Lec 6: State Feedback, Controllability, Integral Action

Size: px
Start display at page:

Download "Lec 6: State Feedback, Controllability, Integral Action"

Transcription

1 Lec 6: State Feedback, Controllability, Integral Action November 22, 2017 Lund University, Department of Automatic Control

2 Controllability and Observability Example of Kalman decomposition 1 s 1 x 10 x 20 2 s+2 + y u x 30 3 s+3 x 40 4 s 4 How does the system behave? From outside the blue box we only see the input u and output y but a lot can happen inside!! 1

3 Controllability and Observability Example of Kalman decomposition 1 s 1 x 10 x 20 2 s+2 + y u x 30 3 s+3 x 40 4 s 4 Introduce states and write the system in state-space form. 1

4 Controllability and Observability How well can we control two subsystems at the same time? Q: Are there any differences for the two cases below and how does it depend on gain b? u y 1 1 s+1 b 2 s+2 y 2 u y 1 1 s+1 b 1 s+1 y 2 2

5 Different Ways to Describe a Dynamical System Differential equation ÿ + a 1ẏ + a 2y = b 1 u + b 2u x 1 = y x 2 = ẏ... State space ẋ = Ax + Bu y = Cx + Du Collection of Formulae G(s) = C(sI A) 1 B + D ( ) d L n f (t) (s) = s n F (s) dt n Transfer function Y (s) = G(s)U(s) = Q(s) P(s) U(s) 3

6 Recap of states and statespace realization Physical systems are modeled by differential equations. Example: Damped spring-mass system (ẏ velocity, y position) mÿ(t) = cẏ(t) ky(t) + F (t) The state vector x is a collection of physical quantities required to predict the evolution of the system x 1 x 2 x =. x i s could be positions, velocities, currents, voltages, queue lengths, number of virtual machines, temperatures, concentrations, etc. x n 4

7 Recap of states and statespace realization The evolution of the state vector (for an LTI system), subject to an external signal u, can be described by ẋ = Ax + Bu where A is a matrix and B a column vector. The measured signal of the system is given by y = Cx (+ Du) 5

8 Statespace Transfer function conversion A system with state-space representation ẋ = Ax + Bu y = Cx (+ Du) has transfer function G(s) = C(sI A) 1 B + D A transfer function model can have (infinitely) many different state-space realizations. Standard forms are: controllable canonical form, observable canonical form, diagonal form, see Collection of Formulae. 6

9 Lecture 6: State feedback control 1. Controllable form 2. State feedback control 3. Example 4. Controllability 5. Integral Action 7

10 Controllable canonical form The system with transfer function G(s) = D + b 1s n 1 + b 2 s n b n s n + a 1 s n a n has controllable canonical form a 1 a 2... a n 1 a n dz dt = z +. u ] y = [1 b 2... b n z + Du 8

11 Observable canonical form The system with transfer function has observable canonical form G(s) = D + b 1s n 1 + b 2 s n b n s n + a 1 s n a n a b 1 a b 2 dz dt =. z +. u a n a n b n [ ] y = z + Du 8

12 PID and state feedback controller PID-controller: u = K ( e + 1 t ) de e(τ)dτ + T d, e = r y T i dt State feedback controller u = l ref r + l 1 (x 1,ref x 1 ) + l 2 (x 2,ref x 2 ) + l n (x n,ref x n ) 9

13 PID and state feedback controller PID-controller: u = K ( e + 1 t ) de e(τ)dτ + T d, e = r y T i dt State feedback controller u = l ref r + l 1 (x 1,ref x 1 ) + l 2 (x 2,ref x 2 ) + l n (x n,ref x n ) = = l ref r l 1 x 1 l 2 x 2 l n x n if x 1,ref = x 2,ref =... = x n,ref = 0 We will also add integral part to the state feedback later on. 9

14 Process {ẋ = Ax + Bu y = Cx Y (s) = C(sI A) 1 BU(s) The characteristic polynomial is det(si A) 10

15 Controller Linear state feedback controller u = l ref r l 1 x 1 l 2 x 2 l n x n = l ref r Lx ] L = [l 1 l 2... l n x = x 1. x n 11

16 Closed-Loop System ẋ = Ax + B(l ref r Lx) = (A BL)x + Bl ref r y = Cx Y (s) = C[sI (A BL)] 1 Bl ref R(s) We have new system matrix. The characteristic polynomial is Choose L to get desired poles. Choose l ref to get y = r in stationarity. det[si (A BL)]. 12

17 Example 1 DC-motor Transfer function from voltage to angle: G p (s) = b s(s + a) = 100 s(s + 10) Q: What are x 1 and x 2? 13

18 Example 1 DC-motor Transfer function from voltage to angle: G p (s) = b s(s + a) = 100 s(s + 10) Q: What are x 1 and x 2? State x 1 corresponds to angular speed State x 2 corresponds to motor angle 13

19 Example 1 DC-motor Transfer function from voltage to angle: G p (s) = P-control: u = K(r y) b s(s + a) = 100 s(s + 10) G o (s) = Kb s(s + a) G t (s) = G o(s) 1 + G o (s) = bk s 2 + as + bk s 2 + as + bk = s 2 + 2ζω 0 s + ω 2 os 2 ω 0 = bk ζ = 0.5a bk 13

20 Example 1 (cont d) State space model {ẋ1 = ax 1 + bu ẋ 2 = x 1 y = x 2 [ ] [ ] a 0 b ẋ = x + u [ ] y = 0 1 x 14

21 Example 1 (cont d) Feedback from both x 1 and x 2 Control law: u = l ref r l 1 x 1 l 2 x 2 Closed-loop system: [ ] [ ] a bl1 bl 2 b ẋ = x + u [ ] y = 0 1 x 15

22 DC-motor example The control law Figure 1: State feedback motor control. u = l r r l 1 x 1 l 2 x 2 = l r r Lx yields the closed-loop system [ ] [ ] l 1 100l ẋ = x + l r r y = [ ] 0 1 x 16

23 Example 1 (cont d) Characteristic polynomial: det(si A) = s + a + bl 1 bl 2 1 s = (s + a + bl 1 )s + bl 2 = s 2 + (a + bl 1 )s + bl 2 The poles can be placed anywhere want by choosing l 1, l 2. At stationarity: 0 = [ ẋ 1 ẋ 2 ] = [ (a + bl 1 )x 1 bl 2 x 2 + bl ref r x 1 ] { x1 = 0 l 2 x 2 = l ref r Choose l ref = l 2. This gives x 2 = r in stationarity. 17

24 Example 2 Can we choose characteristic polynomial (poles) freely how we want? {ẋ1 = x 1 + u We can not affect x 2! det(si A + BL) = ẋ 2 = 2x 2 [ ] [ ] ẋ = x + u s l 1 l 2 0 s + 2 = (s l 1 )(s + 2) 18

25 Controllability The system ẋ = Ax + Bu is called controllable if for any a and b there exist a control signal u which transfers from state x(0) = a to state x(t) = b. NOTE! Controllability does NOT concern y, C or D! 19

26 Cayley-Hamilton: t x(t) = e At x(0) + e A(t s) Bu(s)ds 0 0 = A n + a 1 A n a n 1 A + a n where det(si A) = s n + a 1 s n a n 1 s + a n. Thus, we have e At = I + At A2 t 2 + = α 0 (t)i + α 1 (t)a + + α n 1 (t)a n 1 20

27 It follows that t x(t) = e At a + where β k = t 0 α k(t s)u(s)ds. 0 n 1 = e At a + β k A k B k=0 e A(t s) Bu(s)ds Solutions for all a and b = x(t) exist if and only if are linearly independent. B, AB, A 2 B,..., A n 1 B 21

28 Criteria for controllability The system ẋ = Ax + Bu is controllable if and only if (iff) [ ] rank B AB... A n 1 B = n } {{ } W s The matrix W s is called the controllability matrix. 22

29 Example 2 [ ] [ ] a 0 b ẋ = Ax + Bu = x + u [ ] b ab rank W s = rank = 2 Controllable! 0 b [ ] [ ] ẋ = Ax + Bu = x + u [ ] 1 1 rank W s = rank = 1 Not controllable!

30 Example 3a Pumping to lower tank {ẋ1 = ax 1 ẋ 2 = ax 1 ax 2 + bu [ ] [ ] a 0 0 ẋ = x + u a a b [ ] 0 0 W s = b ab Not controllable! 24

31 Example 3b Pumping to upper tank {ẋ1 = ax 1 + bu ẋ 2 = ax 1 ax 2 [ ] [ ] a 0 b ẋ = x + u a a 0 [ ] b ab W s = 0 ab Controllable! 25

32 Example 3c Pumping to parallel tanks {ẋ1 = ax 1 + bu ẋ 2 = ax 2 + bu [ ] [ ] a 0 b ẋ = x + u 0 a b [ b W s = b ] ab ab Not controllable! 26

33 Controllable form G(s) = b 1s n b n 1 s + b n s n + a 1 s n a n 1 s + a n a 1 a 2... a n 1 a n ẋ = x + 0 u ] y = [b 1 b 2... b n 1 b n x W s = Controllable! 27

34 state feedback in canonical controllable form a 1 l 1 a 2 l 2... a n 1 l n 1 a n l n A BL = New charachteristic polynomial s n + (a 1 + l 1 )s n 1 + (a 2 + l 2 )s n a n + l n 28

35 Integral action A limitation with ordinary state feedback controllers is that they lack integral action, which consequently may result in stationary control errors. 29

36 Introduce an extra state x i as the integral of the error. x i = (r y)dt ẋ i = r y = r Cx Figure 2: Introduce extra state x i for state feedback with integral action. 30

37 If we augment the state vector x with the integral state x i such that ẋ i x 1 x e =. the augmented system can be written [ ] [ ] [ ] [ ] ẋ A 0 B 0 ẋ e = = x e + u + r = A e x e + B e u + B r r C y = [ ] C 0 x e = C e x e x n x i 31

38 If we augment the state vector x with the integral state x i such that ẋ i x 1 x e =. the augmented system can be written [ ] [ ] [ ] [ ] ẋ A 0 B 0 ẋ e = = x e + u + r = A e x e + B e u + B r r C y = [ ] C 0 x e = C e x e We have hence augmented the state-space system with a state which represents the integral of the control error and thus arrived at a controller with integral action. In stationarity it holds that ẋ e = 0 and thereby that ẋ i = r y = 0. x n x i 31

39 stet feedback with Integral Action (cont d) The controller now becomes u = l r r Lx l i x i = l r r L e x e where ] L e = [L l i This yields the following closed-loop state-space equations ẋ e = (A e B e L e )x e + (B e l r + B r )r y = C e x e The parameters in the vector L e are chosen 1 so that we obtain a desired closed-loop pole placement, just as previously. Here the poles are given by the characteristic polynomial det(si (A e B e L e )) 1 NOT same L with and without intgral action!! 32

40 Remark: We no longer need the parameter l r in order to achieve y = r in stationarity. The parameter does not affect the poles of the closed-loop system, only its zeros. However, it can therefore be chosen so that the system obtains desired transient properties at setpoint changes. We shall come back to zero placement in a later lecture. 33

41 Summary 1. Controllable form 2. State feedback control 3. Example 4. Controllability 5. Integral Action 34

Intro. Computer Control Systems: F8

Intro. Computer Control Systems: F8 Intro. Computer Control Systems: F8 Properties of state-space descriptions and feedback Dave Zachariah Dept. Information Technology, Div. Systems and Control 1 / 22 dave.zachariah@it.uu.se F7: Quiz! 2

More information

EE C128 / ME C134 Fall 2014 HW 9 Solutions. HW 9 Solutions. 10(s + 3) s(s + 2)(s + 5) G(s) =

EE C128 / ME C134 Fall 2014 HW 9 Solutions. HW 9 Solutions. 10(s + 3) s(s + 2)(s + 5) G(s) = 1. Pole Placement Given the following open-loop plant, HW 9 Solutions G(s) = 1(s + 3) s(s + 2)(s + 5) design the state-variable feedback controller u = Kx + r, where K = [k 1 k 2 k 3 ] is the feedback

More information

Intro. Computer Control Systems: F9

Intro. Computer Control Systems: F9 Intro. Computer Control Systems: F9 State-feedback control and observers Dave Zachariah Dept. Information Technology, Div. Systems and Control 1 / 21 dave.zachariah@it.uu.se F8: Quiz! 2 / 21 dave.zachariah@it.uu.se

More information

SYSTEMTEORI - ÖVNING 5: FEEDBACK, POLE ASSIGNMENT AND OBSERVER

SYSTEMTEORI - ÖVNING 5: FEEDBACK, POLE ASSIGNMENT AND OBSERVER SYSTEMTEORI - ÖVNING 5: FEEDBACK, POLE ASSIGNMENT AND OBSERVER Exercise 54 Consider the system: ẍ aẋ bx u where u is the input and x the output signal (a): Determine a state space realization (b): Is the

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67 1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure

More information

CONTROL DESIGN FOR SET POINT TRACKING

CONTROL DESIGN FOR SET POINT TRACKING Chapter 5 CONTROL DESIGN FOR SET POINT TRACKING In this chapter, we extend the pole placement, observer-based output feedback design to solve tracking problems. By tracking we mean that the output is commanded

More information

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)

More information

Topic # Feedback Control

Topic # Feedback Control Topic #5 6.3 Feedback Control State-Space Systems Full-state Feedback Control How do we change the poles of the state-space system? Or,evenifwecanchangethepolelocations. Where do we put the poles? Linear

More information

Topic # Feedback Control

Topic # Feedback Control Topic #11 16.31 Feedback Control State-Space Systems State-space model features Observability Controllability Minimal Realizations Copyright 21 by Jonathan How. 1 Fall 21 16.31 11 1 State-Space Model Features

More information

5. Observer-based Controller Design

5. Observer-based Controller Design EE635 - Control System Theory 5. Observer-based Controller Design Jitkomut Songsiri state feedback pole-placement design regulation and tracking state observer feedback observer design LQR and LQG 5-1

More information

Control Systems Design, SC4026. SC4026 Fall 2010, dr. A. Abate, DCSC, TU Delft

Control Systems Design, SC4026. SC4026 Fall 2010, dr. A. Abate, DCSC, TU Delft Control Systems Design, SC426 SC426 Fall 2, dr A Abate, DCSC, TU Delft Lecture 5 Controllable Canonical and Observable Canonical Forms Stabilization by State Feedback State Estimation, Observer Design

More information

Controls Problems for Qualifying Exam - Spring 2014

Controls Problems for Qualifying Exam - Spring 2014 Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function

More information

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequency-domain analysis and control design (15 pt) Given is a

More information

Introduction to Modern Control MT 2016

Introduction to Modern Control MT 2016 CDT Autonomous and Intelligent Machines & Systems Introduction to Modern Control MT 2016 Alessandro Abate Lecture 2 First-order ordinary differential equations (ODE) Solution of a linear ODE Hints to nonlinear

More information

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11 sc46 - Control Systems Design Q Sem Ac Yr / Mock Exam originally given November 5 9 Notes: Please be reminded that only an A4 paper with formulas may be used during the exam no other material is to be

More information

Control Systems Design, SC4026. SC4026 Fall 2009, dr. A. Abate, DCSC, TU Delft

Control Systems Design, SC4026. SC4026 Fall 2009, dr. A. Abate, DCSC, TU Delft Control Systems Design, SC4026 SC4026 Fall 2009, dr. A. Abate, DCSC, TU Delft Lecture 4 Controllability (a.k.a. Reachability) vs Observability Algebraic Tests (Kalman rank condition & Hautus test) A few

More information

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1)

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1) EL 625 Lecture 0 EL 625 Lecture 0 Pole Placement and Observer Design Pole Placement Consider the system ẋ Ax () The solution to this system is x(t) e At x(0) (2) If the eigenvalues of A all lie in the

More information

Control Systems Design, SC4026. SC4026 Fall 2010, dr. A. Abate, DCSC, TU Delft

Control Systems Design, SC4026. SC4026 Fall 2010, dr. A. Abate, DCSC, TU Delft Control Systems Design, SC4026 SC4026 Fall 2010, dr. A. Abate, DCSC, TU Delft Lecture 4 Controllability (a.k.a. Reachability) and Observability Algebraic Tests (Kalman rank condition & Hautus test) A few

More information

MAE 143B - Homework 8 Solutions

MAE 143B - Homework 8 Solutions MAE 43B - Homework 8 Solutions P6.4 b) With this system, the root locus simply starts at the pole and ends at the zero. Sketches by hand and matlab are in Figure. In matlab, use zpk to build the system

More information

Chap. 3. Controlled Systems, Controllability

Chap. 3. Controlled Systems, Controllability Chap. 3. Controlled Systems, Controllability 1. Controllability of Linear Systems 1.1. Kalman s Criterion Consider the linear system ẋ = Ax + Bu where x R n : state vector and u R m : input vector. A :

More information

Lecture 2 and 3: Controllability of DT-LTI systems

Lecture 2 and 3: Controllability of DT-LTI systems 1 Lecture 2 and 3: Controllability of DT-LTI systems Spring 2013 - EE 194, Advanced Control (Prof Khan) January 23 (Wed) and 28 (Mon), 2013 I LTI SYSTEMS Recall that continuous-time LTI systems can be

More information

Control Systems I. Lecture 5: Transfer Functions. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 5: Transfer Functions. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 5: Transfer Functions Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 20, 2017 E. Frazzoli (ETH) Lecture 5: Control Systems I 20/10/2017

More information

Chapter 9 Observers, Model-based Controllers 9. Introduction In here we deal with the general case where only a subset of the states, or linear combin

Chapter 9 Observers, Model-based Controllers 9. Introduction In here we deal with the general case where only a subset of the states, or linear combin Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 9 Observers,

More information

Course roadmap. Step response for 2nd-order system. Step response for 2nd-order system

Course roadmap. Step response for 2nd-order system. Step response for 2nd-order system ME45: Control Systems Lecture Time response of nd-order systems Prof. Clar Radcliffe and Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Laplace transform Transfer

More information

1 (30 pts) Dominant Pole

1 (30 pts) Dominant Pole EECS C8/ME C34 Fall Problem Set 9 Solutions (3 pts) Dominant Pole For the following transfer function: Y (s) U(s) = (s + )(s + ) a) Give state space description of the system in parallel form (ẋ = Ax +

More information

Time Response of Systems

Time Response of Systems Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

More information

POLE PLACEMENT. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 19

POLE PLACEMENT. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 19 POLE PLACEMENT Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 19 Outline 1 State Feedback 2 Observer 3 Observer Feedback 4 Reduced Order

More information

Review: transient and steady-state response; DC gain and the FVT Today s topic: system-modeling diagrams; prototype 2nd-order system

Review: transient and steady-state response; DC gain and the FVT Today s topic: system-modeling diagrams; prototype 2nd-order system Plan of the Lecture Review: transient and steady-state response; DC gain and the FVT Today s topic: system-modeling diagrams; prototype 2nd-order system Plan of the Lecture Review: transient and steady-state

More information

16.31 Fall 2005 Lecture Presentation Mon 31-Oct-05 ver 1.1

16.31 Fall 2005 Lecture Presentation Mon 31-Oct-05 ver 1.1 16.31 Fall 2005 Lecture Presentation Mon 31-Oct-05 ver 1.1 Charles P. Coleman October 31, 2005 1 / 40 : Controllability Tests Observability Tests LEARNING OUTCOMES: Perform controllability tests Perform

More information

EEE582 Homework Problems

EEE582 Homework Problems EEE582 Homework Problems HW. Write a state-space realization of the linearized model for the cruise control system around speeds v = 4 (Section.3, http://tsakalis.faculty.asu.edu/notes/models.pdf). Use

More information

ECEN 605 LINEAR SYSTEMS. Lecture 8 Invariant Subspaces 1/26

ECEN 605 LINEAR SYSTEMS. Lecture 8 Invariant Subspaces 1/26 1/26 ECEN 605 LINEAR SYSTEMS Lecture 8 Invariant Subspaces Subspaces Let ẋ(t) = A x(t) + B u(t) y(t) = C x(t) (1a) (1b) denote a dynamic system where X, U and Y denote n, r and m dimensional vector spaces,

More information

Pole Placement Design

Pole Placement Design Department of Automatic Control LTH, Lund University 1 Introduction 2 Simple Examples 3 Polynomial Design 4 State Space Design 5 Robustness and Design Rules 6 Model Reduction 7 Oscillatory Systems 8 Summary

More information

Pole placement control: state space and polynomial approaches Lecture 2

Pole placement control: state space and polynomial approaches Lecture 2 : state space and polynomial approaches Lecture 2 : a state O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.fr www.gipsa-lab.fr/ o.sename -based November 21, 2017 Outline : a state

More information

Exam in Systems Engineering/Process Control

Exam in Systems Engineering/Process Control Department of AUTOMATIC CONTROL Exam in Systems Engineering/Process Control 27-6-2 Points and grading All answers must include a clear motivation. Answers may be given in English or Swedish. The total

More information

1. Find the solution of the following uncontrolled linear system. 2 α 1 1

1. Find the solution of the following uncontrolled linear system. 2 α 1 1 Appendix B Revision Problems 1. Find the solution of the following uncontrolled linear system 0 1 1 ẋ = x, x(0) =. 2 3 1 Class test, August 1998 2. Given the linear system described by 2 α 1 1 ẋ = x +

More information

Advanced Control Theory

Advanced Control Theory State Feedback Control Design chibum@seoultech.ac.kr Outline State feedback control design Benefits of CCF 2 Conceptual steps in controller design We begin by considering the regulation problem the task

More information

ECEN 605 LINEAR SYSTEMS. Lecture 7 Solution of State Equations 1/77

ECEN 605 LINEAR SYSTEMS. Lecture 7 Solution of State Equations 1/77 1/77 ECEN 605 LINEAR SYSTEMS Lecture 7 Solution of State Equations Solution of State Space Equations Recall from the previous Lecture note, for a system: ẋ(t) = A x(t) + B u(t) y(t) = C x(t) + D u(t),

More information

EEE 184: Introduction to feedback systems

EEE 184: Introduction to feedback systems EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)

More information

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Jacopo Tani Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 2, 2018 J. Tani, E. Frazzoli (ETH) Lecture 7:

More information

TRACKING AND DISTURBANCE REJECTION

TRACKING AND DISTURBANCE REJECTION TRACKING AND DISTURBANCE REJECTION Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 13 General objective: The output to track a reference

More information

PID Control. Objectives

PID Control. Objectives PID Control Objectives The objective of this lab is to study basic design issues for proportional-integral-derivative control laws. Emphasis is placed on transient responses and steady-state errors. The

More information

There are none. Abstract for Gauranteed Margins for LQG Regulators, John Doyle, 1978 [Doy78].

There are none. Abstract for Gauranteed Margins for LQG Regulators, John Doyle, 1978 [Doy78]. Chapter 7 Output Feedback There are none. Abstract for Gauranteed Margins for LQG Regulators, John Doyle, 1978 [Doy78]. In the last chapter we considered the use of state feedback to modify the dynamics

More information

NPTEL Online Course: Control Engineering

NPTEL Online Course: Control Engineering NPTEL Online Course: Control Engineering Ramkrishna Pasumarthy Assignment-11 : s 1. Consider a system described by state space model [ ] [ 0 1 1 x + u 5 1 2] y = [ 1 2 ] x What is the transfer function

More information

Chapter 12. Feedback Control Characteristics of Feedback Systems

Chapter 12. Feedback Control Characteristics of Feedback Systems Chapter 1 Feedbac Control Feedbac control allows a system dynamic response to be modified without changing any system components. Below, we show an open-loop system (a system without feedbac) and a closed-loop

More information

1 Continuous-time Systems

1 Continuous-time Systems Observability Completely controllable systems can be restructured by means of state feedback to have many desirable properties. But what if the state is not available for feedback? What if only the output

More information

Kalman Decomposition B 2. z = T 1 x, where C = ( C. z + u (7) T 1, and. where B = T, and

Kalman Decomposition B 2. z = T 1 x, where C = ( C. z + u (7) T 1, and. where B = T, and Kalman Decomposition Controllable / uncontrollable decomposition Suppose that the controllability matrix C R n n of a system has rank n 1

More information

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10) Amme 35 : System Dynamics Control State Space Design Course Outline Week Date Content Assignment Notes 1 1 Mar Introduction 2 8 Mar Frequency Domain Modelling 3 15 Mar Transient Performance and the s-plane

More information

University of Toronto Department of Electrical and Computer Engineering ECE410F Control Systems Problem Set #3 Solutions = Q o = CA.

University of Toronto Department of Electrical and Computer Engineering ECE410F Control Systems Problem Set #3 Solutions = Q o = CA. University of Toronto Department of Electrical and Computer Engineering ECE41F Control Systems Problem Set #3 Solutions 1. The observability matrix is Q o C CA 5 6 3 34. Since det(q o ), the matrix is

More information

Lecture 4 and 5 Controllability and Observability: Kalman decompositions

Lecture 4 and 5 Controllability and Observability: Kalman decompositions 1 Lecture 4 and 5 Controllability and Observability: Kalman decompositions Spring 2013 - EE 194, Advanced Control (Prof. Khan) January 30 (Wed.) and Feb. 04 (Mon.), 2013 I. OBSERVABILITY OF DT LTI SYSTEMS

More information

Multivariable Control Laboratory experiment 2 The Quadruple Tank 1

Multivariable Control Laboratory experiment 2 The Quadruple Tank 1 Multivariable Control Laboratory experiment 2 The Quadruple Tank 1 Department of Automatic Control Lund Institute of Technology 1. Introduction The aim of this laboratory exercise is to study some different

More information

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017

More information

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state

More information

Identification Methods for Structural Systems

Identification Methods for Structural Systems Prof. Dr. Eleni Chatzi System Stability Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can be defined from

More information

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response .. AERO 422: Active Controls for Aerospace Vehicles Dynamic Response Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. . Previous Class...........

More information

Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback

Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Topic #17 16.31 Feedback Control State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Back to reality Copyright 21 by Jonathan How. All Rights reserved 1 Fall

More information

Laboratory Exercise 1 DC servo

Laboratory Exercise 1 DC servo Laboratory Exercise DC servo Per-Olof Källén ø 0,8 POWER SAT. OVL.RESET POS.RESET Moment Reference ø 0,5 ø 0,5 ø 0,5 ø 0,65 ø 0,65 Int ø 0,8 ø 0,8 Σ k Js + d ø 0,8 s ø 0 8 Off Off ø 0,8 Ext. Int. + x0,

More information

Control Systems. Laplace domain analysis

Control Systems. Laplace domain analysis Control Systems Laplace domain analysis L. Lanari outline introduce the Laplace unilateral transform define its properties show its advantages in turning ODEs to algebraic equations define an Input/Output

More information

Synthesis via State Space Methods

Synthesis via State Space Methods Chapter 18 Synthesis via State Space Methods Here, we will give a state space interpretation to many of the results described earlier. In a sense, this will duplicate the earlier work. Our reason for doing

More information

AUTOMATIC CONTROL. Exercises

AUTOMATIC CONTROL. Exercises AUTOMATIC CONTROL Exercises Department of Automatic Control Lund University, Faculty of Engineering June 27 . Model Building and Linearization. Many everyday situations may be described and analyzed using

More information

EE221A Linear System Theory Final Exam

EE221A Linear System Theory Final Exam EE221A Linear System Theory Final Exam Professor C. Tomlin Department of Electrical Engineering and Computer Sciences, UC Berkeley Fall 2016 12/16/16, 8-11am Your answers must be supported by analysis,

More information

MEM 355 Performance Enhancement of Dynamical Systems MIMO Introduction

MEM 355 Performance Enhancement of Dynamical Systems MIMO Introduction MEM 355 Performance Enhancement of Dynamical Systems MIMO Introduction Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 11/2/214 Outline Solving State Equations Variation

More information

State Space Control D R. T A R E K A. T U T U N J I

State Space Control D R. T A R E K A. T U T U N J I State Space Control D R. T A R E K A. T U T U N J I A D V A N C E D C O N T R O L S Y S T E M S M E C H A T R O N I C S E N G I N E E R I N G D E P A R T M E N T P H I L A D E L P H I A U N I V E R S I

More information

Control Systems. Design of State Feedback Control.

Control Systems. Design of State Feedback Control. Control Systems Design of State Feedback Control chibum@seoultech.ac.kr Outline Design of State feedback control Dominant pole design Symmetric root locus (linear quadratic regulation) 2 Selection of closed-loop

More information

Control, Stabilization and Numerics for Partial Differential Equations

Control, Stabilization and Numerics for Partial Differential Equations Paris-Sud, Orsay, December 06 Control, Stabilization and Numerics for Partial Differential Equations Enrique Zuazua Universidad Autónoma 28049 Madrid, Spain enrique.zuazua@uam.es http://www.uam.es/enrique.zuazua

More information

Stability of Parameter Adaptation Algorithms. Big picture

Stability of Parameter Adaptation Algorithms. Big picture ME5895, UConn, Fall 215 Prof. Xu Chen Big picture For ˆθ (k + 1) = ˆθ (k) + [correction term] we haven t talked about whether ˆθ(k) will converge to the true value θ if k. We haven t even talked about

More information

Automatique. A. Hably 1. Commande d un robot mobile. Automatique. A.Hably. Digital implementation

Automatique. A. Hably 1. Commande d un robot mobile. Automatique. A.Hably. Digital implementation A. Hably 1 1 Gipsa-lab, Grenoble-INP ahmad.hably@grenoble-inp.fr Commande d un robot mobile (Gipsa-lab (DA)) ASI 1 / 25 Outline 1 2 (Gipsa-lab (DA)) ASI 2 / 25 of controllers Signals must be sampled and

More information

Control Systems. Frequency domain analysis. L. Lanari

Control Systems. Frequency domain analysis. L. Lanari Control Systems m i l e r p r a in r e v y n is o Frequency domain analysis L. Lanari outline introduce the Laplace unilateral transform define its properties show its advantages in turning ODEs to algebraic

More information

Exam in Systems Engineering/Process Control

Exam in Systems Engineering/Process Control Department of AUTOMATIC CONTROL Exam in Systems Engineering/Process Control 7-6- Points and grading All answers must include a clear motivation. Answers may be given in English or Swedish. The total number

More information

Pole Placement (Bass Gura)

Pole Placement (Bass Gura) Definition: Open-Loop System: System dynamics with U =. sx = AX Closed-Loop System: System dynamics with U = -Kx X sx = (A BK x )X Characteristic Polynomial: Pole Placement (Bass Gura) a) The polynomial

More information

Module 07 Controllability and Controller Design of Dynamical LTI Systems

Module 07 Controllability and Controller Design of Dynamical LTI Systems Module 07 Controllability and Controller Design of Dynamical LTI Systems Ahmad F. Taha EE 5143: Linear Systems and Control Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ataha October

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science : Dynamic Systems Spring 2011

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science : Dynamic Systems Spring 2011 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.4: Dynamic Systems Spring Homework Solutions Exercise 3. a) We are given the single input LTI system: [

More information

ECE 388 Automatic Control

ECE 388 Automatic Control Controllability and State Feedback Control Associate Prof. Dr. of Mechatronics Engineeering Çankaya University Compulsory Course in Electronic and Communication Engineering Credits (2/2/3) Course Webpage:

More information

Multivariable Control. Lecture 03. Description of Linear Time Invariant Systems. John T. Wen. September 7, 2006

Multivariable Control. Lecture 03. Description of Linear Time Invariant Systems. John T. Wen. September 7, 2006 Multivariable Control Lecture 3 Description of Linear Time Invariant Systems John T. Wen September 7, 26 Outline Mathematical description of LTI Systems Ref: 3.1-3.4 of text September 7, 26Copyrighted

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are

More information

Robust Control 2 Controllability, Observability & Transfer Functions

Robust Control 2 Controllability, Observability & Transfer Functions Robust Control 2 Controllability, Observability & Transfer Functions Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /26/24 Outline Reachable Controllability Distinguishable

More information

ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27

ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27 1/27 ECEN 605 LINEAR SYSTEMS Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability Feedback System Consider the feedback system u + G ol (s) y Figure 1: A unity feedback system

More information

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42 Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 Open-Loop

More information

D(s) G(s) A control system design definition

D(s) G(s) A control system design definition R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure

More information

ECE557 Systems Control

ECE557 Systems Control ECE557 Systems Control Bruce Francis Course notes, Version.0, September 008 Preface This is the second Engineering Science course on control. It assumes ECE56 as a prerequisite. If you didn t take ECE56,

More information

The disturbance decoupling problem (DDP)

The disturbance decoupling problem (DDP) CHAPTER 3 The disturbance decoupling problem (DDP) Consider the system 3.1. Geometric formulation { ẋ = Ax + Bu + Ew y = Cx. Problem 3.1 (Disturbance decoupling). Find a state feedback u = Fx+ v such that

More information

The control of a gantry

The control of a gantry The control of a gantry AAE 364L In this experiment we will design a controller for a gantry or crane. Without a controller the pendulum of crane will swing for a long time. The idea is to use control

More information

Topic # /31 Feedback Control Systems

Topic # /31 Feedback Control Systems Topic #7 16.30/31 Feedback Control Systems State-Space Systems What are the basic properties of a state-space model, and how do we analyze these? Time Domain Interpretations System Modes Fall 2010 16.30/31

More information

Controllability, Observability, Full State Feedback, Observer Based Control

Controllability, Observability, Full State Feedback, Observer Based Control Multivariable Control Lecture 4 Controllability, Observability, Full State Feedback, Observer Based Control John T. Wen September 13, 24 Ref: 3.2-3.4 of Text Controllability ẋ = Ax + Bu; x() = x. At time

More information

Course Summary. The course cannot be summarized in one lecture.

Course Summary. The course cannot be summarized in one lecture. Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: Steady-State Error Unit 7: Root Locus Techniques

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

More information

Chapter 5 HW Solution

Chapter 5 HW Solution Chapter 5 HW Solution Review Questions. 1, 6. As usual, I think these are just a matter of text lookup. 1. Name the four components of a block diagram for a linear, time-invariant system. Let s see, I

More information

Digital Control: Summary # 7

Digital Control: Summary # 7 Digital Control: Summary # 7 Proportional, integral and derivative control where K i is controller parameter (gain). It defines the ratio of the control change to the control error. Note that e(k) 0 u(k)

More information

Linear System Theory

Linear System Theory Linear System Theory Wonhee Kim Chapter 6: Controllability & Observability Chapter 7: Minimal Realizations May 2, 217 1 / 31 Recap State space equation Linear Algebra Solutions of LTI and LTV system Stability

More information

Lecture 9 Nonlinear Control Design

Lecture 9 Nonlinear Control Design Lecture 9 Nonlinear Control Design Exact-linearization Lyapunov-based design Lab 2 Adaptive control Sliding modes control Literature: [Khalil, ch.s 13, 14.1,14.2] and [Glad-Ljung,ch.17] Course Outline

More information

Chapter 3. State Feedback - Pole Placement. Motivation

Chapter 3. State Feedback - Pole Placement. Motivation Chapter 3 State Feedback - Pole Placement Motivation Whereas classical control theory is based on output feedback, this course mainly deals with control system design by state feedback. This model-based

More information

A FEEDBACK STRUCTURE WITH HIGHER ORDER DERIVATIVES IN REGULATOR. Ryszard Gessing

A FEEDBACK STRUCTURE WITH HIGHER ORDER DERIVATIVES IN REGULATOR. Ryszard Gessing A FEEDBACK STRUCTURE WITH HIGHER ORDER DERIVATIVES IN REGULATOR Ryszard Gessing Politechnika Śl aska Instytut Automatyki, ul. Akademicka 16, 44-101 Gliwice, Poland, fax: +4832 372127, email: gessing@ia.gliwice.edu.pl

More information

Control System Design

Control System Design ELEC4410 Control System Design Lecture 19: Feedback from Estimated States and Discrete-Time Control Design Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science

More information

Controllability. Chapter Reachable States. This chapter develops the fundamental results about controllability and pole assignment.

Controllability. Chapter Reachable States. This chapter develops the fundamental results about controllability and pole assignment. Chapter Controllability This chapter develops the fundamental results about controllability and pole assignment Reachable States We study the linear system ẋ = Ax + Bu, t, where x(t) R n and u(t) R m Thus

More information

Perspective. ECE 3640 Lecture 11 State-Space Analysis. To learn about state-space analysis for continuous and discrete-time. Objective: systems

Perspective. ECE 3640 Lecture 11 State-Space Analysis. To learn about state-space analysis for continuous and discrete-time. Objective: systems ECE 3640 Lecture State-Space Analysis Objective: systems To learn about state-space analysis for continuous and discrete-time Perspective Transfer functions provide only an input/output perspective of

More information

MODERN CONTROL DESIGN

MODERN CONTROL DESIGN CHAPTER 8 MODERN CONTROL DESIGN The classical design techniques of Chapters 6 and 7 are based on the root-locus and frequency response that utilize only the plant output for feedback with a dynamic controller

More information

AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Introduction to Automatic Control & Linear systems (time domain)

AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Introduction to Automatic Control & Linear systems (time domain) 1 AUTOMATIC CONTROL Andrea M. Zanchettin, PhD Spring Semester, 2018 Introduction to Automatic Control & Linear systems (time domain) 2 What is automatic control? From Wikipedia Control theory is an interdisciplinary

More information

Nonlinear Control Systems

Nonlinear Control Systems Nonlinear Control Systems António Pedro Aguiar pedro@isr.ist.utl.pt 7. Feedback Linearization IST-DEEC PhD Course http://users.isr.ist.utl.pt/%7epedro/ncs1/ 1 1 Feedback Linearization Given a nonlinear

More information

EE C128 / ME C134 Final Exam Fall 2014

EE C128 / ME C134 Final Exam Fall 2014 EE C128 / ME C134 Final Exam Fall 2014 December 19, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket

More information

MAE 143B - Homework 7

MAE 143B - Homework 7 MAE 143B - Homework 7 6.7 Multiplying the first ODE by m u and subtracting the product of the second ODE with m s, we get m s m u (ẍ s ẍ i ) + m u b s (ẋ s ẋ u ) + m u k s (x s x u ) + m s b s (ẋ s ẋ u

More information