Control Systems Design

Size: px
Start display at page:

Download "Control Systems Design"

Transcription

1 ELEC4410 Control Systems Design Lectre 16: Controllability and Observability Canonical Decompositions Jlio H. Braslavsky School of Electrical Engineering and Compter Science Lectre 15: Observability p.1/14

2 Otline Canonical Decompositions Kalman Decomposition and Minimal Realisation Discrete-Time Systems Lectre 15: Observability p.2/14

3 Canonical Decompositions The Canonical Decompositions of state eqations will establish the relationship between Controllability, Observability, and a transfer matrix and its minimal realisations. Consider the state eqation ẋ = Ax + B y = Cx + D where A Rn n, B R n p, C R p n, D R q p. (SE) Let x = Px, where P is nonsinglar, P R n n. Then we know that the state eqation x = Ā x + B y = C x + D where Ā = PAP 1, B = PB, C = CP 1, D = D, is algebraically eqivalent to (SE). Lectre 15: Observability p.3/14

4 Canonical Decompositions Theorem (Controllable/Uncontrollable Decomposition). Consider the n-dimensional state eqation (SE) and sppose that [ rank C = rank B AB A n 1 B = n 1 < n (i.e., the system is not controllable). Let the n n matrix of change of coordinates P be defined as P 1 = [q 1 q 2 q n1 q n where the first n 1 colmns are any n 1 independent colmns in C, and the remaining are arbitrarily chosen so that P is nonsinglar. Then the eqivalence transformation x = Px transforms (SE) to x C Ā 12 = ĀC x C + x C 0 Ā C x C [ y = C C x + D C C B C 0 Lectre 15: Observability p.4/14

5 Canonical Decompositions The states in the new coordinates are decomposed into Controllable C y x C : x C : n 1 controllable states n n 1 ncontrollable states C Uncontrollable Lectre 15: Observability p.5/14

6 Canonical Decompositions The states in the new coordinates are decomposed into Controllable C y x C : x C : n 1 controllable states n n 1 ncontrollable states C Uncontrollable The redced order state eqation of the controllable states x C = Ā C x C + B C ȳ = C C x + D is controllable and has the same transfer fnction as the original state eqation (SE). The MATLAB fnction ctrbf transforms a state eqation into its controllable/ncontrollable canonical form. Lectre 15: Observability p.5/14

7 Canonical Decompositions Theorem (Observable/Unobservable Decomposition). Consider the n-dimensional state eqation (SE) and sppose that rank O = rank [ C CA CA n 1 = n 2 < n (i.e., the system is not observable). Let the n n matrix of change of coordinates P be defined as P = p 1 p 2 p n2 p n where the first n 2 colmns are any n 2 independent colmns in O, and the remaining are arbitrarily chosen so that P is nonsinglar. Then the eqivalence transformation x = Px transforms (SE) to x O = ĀO 0 x O + B O xõ Ā 21 ĀÕ xõ BÕ [ y = C O 0 x + D Lectre 15: Observability p.6/14

8 Canonical Decompositions The states in the new coordinates are decomposed into Õ x O : xõ : n 2 observable states n n 2 nobservable states Unobservable O Observable y Lectre 15: Observability p.7/14

9 Canonical Decompositions The states in the new coordinates are decomposed into Õ x O : xõ : n 2 observable states n n 2 nobservable states Unobservable O Observable y The redced order state eqation of the observable states x O = Ā O x O + B O ȳ = C O x + D is observable and has the same transfer fnction as the original state eqation (SE). The MATLAB fnction obsvf transforms a state eqation into its observable/nobservable canonical form. Lectre 15: Observability p.7/14

10 Kalman Decomposition The Kalman decomposition combines the Controllable/Uncontrollable and Observable/Unobservable decompositions. Every state-space eqation can be CÕ Unobservable CO y transformed, by eqivalence transformation, into a canonical form that splits the states into Controllable and observable states CO CÕ Uncontrollable Lectre 15: Observability p.8/14

11 Kalman Decomposition The Kalman decomposition combines the Controllable/Uncontrollable and Observable/Unobservable decompositions. CÕ Every state-space eqation can be transformed, by eqivalence transfor- Unobservable mation, into a canonical form that splits CO y the states into Controllable and observable states Controllable bt nobservable CO states CÕ Uncontrollable Lectre 15: Observability p.8/14

12 Kalman Decomposition The Kalman decomposition combines the Controllable/Uncontrollable and Observable/Unobservable decompositions. CÕ Every state-space eqation can be transformed, by eqivalence transfor- Unobservable mation, into a canonical form that splits CO y the states into Controllable and observable states Controllable bt nobservable CO states Uncontrollable bt observable CÕ states Uncontrollable Lectre 15: Observability p.8/14

13 Kalman Decomposition The Kalman decomposition combines the Controllable/Uncontrollable and Observable/Unobservable decompositions. CÕ Every state-space eqation can be transformed, by eqivalence transfor- Unobservable mation, into a canonical form that splits CO y the states into Controllable and observable states Controllable bt nobservable CO states Uncontrollable bt observable CÕ states Uncontrollable and nobservable Uncontrollable states Lectre 15: Observability p.8/14

14 Kalman Decomposition The Kalman decomposition brings the system to the form x CO Ā CO 0 Ā 13 0 x CO B CO x C Õ Ā 21 Ā = C Õ Ā 23 Ā 24 x C Õ B + C Õ x CO 0 0 Ā CO 0 x CO 0 x CÕ 0 0 Ā 43 Ā CÕ x CÕ 0 }{{} x [ y = C CO 0 C CO 0 x + D Lectre 15: Observability p.9/14

15 Kalman Decomposition The Kalman decomposition brings the system to the form x CO Ā CO 0 Ā 13 0 x CO B CO x C Õ Ā 21 Ā = C Õ Ā 23 Ā 24 x C Õ B + C Õ x CO 0 0 Ā CO 0 x CO 0 x CÕ 0 0 Ā 43 Ā CÕ x CÕ 0 }{{} x [ y = C CO 0 C CO 0 x + D A minimal realisation of the system is obtained by sing only the controllable and observable states from the Kalman decomposition. x CO = Ā CO x CO + B CO ȳ = C CO x + D Lectre 15: Observability p.9/14

16 Kalman Decomposition Example. Consider the system in Modal Canonical Form [ 10 ẋ = x + [ λ λ λ λ 3 y = [ x From the example seen in the Ttorial, Controllability and Observability in Modal Form eqations, we see that the first λ 1 is controllable and observable λ 2 is not controllable, althogh observable λ 3 is controllable and observable 0 2 Ths a minimal realisation of this system is given by [ x = λ1 0 0 λ 3 x + [ 1 2 with transfer fnction G(s) = y = [ 1 1 x 1 s λ s λ 3 Lectre 15: Observability p.10/14

17 Canonical Decompositions Example (Controllable/Uncontrollable decomposition). Consider the third order system [ [ 0 1 ẋ = x y = [ x Compte the rank of the controllability matrix, rank C = rank [ B AB A 2 B = rank [ = 2 < 3, ths the system is not controllable. Take the change of coordinates formed by the first two colmns of C and an arbitrary third one independent of the first two, P 1 = Q [ Lectre 15: Observability p.11/14

18 Canonical Decompositions Example (contination). By doing ^x = Px we obtain the eqivalent eqations ^x = x y = [ x [ and the redced controllable system ^x = [ x + [ y = [ 1 2 x which has the same transfer matrix than the original system [ G(s) =. s+1 s 2 2s+1 2 s 1 Lectre 15: Observability p.12/14

19 Discrete-Time Systems For controllability and observability of a discrete-time eqation x[k + 1 = Ax[k + B[k y[k = Cx[k + D[k we can se the same Controllability and Observability matrices rank tests that we have for continos-time systems, rank C = rank [ B AB A n 1 B = n Controllability rank O = rank = n Observability [ C CA CA n 1 Canonical decompositions are analogos. Lectre 15: Observability p.13/14

20 Smmary When a system is not controllable or not observable, there might be a part of the system that still is controllable and observable. Lectre 15: Observability p.14/14

21 Smmary When a system is not controllable or not observable, there might be a part of the system that still is controllable and observable. The controllability and observability matrices can be sed to split (by a change of coordinates) a state eqation into its controllable/ncontrollable parts and observable/nobservable parts. Lectre 15: Observability p.14/14

22 Smmary When a system is not controllable or not observable, there might be a part of the system that still is controllable and observable. The controllability and observability matrices can be sed to split (by a change of coordinates) a state eqation into its controllable/ncontrollable parts and observable/nobservable parts. The controllable and observable part of a state eqation yields minimal realisation. Lectre 15: Observability p.14/14

23 Smmary When a system is not controllable or not observable, there might be a part of the system that still is controllable and observable. The controllability and observability matrices can be sed to split (by a change of coordinates) a state eqation into its controllable/ncontrollable parts and observable/nobservable parts. The controllable and observable part of a state eqation yields minimal realisation. Ths, we conclde that for a state eqation minimal realisation controllable and observable Lectre 15: Observability p.14/14

Linear System Theory

Linear System Theory Linear System Theory Wonhee Kim Chapter 6: Controllability & Observability Chapter 7: Minimal Realizations May 2, 217 1 / 31 Recap State space equation Linear Algebra Solutions of LTI and LTV system Stability

More information

1 Similarity transform 2. 2 Controllability The PBH test for controllability Observability The PBH test for observability...

1 Similarity transform 2. 2 Controllability The PBH test for controllability Observability The PBH test for observability... Contents 1 Similarity transform 2 2 Controllability 3 21 The PBH test for controllability 5 3 Observability 6 31 The PBH test for observability 7 4 Example ([1, pp121) 9 5 Subspace decomposition 11 51

More information

POLE PLACEMENT. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 19

POLE PLACEMENT. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 19 POLE PLACEMENT Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 19 Outline 1 State Feedback 2 Observer 3 Observer Feedback 4 Reduced Order

More information

1. State-Space Linear Systems 2. Block Diagrams 3. Exercises

1. State-Space Linear Systems 2. Block Diagrams 3. Exercises LECTURE 1 State-Space Linear Sstems This lectre introdces state-space linear sstems, which are the main focs of this book. Contents 1. State-Space Linear Sstems 2. Block Diagrams 3. Exercises 1.1 State-Space

More information

Linear System Theory (Fall 2011): Homework 1. Solutions

Linear System Theory (Fall 2011): Homework 1. Solutions Linear System Theory (Fall 20): Homework Soltions De Sep. 29, 20 Exercise (C.T. Chen: Ex.3-8). Consider a linear system with inpt and otpt y. Three experiments are performed on this system sing the inpts

More information

1 Continuous-time Systems

1 Continuous-time Systems Observability Completely controllable systems can be restructured by means of state feedback to have many desirable properties. But what if the state is not available for feedback? What if only the output

More information

PHASE PLANE DIAGRAMS OF DIFFERENCE EQUATIONS. 1. Introduction

PHASE PLANE DIAGRAMS OF DIFFERENCE EQUATIONS. 1. Introduction PHASE PLANE DIAGRAMS OF DIFFERENCE EQUATIONS TANYA DEWLAND, JEROME WESTON, AND RACHEL WEYRENS Abstract. We will be determining qalitatie featres of a discrete dynamical system of homogeneos difference

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 14: Controllability Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 14: Controllability p.1/23 Outline

More information

Control Systems

Control Systems 6.5 Control Systems Last Time: Introdction Motivation Corse Overview Project Math. Descriptions of Systems ~ Review Classification of Systems Linear Systems LTI Systems The notion of state and state variables

More information

Lecture: Corporate Income Tax

Lecture: Corporate Income Tax Lectre: Corporate Income Tax Ltz Krschwitz & Andreas Löffler Disconted Cash Flow, Section 2.1, Otline 2.1 Unlevered firms Similar companies Notation 2.1.1 Valation eqation 2.1.2 Weak atoregressive cash

More information

Homework 5 Solutions

Homework 5 Solutions Q Homework Soltions We know that the colmn space is the same as span{a & a ( a * } bt we want the basis Ths we need to make a & a ( a * linearly independent So in each of the following problems we row

More information

Review of course Nonlinear control Lecture 5. Lyapunov based design Torkel Glad Lyapunov design Control Lyapunov functions Control Lyapunov function

Review of course Nonlinear control Lecture 5. Lyapunov based design Torkel Glad Lyapunov design Control Lyapunov functions Control Lyapunov function Review of corse Nonlinear control Lectre 5 Lyapnov based design Reglerteknik, ISY, Linköpings Universitet Geometric control theory inpt-otpt linearization controller canonical form observer canonical form

More information

Image and Multidimensional Signal Processing

Image and Multidimensional Signal Processing Image and Mltidimensional Signal Processing Professor William Hoff Dept of Electrical Engineering &Compter Science http://inside.mines.ed/~whoff/ Forier Transform Part : D discrete transforms 2 Overview

More information

Automatic Control 2. Model reduction. Prof. Alberto Bemporad. University of Trento. Academic year

Automatic Control 2. Model reduction. Prof. Alberto Bemporad. University of Trento. Academic year Lecture: Automatic Control 2 Prof. Alberto Bemporad University of Trento Academic year 2010-2011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011 1 / 17 Lecture:

More information

EEE582 Homework Problems

EEE582 Homework Problems EEE582 Homework Problems HW. Write a state-space realization of the linearized model for the cruise control system around speeds v = 4 (Section.3, http://tsakalis.faculty.asu.edu/notes/models.pdf). Use

More information

Module 03 Linear Systems Theory: Necessary Background

Module 03 Linear Systems Theory: Necessary Background Module 03 Linear Systems Theory: Necessary Background Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html September

More information

Lecture: Corporate Income Tax - Unlevered firms

Lecture: Corporate Income Tax - Unlevered firms Lectre: Corporate Income Tax - Unlevered firms Ltz Krschwitz & Andreas Löffler Disconted Cash Flow, Section 2.1, Otline 2.1 Unlevered firms Similar companies Notation 2.1.1 Valation eqation 2.1.2 Weak

More information

Rural/Urban Migration: The Dynamics of Eigenvectors

Rural/Urban Migration: The Dynamics of Eigenvectors * Analysis of the Dynamic Structure of a System * Rural/Urban Migration: The Dynamics of Eigenvectors EGR 326 April 11, 2019 1. Develop the system model and create the Matlab/Simulink model 2. Plot and

More information

Control System Design

Control System Design ELEC4410 Control System Design Lecture 19: Feedback from Estimated States and Discrete-Time Control Design Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science

More information

Perspective. ECE 3640 Lecture 11 State-Space Analysis. To learn about state-space analysis for continuous and discrete-time. Objective: systems

Perspective. ECE 3640 Lecture 11 State-Space Analysis. To learn about state-space analysis for continuous and discrete-time. Objective: systems ECE 3640 Lecture State-Space Analysis Objective: systems To learn about state-space analysis for continuous and discrete-time Perspective Transfer functions provide only an input/output perspective of

More information

FEA Solution Procedure

FEA Solution Procedure EA Soltion Procedre (demonstrated with a -D bar element problem) EA Procedre for Static Analysis. Prepare the E model a. discretize (mesh) the strctre b. prescribe loads c. prescribe spports. Perform calclations

More information

Modelling and Control of Dynamic Systems. Stability of Linear Systems. Sven Laur University of Tartu

Modelling and Control of Dynamic Systems. Stability of Linear Systems. Sven Laur University of Tartu Modelling and Control of Dynamic Systems Stability of Linear Systems Sven Laur University of Tartu Motivating Example Naive open-loop control r[k] Controller Ĉ[z] u[k] ε 1 [k] System Ĝ[z] y[k] ε 2 [k]

More information

1. Find the solution of the following uncontrolled linear system. 2 α 1 1

1. Find the solution of the following uncontrolled linear system. 2 α 1 1 Appendix B Revision Problems 1. Find the solution of the following uncontrolled linear system 0 1 1 ẋ = x, x(0) =. 2 3 1 Class test, August 1998 2. Given the linear system described by 2 α 1 1 ẋ = x +

More information

Lecture 4 and 5 Controllability and Observability: Kalman decompositions

Lecture 4 and 5 Controllability and Observability: Kalman decompositions 1 Lecture 4 and 5 Controllability and Observability: Kalman decompositions Spring 2013 - EE 194, Advanced Control (Prof. Khan) January 30 (Wed.) and Feb. 04 (Mon.), 2013 I. OBSERVABILITY OF DT LTI SYSTEMS

More information

Optimization via the Hamilton-Jacobi-Bellman Method: Theory and Applications

Optimization via the Hamilton-Jacobi-Bellman Method: Theory and Applications Optimization via the Hamilton-Jacobi-Bellman Method: Theory and Applications Navin Khaneja lectre notes taken by Christiane Koch Jne 24, 29 1 Variation yields a classical Hamiltonian system Sppose that

More information

Garret Sobczyk s 2x2 Matrix Derivation

Garret Sobczyk s 2x2 Matrix Derivation Garret Sobczyk s x Matrix Derivation Krt Nalty May, 05 Abstract Using matrices to represent geometric algebras is known, bt not necessarily the best practice. While I have sed small compter programs to

More information

Robust Control 2 Controllability, Observability & Transfer Functions

Robust Control 2 Controllability, Observability & Transfer Functions Robust Control 2 Controllability, Observability & Transfer Functions Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /26/24 Outline Reachable Controllability Distinguishable

More information

1. LQR formulation 2. Selection of weighting matrices 3. Matlab implementation. Regulator Problem mm3,4. u=-kx

1. LQR formulation 2. Selection of weighting matrices 3. Matlab implementation. Regulator Problem mm3,4. u=-kx MM8.. LQR Reglator 1. LQR formlation 2. Selection of weighting matrices 3. Matlab implementation Reading Material: DC: p.364-382, 400-403, Matlab fnctions: lqr, lqry, dlqr, lqrd, care, dare 3/26/2008 Introdction

More information

16.31 Fall 2005 Lecture Presentation Mon 31-Oct-05 ver 1.1

16.31 Fall 2005 Lecture Presentation Mon 31-Oct-05 ver 1.1 16.31 Fall 2005 Lecture Presentation Mon 31-Oct-05 ver 1.1 Charles P. Coleman October 31, 2005 1 / 40 : Controllability Tests Observability Tests LEARNING OUTCOMES: Perform controllability tests Perform

More information

Formal Methods for Deriving Element Equations

Formal Methods for Deriving Element Equations Formal Methods for Deriving Element Eqations And the importance of Shape Fnctions Formal Methods In previos lectres we obtained a bar element s stiffness eqations sing the Direct Method to obtain eact

More information

Move Blocking Strategies in Receding Horizon Control

Move Blocking Strategies in Receding Horizon Control Move Blocking Strategies in Receding Horizon Control Raphael Cagienard, Pascal Grieder, Eric C. Kerrigan and Manfred Morari Abstract In order to deal with the comptational brden of optimal control, it

More information

Homogeneous Liner Systems with Constant Coefficients

Homogeneous Liner Systems with Constant Coefficients Homogeneos Liner Systems with Constant Coefficients Jly, 06 The object of stdy in this section is where A is a d d constant matrix whose entries are real nmbers. As before, we will look to the exponential

More information

1 (30 pts) Dominant Pole

1 (30 pts) Dominant Pole EECS C8/ME C34 Fall Problem Set 9 Solutions (3 pts) Dominant Pole For the following transfer function: Y (s) U(s) = (s + )(s + ) a) Give state space description of the system in parallel form (ẋ = Ax +

More information

Diagrams of Difference Equations

Diagrams of Difference Equations Introdction Dewland, SMILE Weston, Weyrens REU Smmer Phase Plane2011 Diagrams of Difference Eqations of Difference Eqations Tanya Dewland 1 Jerome Weston 2 Rachel Weyrens 3 1 Department of Mathematics

More information

5. Observer-based Controller Design

5. Observer-based Controller Design EE635 - Control System Theory 5. Observer-based Controller Design Jitkomut Songsiri state feedback pole-placement design regulation and tracking state observer feedback observer design LQR and LQG 5-1

More information

Observability. Dynamic Systems. Lecture 2 Observability. Observability, continuous time: Observability, discrete time: = h (2) (x, u, u)

Observability. Dynamic Systems. Lecture 2 Observability. Observability, continuous time: Observability, discrete time: = h (2) (x, u, u) Observability Dynamic Systems Lecture 2 Observability Continuous time model: Discrete time model: ẋ(t) = f (x(t), u(t)), y(t) = h(x(t), u(t)) x(t + 1) = f (x(t), u(t)), y(t) = h(x(t)) Reglerteknik, ISY,

More information

STURM-LIOUVILLE PROBLEMS

STURM-LIOUVILLE PROBLEMS STURM-LIOUVILLE PROBLEMS ANTON ZETTL Mathematics Department, Northern Illinois University, DeKalb, Illinois 60115. Dedicated to the memory of John Barrett. ABSTRACT. Reglar and singlar Strm-Lioville problems

More information

Classify by number of ports and examine the possible structures that result. Using only one-port elements, no more than two elements can be assembled.

Classify by number of ports and examine the possible structures that result. Using only one-port elements, no more than two elements can be assembled. Jnction elements in network models. Classify by nmber of ports and examine the possible strctres that reslt. Using only one-port elements, no more than two elements can be assembled. Combining two two-ports

More information

State Space Models Basic Concepts

State Space Models Basic Concepts Chapter 2 State Space Models Basic Concepts Related reading in Bay: Chapter Section Sbsection 1 (Models of Linear Systems) 1.1 1.1.1 1.1.2 1.1.3 1.1.5 1.2 1.2.1 1.2.2 1.3 In this Chapter we provide some

More information

Module 9: State Feedback Control Design Lecture Note 1

Module 9: State Feedback Control Design Lecture Note 1 Module 9: State Feedback Control Design Lecture Note 1 The design techniques described in the preceding lectures are based on the transfer function of a system. In this lecture we would discuss the state

More information

Advanced topics in Finite Element Method 3D truss structures. Jerzy Podgórski

Advanced topics in Finite Element Method 3D truss structures. Jerzy Podgórski Advanced topics in Finite Element Method 3D trss strctres Jerzy Podgórski Introdction Althogh 3D trss strctres have been arond for a long time, they have been sed very rarely ntil now. They are difficlt

More information

ECON3120/4120 Mathematics 2, spring 2009

ECON3120/4120 Mathematics 2, spring 2009 University of Oslo Department of Economics Arne Strøm ECON3/4 Mathematics, spring 9 Problem soltions for Seminar 4, 6 Febrary 9 (For practical reasons some of the soltions may inclde problem parts that

More information

On the tree cover number of a graph

On the tree cover number of a graph On the tree cover nmber of a graph Chassidy Bozeman Minerva Catral Brendan Cook Oscar E. González Carolyn Reinhart Abstract Given a graph G, the tree cover nmber of the graph, denoted T (G), is the minimm

More information

FEA Solution Procedure

FEA Solution Procedure EA Soltion Procedre (demonstrated with a -D bar element problem) MAE 5 - inite Element Analysis Several slides from this set are adapted from B.S. Altan, Michigan Technological University EA Procedre for

More information

Control engineering sample exam paper - Model answers

Control engineering sample exam paper - Model answers Question Control engineering sample exam paper - Model answers a) By a direct computation we obtain x() =, x(2) =, x(3) =, x(4) = = x(). This trajectory is sketched in Figure (left). Note that A 2 = I

More information

ECEN 605 LINEAR SYSTEMS. Lecture 8 Invariant Subspaces 1/26

ECEN 605 LINEAR SYSTEMS. Lecture 8 Invariant Subspaces 1/26 1/26 ECEN 605 LINEAR SYSTEMS Lecture 8 Invariant Subspaces Subspaces Let ẋ(t) = A x(t) + B u(t) y(t) = C x(t) (1a) (1b) denote a dynamic system where X, U and Y denote n, r and m dimensional vector spaces,

More information

Module 08 Observability and State Estimator Design of Dynamical LTI Systems

Module 08 Observability and State Estimator Design of Dynamical LTI Systems Module 08 Observability and State Estimator Design of Dynamical LTI Systems Ahmad F. Taha EE 5143: Linear Systems and Control Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ataha November

More information

MEM 355 Performance Enhancement of Dynamical Systems MIMO Introduction

MEM 355 Performance Enhancement of Dynamical Systems MIMO Introduction MEM 355 Performance Enhancement of Dynamical Systems MIMO Introduction Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 11/2/214 Outline Solving State Equations Variation

More information

Mathematical Models of Physiological Responses to Exercise

Mathematical Models of Physiological Responses to Exercise Mathematical Models of Physiological Responses to Exercise Somayeh Sojodi, Benjamin Recht, and John C. Doyle Abstract This paper is concerned with the identification of mathematical models for physiological

More information

Control Systems Design, SC4026. SC4026 Fall 2009, dr. A. Abate, DCSC, TU Delft

Control Systems Design, SC4026. SC4026 Fall 2009, dr. A. Abate, DCSC, TU Delft Control Systems Design, SC4026 SC4026 Fall 2009, dr. A. Abate, DCSC, TU Delft Lecture 4 Controllability (a.k.a. Reachability) vs Observability Algebraic Tests (Kalman rank condition & Hautus test) A few

More information

Decoder Error Probability of MRD Codes

Decoder Error Probability of MRD Codes Decoder Error Probability of MRD Codes Maximilien Gadolea Department of Electrical and Compter Engineering Lehigh University Bethlehem, PA 18015 USA E-mail: magc@lehighed Zhiyan Yan Department of Electrical

More information

Observability and Constructability

Observability and Constructability Capitolo. INTRODUCTION 5. Observability and Constructability Observability problem: compute the initial state x(t ) using the information associated to the input and output functions u(t) and y(t) of the

More information

Chap. 3. Controlled Systems, Controllability

Chap. 3. Controlled Systems, Controllability Chap. 3. Controlled Systems, Controllability 1. Controllability of Linear Systems 1.1. Kalman s Criterion Consider the linear system ẋ = Ax + Bu where x R n : state vector and u R m : input vector. A :

More information

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequency-domain analysis and control design (15 pt) Given is a

More information

Control Systems Design, SC4026. SC4026 Fall 2010, dr. A. Abate, DCSC, TU Delft

Control Systems Design, SC4026. SC4026 Fall 2010, dr. A. Abate, DCSC, TU Delft Control Systems Design, SC4026 SC4026 Fall 2010, dr. A. Abate, DCSC, TU Delft Lecture 4 Controllability (a.k.a. Reachability) and Observability Algebraic Tests (Kalman rank condition & Hautus test) A few

More information

The Cryptanalysis of a New Public-Key Cryptosystem based on Modular Knapsacks

The Cryptanalysis of a New Public-Key Cryptosystem based on Modular Knapsacks The Cryptanalysis of a New Pblic-Key Cryptosystem based on Modlar Knapsacks Yeow Meng Chee Antoine Jox National Compter Systems DMI-GRECC Center for Information Technology 45 re d Ulm 73 Science Park Drive,

More information

EE221A Linear System Theory Final Exam

EE221A Linear System Theory Final Exam EE221A Linear System Theory Final Exam Professor C. Tomlin Department of Electrical Engineering and Computer Sciences, UC Berkeley Fall 2016 12/16/16, 8-11am Your answers must be supported by analysis,

More information

Lec 6: State Feedback, Controllability, Integral Action

Lec 6: State Feedback, Controllability, Integral Action Lec 6: State Feedback, Controllability, Integral Action November 22, 2017 Lund University, Department of Automatic Control Controllability and Observability Example of Kalman decomposition 1 s 1 x 10 x

More information

Null Controllability of Discrete-time Linear Systems with Input and State Constraints

Null Controllability of Discrete-time Linear Systems with Input and State Constraints Proceedings of the 47th IEEE Conference on Decision and Control Cancun, Mexico, Dec. 9-11, 2008 Null Controllability of Discrete-time Linear Systems with Input and State Constraints W.P.M.H. Heemels and

More information

Complex Variables. For ECON 397 Macroeconometrics Steve Cunningham

Complex Variables. For ECON 397 Macroeconometrics Steve Cunningham Comple Variables For ECON 397 Macroeconometrics Steve Cnningham Open Disks or Neighborhoods Deinition. The set o all points which satis the ineqalit

More information

The Brauer Manin obstruction

The Brauer Manin obstruction The Braer Manin obstrction Martin Bright 17 April 2008 1 Definitions Let X be a smooth, geometrically irredcible ariety oer a field k. Recall that the defining property of an Azmaya algebra A is that,

More information

Controllability, Observability, Full State Feedback, Observer Based Control

Controllability, Observability, Full State Feedback, Observer Based Control Multivariable Control Lecture 4 Controllability, Observability, Full State Feedback, Observer Based Control John T. Wen September 13, 24 Ref: 3.2-3.4 of Text Controllability ẋ = Ax + Bu; x() = x. At time

More information

IMPULSIVE CONTROL OF DISCRETE-TIME NETWORKED SYSTEMS WITH COMMUNICATION DELAYS. Shumei Mu, Tianguang Chu, and Long Wang

IMPULSIVE CONTROL OF DISCRETE-TIME NETWORKED SYSTEMS WITH COMMUNICATION DELAYS. Shumei Mu, Tianguang Chu, and Long Wang IMPULSIVE CONTROL OF DISCRETE-TIME NETWORKED SYSTEMS WITH COMMUNICATION DELAYS Shumei Mu Tianguang Chu and Long Wang Intelligent Control Laboratory Center for Systems and Control Department of Mechanics

More information

Analysis of Discrete-Time Systems

Analysis of Discrete-Time Systems TU Berlin Discrete-Time Control Systems 1 Analysis of Discrete-Time Systems Overview Stability Sensitivity and Robustness Controllability, Reachability, Observability, and Detectabiliy TU Berlin Discrete-Time

More information

7.1 Linear Systems Stability Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system

7.1 Linear Systems Stability Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system 7 Stability 7.1 Linear Systems Stability Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system ẋ(t) = A x(t), x(0) = x 0, A R n n, x 0 R n. (14) The origin x = 0 is a globally asymptotically

More information

Essentials of optimal control theory in ECON 4140

Essentials of optimal control theory in ECON 4140 Essentials of optimal control theory in ECON 4140 Things yo need to know (and a detail yo need not care abot). A few words abot dynamic optimization in general. Dynamic optimization can be thoght of as

More information

1 Undiscounted Problem (Deterministic)

1 Undiscounted Problem (Deterministic) Lectre 9: Linear Qadratic Control Problems 1 Undisconted Problem (Deterministic) Choose ( t ) 0 to Minimize (x trx t + tq t ) t=0 sbject to x t+1 = Ax t + B t, x 0 given. x t is an n-vector state, t a

More information

Discontinuous Fluctuation Distribution for Time-Dependent Problems

Discontinuous Fluctuation Distribution for Time-Dependent Problems Discontinos Flctation Distribtion for Time-Dependent Problems Matthew Hbbard School of Compting, University of Leeds, Leeds, LS2 9JT, UK meh@comp.leeds.ac.k Introdction For some years now, the flctation

More information

SYSTEMTEORI - ÖVNING Stability of linear systems Exercise 3.1 (LTI system). Consider the following matrix:

SYSTEMTEORI - ÖVNING Stability of linear systems Exercise 3.1 (LTI system). Consider the following matrix: SYSTEMTEORI - ÖVNING 3 1. Stability of linear systems Exercise 3.1 (LTI system. Consider the following matrix: ( A = 2 1 Use the Lyapunov method to determine if A is a stability matrix: a: in continuous

More information

1 Differential Equations for Solid Mechanics

1 Differential Equations for Solid Mechanics 1 Differential Eqations for Solid Mechanics Simple problems involving homogeneos stress states have been considered so far, wherein the stress is the same throghot the component nder std. An eception to

More information

Digital Image Processing. Lecture 8 (Enhancement in the Frequency domain) Bu-Ali Sina University Computer Engineering Dep.

Digital Image Processing. Lecture 8 (Enhancement in the Frequency domain) Bu-Ali Sina University Computer Engineering Dep. Digital Image Processing Lectre 8 Enhancement in the Freqenc domain B-Ali Sina Uniersit Compter Engineering Dep. Fall 009 Image Enhancement In The Freqenc Domain Otline Jean Baptiste Joseph Forier The

More information

sin xdx = cos x + c We also run into antiderivatives for tan x, cot x, sec x and csc x in the section on Log integrals. They are: cos ax sec ax a

sin xdx = cos x + c We also run into antiderivatives for tan x, cot x, sec x and csc x in the section on Log integrals. They are: cos ax sec ax a Trig Integrals We already know antiderivatives for sin x, cos x, sec x tan x, csc x, sec x and csc x cot x. They are cos xdx = sin x sin xdx = cos x sec x tan xdx = sec x csc xdx = cot x sec xdx = tan

More information

Spring, 2008 CIS 610. Advanced Geometric Methods in Computer Science Jean Gallier Homework 1, Corrected Version

Spring, 2008 CIS 610. Advanced Geometric Methods in Computer Science Jean Gallier Homework 1, Corrected Version Spring, 008 CIS 610 Adanced Geometric Methods in Compter Science Jean Gallier Homework 1, Corrected Version Febrary 18, 008; De March 5, 008 A problems are for practice only, and shold not be trned in.

More information

Stair Matrix and its Applications to Massive MIMO Uplink Data Detection

Stair Matrix and its Applications to Massive MIMO Uplink Data Detection 1 Stair Matrix and its Applications to Massive MIMO Uplink Data Detection Fan Jiang, Stdent Member, IEEE, Cheng Li, Senior Member, IEEE, Zijn Gong, Senior Member, IEEE, and Roy S, Stdent Member, IEEE Abstract

More information

i=1 y i 1fd i = dg= P N i=1 1fd i = dg.

i=1 y i 1fd i = dg= P N i=1 1fd i = dg. ECOOMETRICS II (ECO 240S) University of Toronto. Department of Economics. Winter 208 Instrctor: Victor Agirregabiria SOLUTIO TO FIAL EXAM Tesday, April 0, 208. From 9:00am-2:00pm (3 hors) ISTRUCTIOS: -

More information

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation:

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation: Math 263 Assignment #3 Soltions 1. A fnction z f(x, ) is called harmonic if it satisfies Laplace s eqation: 2 + 2 z 2 0 Determine whether or not the following are harmonic. (a) z x 2 + 2. We se the one-variable

More information

Kalman Decomposition B 2. z = T 1 x, where C = ( C. z + u (7) T 1, and. where B = T, and

Kalman Decomposition B 2. z = T 1 x, where C = ( C. z + u (7) T 1, and. where B = T, and Kalman Decomposition Controllable / uncontrollable decomposition Suppose that the controllability matrix C R n n of a system has rank n 1

More information

Modelling by Differential Equations from Properties of Phenomenon to its Investigation

Modelling by Differential Equations from Properties of Phenomenon to its Investigation Modelling by Differential Eqations from Properties of Phenomenon to its Investigation V. Kleiza and O. Prvinis Kanas University of Technology, Lithania Abstract The Panevezys camps of Kanas University

More information

Solution for Homework 5

Solution for Homework 5 Solution for Homework 5 ME243A/ECE23A Fall 27 Exercise 1 The computation of the reachable subspace in continuous time can be handled easily introducing the concepts of inner product, orthogonal complement

More information

Balanced Truncation 1

Balanced Truncation 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.242, Fall 2004: MODEL REDUCTION Balanced Truncation This lecture introduces balanced truncation for LTI

More information

FEA Solution Procedure

FEA Solution Procedure EA Soltion rocedre (demonstrated with a -D bar element problem) MAE - inite Element Analysis Many slides from this set are originally from B.S. Altan, Michigan Technological U. EA rocedre for Static Analysis.

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com C Integration - By sbstittion PhysicsAndMathsTtor.com. Using the sbstittion cos +, or otherwise, show that e cos + sin d e(e ) (Total marks). (a) Using the sbstittion cos, or otherwise, find the eact vale

More information

Analysis of Discrete-Time Systems

Analysis of Discrete-Time Systems TU Berlin Discrete-Time Control Systems TU Berlin Discrete-Time Control Systems 2 Stability Definitions We define stability first with respect to changes in the initial conditions Analysis of Discrete-Time

More information

MCE693/793: Analysis and Control of Nonlinear Systems

MCE693/793: Analysis and Control of Nonlinear Systems MCE693/793: Analysis and Control of Nonlinear Systems Introduction to Nonlinear Controllability and Observability Hanz Richter Mechanical Engineering Department Cleveland State University Definition of

More information

Solving a System of Equations

Solving a System of Equations Solving a System of Eqations Objectives Understand how to solve a system of eqations with: - Gass Elimination Method - LU Decomposition Method - Gass-Seidel Method - Jacobi Method A system of linear algebraic

More information

Outline. Model Predictive Control: Current Status and Future Challenges. Separation of the control problem. Separation of the control problem

Outline. Model Predictive Control: Current Status and Future Challenges. Separation of the control problem. Separation of the control problem Otline Model Predictive Control: Crrent Stats and Ftre Challenges James B. Rawlings Department of Chemical and Biological Engineering University of Wisconsin Madison UCLA Control Symposim May, 6 Overview

More information

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r )

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) v e r. E N G O u t l i n e T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) C o n t e n t s : T h i s w o

More information

Pole placement control: state space and polynomial approaches Lecture 1

Pole placement control: state space and polynomial approaches Lecture 1 : state space and polynomial approaches Lecture 1 dynamical O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.fr www.gipsa-lab.fr/ o.sename November 7, 2017 Outline dynamical dynamical

More information

A FIRST COURSE IN THE FINITE ELEMENT METHOD

A FIRST COURSE IN THE FINITE ELEMENT METHOD INSTRUCTOR'S SOLUTIONS MANUAL TO ACCOMANY A IRST COURS IN TH INIT LMNT MTHOD ITH DITION DARYL L. LOGAN Contents Chapter 1 1 Chapter 3 Chapter 3 3 Chapter 17 Chapter 5 183 Chapter 6 81 Chapter 7 319 Chapter

More information

Lecture Notes On THEORY OF COMPUTATION MODULE - 2 UNIT - 2

Lecture Notes On THEORY OF COMPUTATION MODULE - 2 UNIT - 2 BIJU PATNAIK UNIVERSITY OF TECHNOLOGY, ODISHA Lectre Notes On THEORY OF COMPUTATION MODULE - 2 UNIT - 2 Prepared by, Dr. Sbhend Kmar Rath, BPUT, Odisha. Tring Machine- Miscellany UNIT 2 TURING MACHINE

More information

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018 Linear System Theory Wonhee Kim Lecture 1 March 7, 2018 1 / 22 Overview Course Information Prerequisites Course Outline What is Control Engineering? Examples of Control Systems Structure of Control Systems

More information

CSL361 Problem set 4: Basic linear algebra

CSL361 Problem set 4: Basic linear algebra CSL361 Problem set 4: Basic linear algebra February 21, 2017 [Note:] If the numerical matrix computations turn out to be tedious, you may use the function rref in Matlab. 1 Row-reduced echelon matrices

More information

The Real Stabilizability Radius of the Multi-Link Inverted Pendulum

The Real Stabilizability Radius of the Multi-Link Inverted Pendulum Proceedings of the 26 American Control Conference Minneapolis, Minnesota, USA, Jne 14-16, 26 WeC123 The Real Stabilizability Radis of the Mlti-Link Inerted Pendlm Simon Lam and Edward J Daison Abstract

More information

4F3 - Predictive Control

4F3 - Predictive Control 4F3 Predictive Control - Discrete-time systems p. 1/30 4F3 - Predictive Control Discrete-time State Space Control Theory For reference only Jan Maciejowski jmm@eng.cam.ac.uk 4F3 Predictive Control - Discrete-time

More information

Characterizations of probability distributions via bivariate regression of record values

Characterizations of probability distributions via bivariate regression of record values Metrika (2008) 68:51 64 DOI 10.1007/s00184-007-0142-7 Characterizations of probability distribtions via bivariate regression of record vales George P. Yanev M. Ahsanllah M. I. Beg Received: 4 October 2006

More information

Mathematics I. Exercises with solutions. 1 Linear Algebra. Vectors and Matrices Let , C = , B = A = Determine the following matrices:

Mathematics I. Exercises with solutions. 1 Linear Algebra. Vectors and Matrices Let , C = , B = A = Determine the following matrices: Mathematics I Exercises with solutions Linear Algebra Vectors and Matrices.. Let A = 5, B = Determine the following matrices: 4 5, C = a) A + B; b) A B; c) AB; d) BA; e) (AB)C; f) A(BC) Solution: 4 5 a)

More information

LINEAR COMBINATIONS AND SUBSPACES

LINEAR COMBINATIONS AND SUBSPACES CS131 Part II, Linear Algebra and Matrices CS131 Mathematics for Compter Scientists II Note 5 LINEAR COMBINATIONS AND SUBSPACES Linear combinations. In R 2 the vector (5, 3) can be written in the form

More information

False Data Injection Attacks in Control Systems

False Data Injection Attacks in Control Systems False Data Injection Attacks in Control Systems Yilin Mo, Bruno Sinopoli Department of Electrical and Computer Engineering, Carnegie Mellon University First Workshop on Secure Control Systems Bruno Sinopoli

More information

Elements of Coordinate System Transformations

Elements of Coordinate System Transformations B Elements of Coordinate System Transformations Coordinate system transformation is a powerfl tool for solving many geometrical and kinematic problems that pertain to the design of gear ctting tools and

More information

Applying Laminar and Turbulent Flow and measuring Velocity Profile Using MATLAB

Applying Laminar and Turbulent Flow and measuring Velocity Profile Using MATLAB IOS Jornal of Mathematics (IOS-JM) e-issn: 78-578, p-issn: 319-765X. Volme 13, Isse 6 Ver. II (Nov. - Dec. 17), PP 5-59 www.iosrjornals.org Applying Laminar and Trblent Flow and measring Velocity Profile

More information