analysis

Swash Zone Dynamics: Modeling and Data Analysis Swash Zone Dynamics: Modeling and Data Analysis Donald N. Slinn Department of Civil and Coastal Engineering University of Florida Gainesville, FL 32611-6590 phone: (352) 392-1436 x 1431 fax: (352) 392-3466

More information

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM Finite Elements January 15, 2018 Why Can solve PDEs on complicated domains. Have flexibility to increase order of accuracy and match the numerics to the physics. has an elegant mathematical formulation

More information

CHAPTER 4 ANALYTICAL SOLUTIONS OF COUPLE STRESS FLUID FLOWS THROUGH POROUS MEDIUM BETWEEN PARALLEL PLATES WITH SLIP BOUNDARY CONDITIONS

CHAPTER 4 ANALYTICAL SOLUTIONS OF COUPLE STRESS FLUID FLOWS THROUGH POROUS MEDIUM BETWEEN PARALLEL PLATES WITH SLIP BOUNDARY CONDITIONS CHAPTER 4 ANALYTICAL SOLUTIONS OF COUPLE STRESS FLUID FLOWS THROUGH POROUS MEDIUM BETWEEN PARALLEL PLATES WITH SLIP BOUNDARY CONDITIONS Introduction: The objective of this chapter is to establish analytical

More information

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Roy Stogner Computational Fluid Dynamics Lab Institute for Computational Engineering and Sciences University of Texas at Austin March

More information

A Probabilistic Design Approach for Riser Collision based on Time- Domain Response Analysis

A Probabilistic Design Approach for Riser Collision based on Time- Domain Response Analysis A Probabilistic Design Approach for Riser Collision based on Time- Domain Response Analysis B.J. Leira NTNU, Dept. Marine Structures,Trondheim, Norway T. Holmås MARINTEK, Div. of Structural Engineering,,

More information

Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport

Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport is which can also be written as (14.1) i.e., #Q x,y

More information

Homework #4 Solution. μ 1. μ 2

Homework #4 Solution. μ 1. μ 2 Homework #4 Solution 4.20 in Middleman We have two viscous liquids that are immiscible (e.g. water and oil), layered between two solid surfaces, where the top boundary is translating: y = B y = kb y =

More information

1 Exercise: Linear, incompressible Stokes flow with FE

1 Exercise: Linear, incompressible Stokes flow with FE Figure 1: Pressure and velocity solution for a sinking, fluid slab impinging on viscosity contrast problem. 1 Exercise: Linear, incompressible Stokes flow with FE Reading Hughes (2000), sec. 4.2-4.4 Dabrowski

More information

AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION. Abstract

AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION. Abstract nd Workshop on CFD Uncertainty Analysis - Lisbon, 19th and 0th October 006 AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION Alfredo Iranzo 1, Jesús Valle, Ignacio Trejo 3, Jerónimo

More information

Numerical accuracy in the solution of the shallow-water equations

Numerical accuracy in the solution of the shallow-water equations Numerical accuracy in the solution of the shallow-water equations P. Broomans & C. Vuik Delft University of Technology, Delft, Netherlands A.E. Mynett & J. Mooiman WL Delft Hydraulics, Delft, Netherlands

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

PAPER 333 FLUID DYNAMICS OF CLIMATE

PAPER 333 FLUID DYNAMICS OF CLIMATE MATHEMATICAL TRIPOS Part III Wednesday, 1 June, 2016 1:30 pm to 4:30 pm Draft 21 June, 2016 PAPER 333 FLUID DYNAMICS OF CLIMATE Attempt no more than THREE questions. There are FOUR questions in total.

More information

Chapter 2 Finite Element Formulations

Chapter 2 Finite Element Formulations Chapter 2 Finite Element Formulations The governing equations for problems solved by the finite element method are typically formulated by partial differential equations in their original form. These are

More information

A Comparison of Service Life Prediction of Concrete Structures using the Element-Free Galerkin, Finite Element and Finite Difference Methods

A Comparison of Service Life Prediction of Concrete Structures using the Element-Free Galerkin, Finite Element and Finite Difference Methods Paper 64 Civil-Comp Press, 4. Proceedings of the Seventh International Conference on Computational Structures Technology, B.H.V. Topping and C.A. Mota Soares (Editors, Civil-Comp Press, Stirling, Scotland.

More information

Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation

Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation First consider a hypothetical planet like Earth, but with no continents and no seasons and for which the only friction acting on the atmosphere

More information

H4: Steady Flow through a Channel Network

H4: Steady Flow through a Channel Network August 9, Chapter 7 H4: Steady Flow through a Channel Network Contents 7. Problem Specification............................. 7-7. Background................................... 7-3 7.3 Contra Costa Water

More information

A new moving boundary shallow water wave equation numerical model

A new moving boundary shallow water wave equation numerical model ANZIAM J. 48 (CTAC2006) pp.c605 C617, 2007 C605 A new moving boundary shallow water wave equation numerical model Joe Sampson 1 Alan Easton 2 Manmohan Singh 3 (Received 10 August 2006; revised 28 November

More information

2 MATERIALS AND METHODS

2 MATERIALS AND METHODS 2 MATERIALS AND METHODS 2.1. Sand Movement on Coral Cays Sand movement in Semak Daun cay was recognized by the monsoonal morphological change of the beach line. It is found that certain beach lines advanced

More information

Parabolic Flow in Parallel Plate Channel ME 412 Project 4

Parabolic Flow in Parallel Plate Channel ME 412 Project 4 Parabolic Flow in Parallel Plate Channel ME 412 Project 4 Jingwei Zhu April 12, 2014 Instructor: Surya Pratap Vanka 1 Project Description The objective of this project is to develop and apply a computer

More information

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) The ABL, though turbulent, is not homogeneous, and a critical role of turbulence is transport and mixing of air properties, especially in the

More information

WQMAP (Water Quality Mapping and Analysis Program) is a proprietary. modeling system developed by Applied Science Associates, Inc.

WQMAP (Water Quality Mapping and Analysis Program) is a proprietary. modeling system developed by Applied Science Associates, Inc. Appendix A. ASA s WQMAP WQMAP (Water Quality Mapping and Analysis Program) is a proprietary modeling system developed by Applied Science Associates, Inc. and the University of Rhode Island for water quality

More information

Investigation of Utilizing a Secant Stiffness Matrix for 2D Nonlinear Shape Optimization and Sensitivity Analysis

Investigation of Utilizing a Secant Stiffness Matrix for 2D Nonlinear Shape Optimization and Sensitivity Analysis Print ISSN: 2322-2093; Online ISSN: 2423-6691 DOI: 10.7508/ceij.2016.02.011 Technical Note Investigation of Utilizing a Secant Stiffness Matrix for 2D Nonlinear Shape Optimization and Sensitivity Analysis

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

SIO 210 Introduction to Physical Oceanography Mid-term examination Wednesday, November 2, :00 2:50 PM

SIO 210 Introduction to Physical Oceanography Mid-term examination Wednesday, November 2, :00 2:50 PM SIO 210 Introduction to Physical Oceanography Mid-term examination Wednesday, November 2, 2005 2:00 2:50 PM This is a closed book exam. Calculators are allowed. (101 total points.) MULTIPLE CHOICE (3 points

More information

Final Exam SOLUTIONS MAT 131 Fall 2011

Final Exam SOLUTIONS MAT 131 Fall 2011 1. Compute the following its. (a) Final Exam SOLUTIONS MAT 131 Fall 11 x + 1 x 1 x 1 The numerator is always positive, whereas the denominator is negative for numbers slightly smaller than 1. Also, as

More information

Erosion of biofilm-bound fluvial sediments

Erosion of biofilm-bound fluvial sediments SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO1891 Erosion of biofilm-bound fluvial sediments Elisa Vignaga, David M. Sloan, Xiaoyu Luo, Heather Haynes, Vernon R. Phoenix and William T. Sloan Mathematical

More information

LARGE EDDY SIMULATION AND FLOW CONTROL OVER A 25 RAMP MODEL

LARGE EDDY SIMULATION AND FLOW CONTROL OVER A 25 RAMP MODEL LARGE EDDY SIMULATION AND FLOW CONTROL OVER A 25 RAMP MODEL 09/11/2017 Paolo Casco Stephie Edwige Philippe Gilotte Iraj Mortazavi LES and flow control over a 25 ramp model : context 2 Context Validation

More information

Mooring Model for Barge Tows in Lock Chamber

Mooring Model for Barge Tows in Lock Chamber Mooring Model for Barge Tows in Lock Chamber by Richard L. Stockstill BACKGROUND: Extensive research has been conducted in the area of modeling mooring systems in sea environments where the forcing function

More information

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations S. Hussain, F. Schieweck, S. Turek Abstract In this note, we extend our recent work for

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS NUMERICAL FLUID MECHANICS FALL 2011

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS NUMERICAL FLUID MECHANICS FALL 2011 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139 2.29 NUMERICAL FLUID MECHANICS FALL 2011 QUIZ 2 The goals of this quiz 2 are to: (i) ask some general

More information

Dynamics of the Ems Estuary

Dynamics of the Ems Estuary Dynamics of the Ems Estuary Physics of coastal systems Jerker Menninga 0439738 Utrecht University Institute for Marine and Atmospheric research Utrecht Lecturer: Prof. dr. H.E. de Swart Abstract During

More information

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 17 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. In

More information

HIGHER-ORDER THEORIES

HIGHER-ORDER THEORIES HIGHER-ORDER THEORIES Third-order Shear Deformation Plate Theory Displacement and strain fields Equations of motion Navier s solution for bending Layerwise Laminate Theory Interlaminar stress and strain

More information

Numerical methods for the Navier- Stokes equations

Numerical methods for the Navier- Stokes equations Numerical methods for the Navier- Stokes equations Hans Petter Langtangen 1,2 1 Center for Biomedical Computing, Simula Research Laboratory 2 Department of Informatics, University of Oslo Dec 6, 2012 Note:

More information

An Introduction to the Finite Element Method

An Introduction to the Finite Element Method An Introduction to the Finite Element Method Third Edition J. N. REDDY Department 01 Mechanical Engineering Texas A&M University College Station, Texas, USA 77843 11 Boston Burr Ridge, IL Dubuque, IA Madison,

More information

Simulation of storm surge and overland flows using geographical information system applications

Simulation of storm surge and overland flows using geographical information system applications Coastal Processes 97 Simulation of storm surge and overland flows using geographical information system applications S. Aliabadi, M. Akbar & R. Patel Northrop Grumman Center for High Performance Computing

More information

Multiphysics Analysis of Electromagnetic Flow Valve

Multiphysics Analysis of Electromagnetic Flow Valve Multiphysics Analysis of Electromagnetic Flow Valve Jeffrey S. Crompton *, Kyle C. Koppenhoefer, and Sergei Yushanov AltaSim Technologies, LLC *Corresponding author: 13 E. Wilson Bridge Road, Suite 14,

More information

AN ERROR QUANTIFICATION METHODOLOGY FOR HURRICANE STORM SURGE SIMULATIONS

AN ERROR QUANTIFICATION METHODOLOGY FOR HURRICANE STORM SURGE SIMULATIONS Clemson University TigerPrints All Theses Theses 2-22 AN ERROR QUANTIFICATION METHODOLOGY FOR HURRICANE STORM SURGE SIMULATIONS Bin Pei Clemson University, bpei@g.clemson.edu Follow this and additional

More information

Automatic Eddy Viscosity Assignment for 2-D Hydrodynamic Model of Szczecin Bay

Automatic Eddy Viscosity Assignment for 2-D Hydrodynamic Model of Szczecin Bay PUBLS. INST. GEOPHYS. POL. ACAD. SC., E-6 (390), 006 Automatic Eddy Viscosity Assignment for -D Hydrodynamic Model of Szczecin Bay Ryszard EWERTOWSKI 1, 1 Technical University of Szczecin, Building and

More information

Benchmarking of Hydrodynamic Models for Development of a Coupled Storm Surge Hazard-Infrastructure Modeling Method to improve Inundation Forecasting

Benchmarking of Hydrodynamic Models for Development of a Coupled Storm Surge Hazard-Infrastructure Modeling Method to improve Inundation Forecasting Benchmarking of Hydrodynamic Models for Development of a Coupled Storm Surge Hazard-Infrastructure Modeling Method to improve Inundation Forecasting Abstract Fragility-based models currently used in coastal

More information

Steps in the Finite Element Method. Chung Hua University Department of Mechanical Engineering Dr. Ching I Chen

Steps in the Finite Element Method. Chung Hua University Department of Mechanical Engineering Dr. Ching I Chen Steps in the Finite Element Method Chung Hua University Department of Mechanical Engineering Dr. Ching I Chen General Idea Engineers are interested in evaluating effects such as deformations, stresses,

More information

Chapter 4: Fluid Kinematics

Chapter 4: Fluid Kinematics Overview Fluid kinematics deals with the motion of fluids without considering the forces and moments which create the motion. Items discussed in this Chapter. Material derivative and its relationship to

More information

1/25/2010. Circulation and vorticity are the two primary

1/25/2010. Circulation and vorticity are the two primary Lecture 4: Circulation and Vorticity Measurement of Rotation Circulation Bjerknes Circulation Theorem Vorticity Potential Vorticity Conservation of Potential Vorticity Circulation and vorticity are the

More information

Barotropic Flow in the Vicinity of an Idealized Inlet Simulations with the ADCIRC Model

Barotropic Flow in the Vicinity of an Idealized Inlet Simulations with the ADCIRC Model Naval Research Laboratory Washington, DC 0375-530 NRL/FR/730--0-9977 Barotropic Flow in the Vicinity of an Idealized Inlet Simulations with the ADCIRC Model JAYARAM VEERAMONY Center for Oceanic and Atmospheric

More information

Modelling the Glass Press-Blow Process

Modelling the Glass Press-Blow Process Modelling the Glass Press-Blow Process S.M.A. Allaart-Bruin, B.J. van der Linden, and R.M.M. Mattheij TUE, CASA, Eindhoven, The Netherlands sbruin@win.tue.nl Summary. For the modelling of the glass press-blow

More information

PHYS2330 Intermediate Mechanics Fall Final Exam Tuesday, 21 Dec 2010

PHYS2330 Intermediate Mechanics Fall Final Exam Tuesday, 21 Dec 2010 Name: PHYS2330 Intermediate Mechanics Fall 2010 Final Exam Tuesday, 21 Dec 2010 This exam has two parts. Part I has 20 multiple choice questions, worth two points each. Part II consists of six relatively

More information

ENGI Multiple Integration Page 8-01

ENGI Multiple Integration Page 8-01 ENGI 345 8. Multiple Integration Page 8-01 8. Multiple Integration This chapter provides only a very brief introduction to the major topic of multiple integration. Uses of multiple integration include

More information

THE HYDRAULIC PERFORMANCE OF ORIENTED SPUR DIKE IMPLEMENTATION IN OPEN CHANNEL

THE HYDRAULIC PERFORMANCE OF ORIENTED SPUR DIKE IMPLEMENTATION IN OPEN CHANNEL Tenth International Water Technology Conference, IWTC10 2006, Alexandria, Egypt 281 THE HYDRAULIC PERFORMANCE OF ORIENTED SPUR DIKE IMPLEMENTATION IN OPEN CHANNEL Karima Attia 1 and Gamal El Saied 2 1

More information

+ ω = 0, (1) (b) In geometric height coordinates in the rotating frame of the Earth, momentum balance for an inviscid fluid is given by

+ ω = 0, (1) (b) In geometric height coordinates in the rotating frame of the Earth, momentum balance for an inviscid fluid is given by Problem Sheet 1: Due Thurs 3rd Feb 1. Primitive equations in different coordinate systems (a) Using Lagrangian considerations and starting from an infinitesimal mass element in cartesian coordinates (x,y,z)

More information

Toward Accurate Coastal Ocean Prediction

Toward Accurate Coastal Ocean Prediction Toward Accurate Coastal Ocean Prediction Peter C. Chu Naval Postgraduate School, Monterey, CA 93943, USA November 28, 2000 1 ntroduction Several major problems, namely, uncertain surface forcing function,

More information

THREE-DIMENSIONAL FINITE DIFFERENCE MODEL FOR TRANSPORT OF CONSERVATIVE POLLUTANTS

THREE-DIMENSIONAL FINITE DIFFERENCE MODEL FOR TRANSPORT OF CONSERVATIVE POLLUTANTS Pergamon Ocean Engng, Vol. 25, No. 6, pp. 425 442, 1998 1998 Elsevier Science Ltd. All rights reserved Printed in Great Britain 0029 8018/98 $19.00 + 0.00 PII: S0029 8018(97)00008 5 THREE-DIMENSIONAL FINITE

More information

Estimation of River Current Using Kalman Filter Finite Element Method. Abstract

Estimation of River Current Using Kalman Filter Finite Element Method. Abstract Kawahara Lab (February, ) Chuo Univ. JAPAN Estimation of River Current Using Kalman Filter Finite Element Method Shin-ichiro SEKIGUCHI Department of Civil Engineering, Chuo University, Kasuga --7, Bunkyo-ku,

More information

Nodal O(h 4 )-superconvergence of piecewise trilinear FE approximations

Nodal O(h 4 )-superconvergence of piecewise trilinear FE approximations Preprint, Institute of Mathematics, AS CR, Prague. 2007-12-12 INSTITTE of MATHEMATICS Academy of Sciences Czech Republic Nodal O(h 4 )-superconvergence of piecewise trilinear FE approximations Antti Hannukainen

More information

Incompressible laminar flow - newtonian and non-newtonian fluids

Incompressible laminar flow - newtonian and non-newtonian fluids Incompressible laminar flow - newtonian and non-newtonian fluids 4.1 Introduction and the basic equations The problems of incompressible flows dominate a large part of the fluid mechanics scene. For this

More information

Basic hydrodynamics. David Gurarie. 1 Newtonian fluids: Euler and Navier-Stokes equations

Basic hydrodynamics. David Gurarie. 1 Newtonian fluids: Euler and Navier-Stokes equations Basic hydrodynamics David Gurarie 1 Newtonian fluids: Euler and Navier-Stokes equations The basic hydrodynamic equations in the Eulerian form consist of conservation of mass, momentum and energy. We denote

More information

Problem Set Number 01, MIT (Winter-Spring 2018)

Problem Set Number 01, MIT (Winter-Spring 2018) Problem Set Number 01, 18.377 MIT (Winter-Spring 2018) Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139) February 28, 2018 Due Thursday, March 8, 2018. Turn it in (by 3PM) at the Math.

More information